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Abstract. Forn > r > 1, let f,(n} denote the minimum number g, such that it is possible to partition
all edges of the complete r-graph on n vertices into g complete r-partite r-graphs. Graham and
Pollak showed that f,(n) = n — 1. Here we observe that f;(n) = n — 2 and show that for every fixed
r > 2, there are positive constants ¢, (r) and ¢, (r) such that ¢, (r) < fi{n)-n"F?1 < ¢,(r) foralln = r.
This solves a problem of Aharoni and Linial. The proof uses some simple ideas of linear algebra.

1. Introduction

For n > r > |, let f,(n) denote the minimum number g, such that it is possible to
partition all edges of the complete r-uniform hypergraph on n vertices into g
pairwise edge-disjoint complete r-partite r-uniform hypergraphs.

Obviously, f;(n) = 1. Graham and Pollak ([3, 4], see also [2, 5]) proved that
f2(n) = n — 1forall n > 2. Simple proofs for this result were found by Tverberg [7]
and Peck [6].

Aharoni and Linial [ 1] raised the natural problem of determining or estimating
f+(n) for r > 2. In particular they asked if f,(n) is a nonlinear function of n, for some
fixed r > 2. '

In this note we answer this question in the affirmative by proving the following
theorem, that determines the asymptotic behavior of f,(n) for every fixed r as n tends
to infinity.

Theorem 1.1. For every fixed r > 1, there are two positive constants ¢, = ¢,(r) and
¢y = ¢,(r) such that

¢y - piri2] < f;(n) <e¢ye nlr/2]
foralln >r.

The lower bound is proved using some simple ideas of linear algebra. The
method is similar to the one used by Tverberg [7] and by Graham and Pollak [3, 4],
for determining f(n). The upper bound is established by a recursive construction.
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It is worth noting that our construction supplies the exact value of f3(n) =n —2
foralln = 3.

2. The Lower Bound

We start with the following easy observation.

Lemma 2.1. Foreverynzr > 2
Sln) 2 fes(n = 1),

Proof. Suppose all edges of the complete r-uniform hypergraph on a set N = {1, 2,
..., n} of n vertices are partitioned into g = f,(n) r-partite r-graphs (= r uniform
hypergraphs) H', H%, ..., H". Let E; denote the set of edges of H' and put E; =
{e — {n}: e E, nee}. Clearly each nonempty E, is the set of edges of a complete
(r — 1)-partite (r — 1)-graph. Moreover, the set of all nonempty E;’s forms a de-
composition of all edges of the complete r — l-uniform hypergraph on the n — 1
vertices N — {n}. Hence f,_,(n — 1) < g = f,(n), as needed. 0

In view of Lemma 2.1, the lower bound in Theorem 1.1 for odd values of r
follows from the lower bound for even values of r, which we prove next.

Lemma 2.2. Foralln > 2k > 2

(D - <k—’i 1> - <k . 3> o "(k +1 -nz-rk/ﬂ)
(&)

Proof.Let K = {K < N:|K| = k} be the set of all (Z) k-subsetsof N = {1,2,...,n}

Saxln) = 2+

and associate each Ke K with a variable xx. Let H be a complete 2k-partite
2k-graph, whose (pairwise disjoint) vertex classes V;, V5, ..., V5, are subsets of N.
By definition, the edges of H are all 2k-subsets 4 < N, such that [AN V| =1 for
1 <i < 2k. We define, for each such H, a quadratic form Q(H) in the variables
{xx: Ke K} as follows.

Q(H) = Y {Ls(H) - Lg(H): A, B={1,2,...,2k}, [A]=|B|=k ANB=g,
1e A}, where, for C = {1,2,..., 2k}, |C|] =k,

Le(H) =Y {xx: KeK,|KNV,|=1forallceC}.

1/2k . .
Thus, Q(H) is a sum of 5( k) products of the form L (H)- Lg(H), in which each

. factor is a linear combination of the x4’s.
Put g = f5,(n), and suppose the edges of the complete r-graph on N are parti-
tioned into g r-partite r-graphs H*, H?, ..., H%. One can easily check that
q
Y O(H) =3 {x¢x.: K, LeK,KNL= gz}. (2.1)
i=1

Indeed, if K, Le K and KN L = g then the product x, - x, appears only in Q(H’),
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where H'is the unique H’ containing K U L as anedge, and if KN L # g, then x,- x,,

appears in no Q(H’).
We next claim that

S {xgx x.: K, LeK,KNL= g}
1 k

- E,Zb(ﬂ l)iACI\fz}Al:i(KeK;lCKXK)z‘

Indeed, if K, Le K and |[K N L| = j, (0 < j < k), then the coefficient of x - x, in the

(22)

right hand side of (2.2) is Y /o (—1) (i) which is 1 if j=0 and 0 if j > 0. For

[k
K = L, the coefficients of x£ in the right hand side of (2.2) is $ Y 5o (— 1) ( ) = 0.
i

Thus (2.2) holds.
Substituting (2.2) and the definition of the Q(H')’s into (2.1) we conclude that

ZZ{LA Y- Ly(H): A,B < {1,...,2k},|A| = |B| = k, ANB = &, 1 € A}

tev y (g "

Let V be the linear subspace of the real (n

k) -dimensional space of the xg’s

determined by the following set of

(e )or (el ) () v
AT AR VESY A k—3>+ * k+1—2rk/2]>

linear equations.
L H)=0foralll<i<gand A< {1,2,..., 2k}, |A] =k 1eA.
xg=0forall A= N, [Alef{k— 1,k —3,...,k+1—2[k2]} (24)

KeK,A<K

We claim that V is the zero subspace. Indeed, suppose {X,: K€ K} € V. Then X
satisfies (2.4), and in view of (2.3) we conclude that

1 2
o=§.(_1)k{z 2+ 3 < » fx> +}
Kek AN, [dl=k-2 \Ke K, A<K

and hence X, = 0 for all Ke K.
Therefore, the number of linear equations in the system (2.4) is at least <Z) and

the assertion of Lemma 2.2 foliows. 0

Combining Lemmas 2.1 and 2.2 we obtain

Corollary 2.3. For every fixed r > 1, f,(n) > ¢, n"?)-(1 + o(1)) as n — o0, where

20
T2l
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Remarks.
1) Lemma 2.2 with k = 1 reduces to Graham-Pollak’s result; f,(n) > n — 1, (which
is, of course, sharp).

2) Lemma 2.1 with r = 3 asserts f3(n) > f,(n — 1) = n — 2. As shown in the next
section this result is also sharp.

3) A trivial lower bound for f,(n) is f,(n) > (

n r
n) / (—) , since the number of edges of
r r
any complete r-partite r-graph on n vertices is not greater than (n/r). This trivial
bound is much weaker than the one proved above for all r = o(n), but is better for,

e.g,r=[n/2].

3. The Upper Bound

In this section we prove the upper bound for f,(n) given in Theorem 1.1, using some
simple recursive constructions. We first determine f;(n) for all n > 3.

Lemma 3.1. Foralln =3
fs(n)=n—2.
Proof. By Lemma 2.1 and Graham-Pollak’s result
fim=foln—1)=n-2

We prove that f3(n) < n — 2 by induction on n. For n = 2, 3 the result is trivial.
Assuming the result forall ', n’ < n, we proveitforn,(n > 3). Put N = {1,2,..., n}
and N; = {2i — 1,2i} for 1 <i < [n/2]. For odd n define also N, = {n}. We claim
that

fs(m) < /2] + f5([n/21). (3-1)

Indeed, put g = f3([n/2]) and let H', ..., H% be a decomposition of the complete
3-graph on [n/2] vertices {1, 2, ..., [n/27} into g complete 3-partite 3-graphs. For
1 <i<gq,let Vi, Viand Vi denote the vertex-classes of H'. Let H' be the 3-partite
3-graph whose vertex classes are U {N;: je V]}, U{N;: je V;} and U {N;: je ¥5}. For
1 <j < [n/2], let H** be the 3-partite 3-graph whose vertex classes are {2i — 1},
{2i} and N — {2i — 1,2i}. One can easily check that the hypergraphs {H'}#["2]
form a dcomposition of all edges of the compolete 3-graph on N into 3-partite
3-graphs. This establishes (3.1). Hence, by the induction hypothesis,

fi(m) < /21 + f3([w/2)) < W21 + /2] =2 =n - 2. O

Let N, and N, be two disjoint sets of vertices, and let H, be an r,-graph on N,

(I <i<2). Wedenote by H, + H, the (r, + r,)-graph on N, U N, whose edges are

all edges e, Ue,, where e; is an edge of H; (i = 1,2). One can easily check that if H;

is a complete ri-partite r,-graph then H, + H, isacomplete (r, + r,)-partite(r, + r,)-
graph. For notational convenience let us agree that fy(n) = 1 for all n.

Lemma 3.2. Suppose n > r > 4, then

fin) < ¥ filln2])- £-Tn/27).

i
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Proof. Put N ={1,2,...,n}, Ny ={1,2,...,[n2]}, N, = {[®/2] + 1, ..., n}. For
0 < i < rlet H' be a family of f;([n/2]) complete i-partite i-graphs that decompose
the complete i-graph on N;. (H° consists of one graph whose only edge is the empty
edge.) Similarly, let G’ be a family of f{([n/21]) complete j-partite j-graphs that de-
compose the complete j-graph on N, (0 < j < r). Define a family F of ) 7, fi([n/2])-
f,-i{Tn/27) complete r-partite r-graphs on N by

F={J{H +G " HeH, G 'eG'}.
i=0

One can easily check that the members of F form a decomposition of the complete
r-graph on N. This completes the proof. O

We can now prove the upper bound for f,(n) given in Theorem 1.1 by double
induction on r and n. Since f,(n) is a monotone increasing function of n, it is enough
to prove it when n is a power of 2, which we assume, for convenience. By Lemma
3.1 (and trivial constructions for r < 2) f,(n) < c,-n" for r =0, 1, 2, 3 and every
n, where ¢, =c¢; = ¢, = ¢3 = 1. Clearly, if n <r then f,(n) < c,-n"? for every
positive ¢,. Assuming that

SH(n)y< e A (3.2)
forallr’ <randalln’ =2/, and for v =rand 2/ = n’ < n = 2', we prove that if ¢,

is properly chosen then (3.2) holds also for (r,n). Indeed, by Lemma 3.2 and the
induction hypothesis

fi(n/2)fo-i(n/2) < i ¢, i(nf2)iPTHIe=012]

i

fn) <

S

' 1 r—1
i Crei (n/2)7 = 571 <2c, * ; ci.cﬁ) e

IA
il
o

i

Hence, if we define the ¢,’s by

Cog=0C;=Cy=¢Cy3=1

r—1 33
and¢," (221 —2) = Y ¢;-c,_;forr >4, (33)
=1

then f,(n) < ¢,-n"""?! for every r and every n = 2\ This implies the validity of the
upper bound for f,(n) given in Theorem 1.1.

Remarks.
1) One can easily check that the constants {c,}i2, defined by (3.3) satisfy
8r—1
< .
=T

By a somewhat more careful analysis we can show that the construction described
L 1
above implies that for every fixed k > 1 f,,(n) < i n*(1 + o(1)), as n — oo. This

should be compared to the lower bound
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Saln) = %-n"(l + o(1))

given in Corollary 2.3.

2) It would be interesting to determine Si(n) precisely for r > 3, or to improve our
estimates. In particular, Lemma 2.2 and Lemma 3.2 for r = 4 imply that

%(n2 —3n) < fuln) < %(nZ — 5n + 6)

for all n. It would be interesting to decide which of these two bounds is closer to
the truth.
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