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Abstract. We prove several theorems about  the cardinal g associated with 
groupwise density. With respect to a natural ordering of families of non- 
decreasing maps from co to co, all families of size < g are below all unbounded 
families. With respect to a natural ordering of filters on co, all filters generated 
by < g sets are below all non-feeble filters. If  u < g then b = u and g = 1) = c. (The 
definitions of these cardinals are recalled in the introduction.) Finally, some 
consequences deduced from u < g by Laflamme are shown to be equivalent to 
u < g .  

Introduction 

Groupwise dense families and the associated cardinal number  g were introduced in 
[5]. (These and other concepts used here will be defined later in this introduction.) 
Their original purpose was to provide a succinct formulation, namely the cardinal 
inequality u < g where u is the minimum number  of generators for an ultrafilter, of 
the crucial combinatorial  properties obtained by a forcing construction due to 
Shelah [3, 4]. Thus, consistency proofs using Shelah's models can be carried out 
without referring directly to the models, by deducing the desired statements from 
u < g .  

In view of the origin of g, it is not surprising that most  research about  g has 
involved deducing consequences from u < g. See [5, 6, 11, 12]; the main exception 
seems to be Theorem 2 of [6]. 

In the first two sections of this paper, we shall prove some results about  g that 
do not involve u. The proofs of the results are based on the same ideas as previous 
work that assumed u < g, but we believe it is worthwhile to free these methods from 
this connection with u in order to bring out more clearly the role of g. The main 
results here, Theorems 2 and 5, say that  certain structures that are quite trivial in 
cardinalities < b (the bounding number) are nearly (but not quite) as simple in 
cardinalities < g. Of  course, these results are interesting only if b < g, which seems 
to be a weaker hypothesis than u < g. 
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In Sect. 3, we revert to the pattern of earlier research and deduce consequences 
from u < g. The consequences (Theorems 6, 7, and 8) all have the form that certain 
cardinals must be equal, specifically b = u and g = b = c. As a corollary, we obtain 
that two combinatorial results that were deduced from u < g  in [12] are in fact 
equivalent to u < g. 

The remainder of this introduction will be devoted to setting out the notation 
and terminology that we shall use. [co]o, is the set of all infinite subsets of the set co 
of natural numbers. For  A e [co]o, and n e co, next(A, n) is the smallest number > n in 
A. co ,~ co is the set of non-decreasing functions from co to co. We say that a function 
f (eventually) majorizes a function g if f(n)> g(n) for all (sufficiently large) n e co; 
(eventual) majorization on an infinite A____ co has the same definition except that n 
ranges only over A. A function from co to co is bounded if it is majorized by a 
constant function. A family X of functions dominates another family ~r if each ge~r 
is eventually majorized by some f e X. Filters are always assumed to be proper 
filters on co and to contain all cofinite sets; thus ultrafilters are non-principal. For  
any family X of subsets of co and any f :  co--*co, we define 

f ( f )  = {Z ____ co I f  - 1(Z) ~ X}. 

Notice that, if~- is a filter and f is finite-to-one, then f(o~) is the filter generated by 
the sets f(X), where X ranges over any base for o~. 

c is the cardinality of the continuum, b is the minimum cardinality of a family 
=c co ,~ co that is not dominated by a single function, b is the minimum cardinality of 
a family ____ co ,~ co that dominates co ,~ co. u is the minimum cardinality of any 
ultrafilter base. (These four cardinals and our notation for them are from [7].) 

A family f#___c [co]~' is groupwise dense if 
(a) whenever X e f #  and Ye [co]o, and Y - X  is finite, then Yef~, and 
(b) for any infinite family of disjoint, nonempty, finite subsets of co, the union of 

some infinite subfamily is in f#. 
It is easy to check that, in the presence of(a), the family in (b) can be assumed to 

be a partition of 09 into finite intervals. We shall usually use (b) in this form. Notice 
that, if H and/-/ '  are partitions of co into finite pieces and if every piece o f / I '  is a 
union of pieces of H, then (b) f o r / / f o l l o w s  trivially from (b) fo r / I ' .  Thus, when 
checking that (b) holds for a given partition H, we may consider instead o f / / a n y  
H'  obtained by merging pieces of H. 

g is the smallest cardinal x such that some x groupwise dense families have no 
common member. 

The results in this paper, except for Theorem 8 and its corollary, were 
presented at the Oberwolfach meeting on set theory in January, 1989. The paper 
was written during a visit to the University of Heidelberg. I thank Professor 
G.H. Miiller for arranging this visit and for his warm hospitality. 

1. 9 is almost b for families of functions 

In this section, we consider families X of non-decreasing functions from co to co, i.e., 
X__c co ,,~ co, and to avoid trivialities we consider only families that contain at least 
one unbounded function. A pre-ordering relation < between such families was 
introduced in [8] (motivated by an application in abelian group theory) and 
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studied further in [9, 2, 5, 12] under various set-theoretic hypotheses. The 
definition of ~r < ~/is that there exists r r co ,~ co such that each f ~ Y" is eventually 
majorized by some function g o r with g ~ .  (This is obviously reflexive, and to 
prove transitivity just compose the r's.) We shall give an alternate description of < 
which may make it seem more natural, and then we use this description to simplify 
the proof of a result (alluded to by the title of the section) that was proved but not 
stated in [5] and stated but not proved in [12]. 

For  families X, ~/____ co/" co, we say that ~r is somewhere dominated by ~ if there is 
an infinite set A ____ co such that each f ~ Y" is eventually majorized on A by some 
g ~ .  

Theorem 1. The relation <= is the transitive closure of the relation "is somewhere 
dominated by". 

Proof. If X is somewhere dominated by ~/, with A =c co as witness, then, for each 
f e :~ there is g e ~ such that, for all sufficiently large n, 

f (n)  <= f(next(A, n)) __< g(next(A, n)), 

so :~__< ~/with witness given by r(n) = next(A, n). As __< is transitive, all that remains 
to be proved is that, if X_-< ~ ,  then X is somewhere dominated by ~1 ,  which is 
somewhere dominated by ~ 2  . . . .  , which is somewhere dominated by ~e,  which is 
somewhere dominated by ~ .  In fact, we shall do this with only a single ~ .  

Assume X < ~ ]  with witness r. Choose ao<al  < a 2 < . . .  inductively so that 
ao = 0 and r(a.)< a, + ~ for all n. For  each g ~ Y/, define ~ by 

~ ( x ) = g ( a , + l - 1 )  if x~[a , ,a ,+l) ;  

thus ~ takes, throughout any interval [a,, a, + 0, the largest value taken by g on that 
interval. Let ~r = {~ [ g ~ ~}. Since ~ and g agree at the right end of each interval, 
is somewhere dominated by ~t with witness {a,+ 1 - 1  In,co}. We complete the 
proof by checking that Y" is somewhere dominated by Lr, with witness {a. In ~ co}. 
For  each f e X, there is g ~ ~t such that f(n) < g(r(n)) for all sufficiently large n. Thus, 
for large n, we have 

f (a.)  <= g(r(a,)) <= g(a. + 1 - 1) = ~(a.). 

As ~ ~ ~ ,  the proof is complete. []  

It is easy to see that, if Y" is dominated by some h ~ co/~ co, then Y" < o-g for any ~r 
Indeed, if g is any unbounded function in Y/, then r can be chosen so that g o r 
majorizes h, hence dominates ~r. It is also easy to see that any ~r that is < a 
dominated q /mus t  itself be dominated (by h o r if h dominates ~ / and  r witnesses 
~r < y/). Passing to equivalence classes with respect to the equivalence relation 
induced by < ,  and thus viewing < as a partial order, we have that the dominated 
families constitute the smallest element in this order. (Had we not required every 
family to contain an unbounded function, there would have been an (09+ 1)- 
sequence of lower elements.) 

Any ~r of cardinality < b is, by the preceding remarks, at the bot tom of our 
order. The next theorem and its corollary show that any X of cardinality < g is 
very near the bottom; it is < every ~ except possibly the dominated ag's. Of course 
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this is of interest only when g > b. The corollary appeared as Lemma 9 in [12], with 
a reference to 1-5] for the proof. The proof to be given below is simpler than that in 
1-5] ((0)-o(1) in Theorem 1) and gives the slightly stronger result in the theorem 
rather than only the corollary. 

Theorem 2. I f  I~rl < ~ and q/ is not dominated, then YC is somewhere dominated by ~ .  

Proof For  each f ~ Y', let 

(qy = {A ~ [co]o, [ (3g ~ ~/) g eventually majorizes f on A}. 

Any A that belongs to all the fir 's simultaneously can serve as a witness that X is 
somewhere dominated by Yr So, as there are fewer than fi families fir, we need only 
show that each fly is groupwise dense; indeed, we need only check condition (ii) in 
the definition ofgroupwise density, as (i) is trivial. So let f ~ ~ be given and let co be 
partitioned into intervals [a 0, al), [al, a2) . . . . .  Define 

f ' (n)=f(ak+2) if n~[ak, ak+O. 

As ~1 is not dominated, fix some g ~ ~ such that g(n) > f '(n) for infinitely many n. 
For  each such n, i fn~ 1-ak, ak+ 1), then for any x in the next interval 1-ak+ 1, ak+z) we 
have 

f ( x )  < f (a  k + 2) = f '(n) < g(n) < g(x). 

Thus, g majorizes f on lag+ 1, ak+2) whenever some n e [ak, ak+l) satisfies g(n) 
> f'(n). So g majorizes f on the union of infinitely many intervals from the given 
partition, and that means that this union belongs to f#s" [] 

Corollary. I f  [~r] < g, then 9f < ~ for all undominated ~/. [] 

Ifb < g, then there is an undominated family of size < g, so the corollary tells us 
that the bot tom of the ordering consists of two comparable elements, and 
everything else is above these. 

2. 9 is almost b for filters 

In this section, we obtain a result analogous to (the corollary of) Theorem 2, for 
filters instead of families of functions. First, we need the concepts analogous to 
dominated families and the ordering in Sect. 1. All filters that we consider will be 
proper filters on co and will contain all cofinite sets. 

A filter ~- is feeble if there is a finite-to-one f :  co--co such that f (W) is the filter 
of cofinite sets. Equivalently, there is a partition of co into finite pieces (namely 
f - l { n } )  such that each set in ~- intersects all but finitely many pieces. One can 
always arrange for the pieces to be intervals (just make sure each interval includes 
some f - l{n}) ,  i.e., one can arrange for f to be monotone. 

The pre-ordering relation that we shall use for filters is defined by putting 
~ - < J f  if and only if, for some finite-to-one f :co~co ,  f (~ )c=f (~ f ) .  It is not 
obvious that this is a transitive relation; before we prove that it is, it will be useful to 
make some preliminary observations. 

Our convention that filters must contain all cofinite sets does not prevent f ( ~ )  
and f(Jr from being filters; they contain all cofinite sets because f is finite-to-one. 
If ~- is feeble, then a witness f to this fact also witnesses that o~ < ~ for every ovg. 
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Also, if ~ is feeble then so is f ( ~ )  for any finite-to-one f ;  indeed, if the feebleness of 
~- is witnessed by a partition H of co into finite pieces, then the feebleness of f ( ~ )  is 
witnessed by any H '  such that, for each piece P ~ H',  f -  l(p) includes a piece from 
/7, and it is trivial to construct such a /7 ' .  It  follows that, if ~ is feeble and Jg  < 
with witness f, then f(SC) is included in the feeble filter f (~) ,  so f(oV') is feeble, and 
so sC is feeble (compose f with a witness that f (o~)  is feeble). So any filter < a 
feeble one is feeble. Thus, the feeble filters constitute the lowest class in the (alleged) 
ordering (induced by) < .  

It  will be useful to know that the witnesses f for the relation ~- < ~ can always 
be chosen to be monotone.  In terms of the parti t ion of co into the fibers f -  1 {n) of f, 
to say that f witnesses ~ < ~ means that, for each X ~ ~ there is Y~ ~ such that 
every piece meeting Y also meets X. Our  objective is to show that, if there is such a 
partition of co into finite pieces, then there is one where all the pieces are intervals. 
We remark that, i fa  par t i t ion / /wi tnesses  ~- < Jg  in the sense just described, then 
so does any/7 '  (partition of co into finite pieces) whose pieces are unions of pieces of 
H;  we say t ha t / 7 '  is obtained from H by merging pieces. 

Given a parti t ion H witnessing that ~" < Jg, construct a parti t ion of co into 
intervals [ao, al), [al, a2) . . . .  such that each piece o f /7  meets at most  two of the 
intervals, and if it meets two then they are consecutive. Such intervals are easy to 
find inductively; set a o = 0 and choose a, + 1 larger than all members  of all pieces of 
H that intersect [-0, an). Because H witnessed ~ < ~ ,  we have, for each X ~ ~ ,  
some Y ~ ~ such that, whenever Y meets one of our intervals, then X meets that 
interval or one of the two adjacent intervals. 

We may (and do) suppose ~ is not feeble, for if it were then ~ would also be 
feeble and there would be a monotone  f with f ( ~ ) =  {all cofinite sets} ~ f ( ~ ) ,  as 
desired. So ~ contains a set Z that is disjoint from infinitely many  of the intervals 
[a2,, a2, + 2), say all such intervals for n e Q, where Q is an infinite subset of co. We 
use the points a2. + 1 for n ~ Q as the endpoints defining a new par t i t ion/7 '  of co into 
intervals; that is, if n < m are consecutive in Q, then [a2,+ 1, a2m+ 1)~/7'. (We can 
ignore [0, a2mintQ)+ 1) or add it to H'.) We shall see t h a t / / '  witnesses that ~ < ~r 

Let X ~ ~ .  As remarked above, there is Y ~ ~ such that, whenever Y meets an 
interval [a,, a.  + 1) then X meets [a ._ 1, a.  + 2). We also have Z ~ ~ disjoint from 
[a2,, a2, + 2) for all n e Q. As Jt ~ is a filter, it contains a set W (namely the intersection 
of Y, Z, and a cofinite set) having the properties just stated for Y and Z and also 
being disjoint from [0, a2min(Q ) + 1)" If Wmeets  a piece [a2, + 1, a2,~ + 1) oflI', then this 
intersection does not occur in [a2, + 1, a2, + z) or [a2~, a2m + x) because W= Z, so W 
and therefore Y must meet [a2, + 2, a2,,), arid therefore X meets [a2, + 1, a2m § 1). This 
completes the proof  that 11' witnesses ~ - <  ~ .  

Now that we can use interval partitions to witness the < relation, it is not hard 
to prove transitivity. Assume ~ < ~ < ~ .  Notice first that, by our earlier remarks, 
if any one of these three filters is feeble, then so is ~ ,  and thus ~ < ~"  as desired. So 
assume the three filters are not feeble, and let /7  and H '  be partitions into intervals 
witnessing o~ < o'/g and xg( < ~ respectively. Let us write [a., a,+ 1) for the intervals 
in /7  and [a'., a',+ 1) for those in/7'.  By merging intervals, we can arrange that 0 = a0 
=a'o<al <a'~ < a 2 < a ~ <  .... As ~ isn't feeble, it contains a set Z disjoint from 
infinitely many  pieces of/7, say [a., a. + 1) for all n in a certain infinite set Q ____ co. Let 
/7" be the partition into intervals whose endpoints are the a', for n e Q. Thus, /7"  is 
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obtainable from H' by merging intervals, and so H" witnesses ~ < J~r We shall 
show that the same/-/" also witnesses ~ < ~ .  It then follows trivially that 11" 
witnesses ~,~ < ~ ,  as desired. 

To show that H" witnesses ~ < ~ ,  let any X ~ ~ be given and find Y ~ ~ such 
that every interval Ca,, a,+ 1) meeting Y also meets x .  Let W be the intersection of 
this Y, the Z from the previous paragraph, and the (cofinite) set of numbers 
> a~intQ). Then W ~ ~ ,  and we complete the proof by showing that any piece of 1I" 
meeting W also meets X. Any such piece has the form Ca', a~) with n < m in Q. This 
interval is covered by the three intervals Ca,, a,+ 1), [a,+ 1, am), and [%, %+ 0, so W 
meets one of these. It doesn't meet the first or third, by our choice of Q and because 
W_---Z. So W and therefore Y and therefore X must meet [a,+ a ,  am) , which is 
included in [a',, a~,). This completes the proof that < is transitive. 

It is now legitimate to speak of the partial ordering < of equivalence classes of 
filters with respect to the equivalence relation induced by the pre-order <.  The 
smallest element in this order consists of the feeble filters. Thus, feeble filters play 
the same role here that dominated families played in Sect. 1. That the analogy is 
not trivial is indicated by the following two known results. 

Theorem 3 (Solomon [16]). Any filter generated by fewer than b sets is feeble. 
(Solomon's statement of the theorem asserts only that such a filter is not an 

ultrafilter, but his proof shows that it is feeble.) 

Theorem 4 (Simon [15]). There is a non-feeble filter generated by b sets. 

Thus, the cardinal b plays the same role with respect to the ordering of filters as 
it does with respect to the ordering of families of functions in the previous section. 
The following theorem extends the analogy by showing that g also plays the same 
role with respect to both orderings. Its proof uses the same idea as in [6, 
Theorem 3]. 

Theorem 5. Let ~ and ~ be filters. Assume that ~ is not feeble and that ~ is 
generated by a family of fewer than fl sets. Then ~ <= ~ .  

Proof Let ~ be a family of fewer than 9 sets generating ~ .  We may assume that 
is closed under finite intersection, as closing it will not increase its cardinality. So 
every set in ~ has a subset in ~ .  For each B ~ ~ ,  let 

fr = {X ~ [co]~ I (3A ~ ~-) If x < y are in X and the interval 

Ix, y) meets A, then it also meets B}. 

fg~ satisfies part (a) of the definition of groupwise dense, because ~ includes all 
cofinite sets. To see that it also satisfies (b), let a partition of co into intervals be 
given. By merging intervals, we can assume that each interval in the partition 
contains an element of B. As ~ is not feeble, there is A e ~- disjoint from infinitely 
many intervals from the partition. Let X be the union of these intervals. If x < y are 
in X and Ix, y) meets A, then this intersection must be in an interval (of our 
partition) not in X, as X is disjoint from A. So [x, y) includes this entire interval, 
which contains an element of B. Thus, X ~ ~B with witness A. As X is a union of 
pieces of the given partition, we have proved that ~ is groupwise dense. 
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As I~1 < g, there is an X common to all the (~n for B e ~ .  The intervals [x, y), for 
x < y consecutive in X, (along with [0, min(X))) form a partition of co witnessing 
that W < ~-. Indeed, if Q e ,of then there is B ~ ~ with B ____ Q, and, as X ~ fin, there is 
A e f f  such that, if I-x, y) meets A then it also meets B, hence also Q. (As ~ includes 
the cofinite sets, we can arrange that A does not meet [0,min(X)).) Thus, 
~e < ~ .  []  

Like Theorem 2 and its corollary, Theorem 5 is of interest only if b < g, as 
otherwise the ~,~ in the theorem would be feeble. If b < g, then, by Theorem 4, the 
J(( in Theorem 5 need not be feeble, so we have that the bot tom of the ordering of 
(equivalence classes of) filters consists of two consecutive elements, and everything 
else is above these. 

If q/is an ultrafilter, then so is f(q/)  for any finite-to-one f :  co--co (indeed, for 
any f not constant on any set in ~), so '~f(q/)~ f(~-)"  is synonymous with '3r(r162 
= f ( ~ ) " .  That  is, q / i s  maximal with respect to < .  Thus, the pre-ordering < 
restricted to ultrafilters is an equivalence relation, namely the relation of cofnal  
equivalence studied in [1, 2]. 

Conversely, as any filter is included in an ultrafilter, every equivalence class in 
our ordering is < one containing an ultrafilter. Thus, the maximal elements in our 
ordering contain ultrafilters and therefore consist of filters that are mapped to 
ultrafilters by finite-to-one maps. 

The preceding discussion re-proves the result from [5] that u < g implies the 
following principle of "Filter Dichotomy". 

"Every filter can be mapped, by a finite-to-one function, to 
either an ultrafilter or the filter of cofinite sets". 

This, in turn, implies (as shown also in [5]) the principle of near coherence of filters, 
NCF, studied in [1-4]:  

For  all ultrafilters q /and  ~e-, q / <  ~/r; in other words, there is 
only one maximal element in the ordering of equivalence 
classes of filters. 

It remains an open problem whether either of the implications 

u < g =~ Filter Dichotomy ~ N CF  

can be reversed. 

3. The effect o f  u < g on other cardinals 

In this section, we consider the three cardinal inequalities 

b < u ,  g < b ,  and b < c .  

The f r s t  of these is due to Solomon 1-16] (see Theorem 3 above), the second is 
proved in 1,6], and the third is trivial. None of these three inequalities is reversible 
in ZFC. Indeed, all are simultaneously strict in the model obtained from a model of 
G C H  by adding N 2 Cohen reals and then N 3 random reals; in this model, 
b = ~ -~- N1, b = N2,  and u = c = N 3. (For g = N1, see [6, corollary to Theorem 2]. The 



8 A. Blass 

rest of these equations are well known.) We shall show that u < g implies that all 
three inequalities reduce to equalities: b = u and g = c. (That b was mentioned 
above is not just for decoration. The proof  of g = c will consist of separate proofs of 
g = b and b --- r one of which can be done with a possibly weaker hypothesis than 
u<~.)  

Theorem 6. Assume u < g (or just Filter Dichotomy). Then b = u. 

Proof. By Theorem 4, there is a non-feeble filter ~ generated by b sets. By Filter 
Dichotomy, there is a (finite-to-one) f such that f ( ~ )  is an ultrafilter. But f ( ~ )  is 
generated by b sets, namely the f-images of the generators of ~ .  So u < b. As b < u 
always, the theorem is proved. []  

Theorem 7. Assume u < g (or just Filter Dichotomy). Then b = c. 

Proof. Let N____ co ~ co be a family of size b that dominates all of c0/~ co. For  each 
f e N, construct Ay and By in l-~o]ro as follows. Inductively choose a o < a 1 < a2 < . . .  
so that a o = 0  and a,+l>f(a , )  for all n. Then let Ay= U [a4,,a4n+O and 

n e r o  

By = U I-a4, + z, a4, + 3). The crucial property of Ay and Bf is that no interval of the 
n ~ c o  

form Ix, f (x)]  can meet them both. Indeed, the choice of the an's ensures that 
I-x, f (x)]  is included in the union of two adjacent intervals of the form [an, an+ 1), 
but we never put such an interval into Af  and an adjacent one into Bf. 

Now choose, for each f e N, two ultrafilters q/y and ~/ry containing Ay and By 
respectively. Let ~ be the intersection of all the q/ /s  and ~y's for all f e N. We 
apply Filter Dichotomy to the filter ~ .  

Case 1. ~ is feeble. 

Fix a finite-to-one f such that f ( ~ )  contains only cofinite sets. Also fix a family 
Y'____[~o]ro of c almost disjoint sets. (See [10, p. 242] for the existence of such a 
family.) Almost-disjointness means that, for X +  Y in ~, Xc~Y is finite, and 
therefore so is f - l ( X ) n f - l ( y )  as f is finite-to-one. 

For  each X e ~ ,  as X is infinite, co -- X r f ( ~ ) ,  so (n - f - ~(X) r ~,~. In view of the 
definition o f ~ ,  we can assign to each X e Y" an ultrafilter ~Kx, equal to either ~//g or 

for some g eN,  such that c o - f - l ( X ) r  and therefore g -~(X)e~#r x. For  
X + Y in Y', f -  I(X) and f -  l(y) have finite intersection, so no ultrafilter contains 
them both; thus ~/U x + ~W r. We have, therefore, a one-to-one map X~--~#r x from a 
set ~f of cardinality c into a set {~//o, ~o I g e N} of cardinality b. So c < b. As the 
reverse inequality is trivial, the theorem is proved in Case 1. 

Case 2. g(o~) is an ultrafilter, for some finite-to-one g. 

As N dominates co ,~ ~o, fix an f e n  such that, for all sufficiently large n, 

f(n) > m a x g -  1 {g(n)} 

Thus, for all sufficiently large k, the fiber g-  a{k} is included in In, f (n)) for some n 
(namely n = ming-  l{k}, or an arbitrary n if g- l{k} is empty). Thus, by the crucial 
property of Ay and By, only finitely many fibers of g meet them both. This means 
that g(As)c~g(B~ ) is finite. As A s e q/s and By e ~s, it follows that g(q/;) and g(~s) 
are distinct. But they both include g(~),  an ultrafilter. This is absurd, so Case 2 
cannot occur, and so the proof is complete. [] 
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Remark. The argument for Case 1 is essentially the proof in [13] that the 
intersection of fewer than c ultrafilters cannot have the Baire property, modulo 
Talagrand's proof [17] that, for filters, the Baire property is equivalent to 
feebleness. The proof in [13] looks more complicated because the Baire property is 
used directly. 

Theorem 8. Assume u < g. Then g = b. 

Proof. As 9 <b  in any case, we need only consider an arbitrary fewer than b 
groupwise dense families f~  and find a common member. For each ~, let 

d =  = {x  ~ [o9]~ I o g - x  ~ ~=}. 

Then each d ~  is closed under supersets and finite modifications, so by [12, 
Theorems 7 and 10] there is a finite-to-one f~ such that f~(d~) is [co] ~ or an 
ultrafilter or the filter of cofinite sets. 

If f~(d~) contains only cofinite sets, then, for every infinite Q c= o9, o9-Q q~f~(d~), 
so e~-f~-  I(Q) = f -  1(o9_ Q) r d~, and so f~- I(Q) ~ ~ .  This means that f#~ contains 
no infinite union of fibers of f~, which contradicts the groupwise density of f#~. 

So each f~(d~) is either [ogI ~ or an ultrafilter. In either case, f~(d~) includes an 
ultrafilter q/~. These fewer than b ultrafilters q/~ have, according to [1, Theorem 19], 
a common finite-to:one image q/. So, by composing f~ with an appropriate finite- 
to-one map and renaming the result f~, we may assume f~(d~)~= ql for all ~. By [1, 
Theorem 14], additional composing and renaming allows us to assume that q/is  
generated by fewer than b sets. 

The complement of the range off~ is certainly not in f~(d~), so the range off~ is 
in q/. This means that the following functions are defined for q/-almost all n, i.e., for 
all n in a set (which may depend on ~) in q/. 

min~(n) = min{x I f~(x) = n) 

max,(n) = max{x I L(x)  = n}. 

We claim that there exist a monotone finite-to-one function 1:o9 ~co and a strictly 
monotone function h:og~o9 such that, for each ~, q/-almost all n satisfy 

l(n) < min~(n) < max,(n) < h(n). 

In other words, in the ultrapower q/-prodog, [I]  is a lower bound for all the 
[min~I's and [hi is an upper bound for all the [max~]'s. 

The existence of [hi follows immediately from [1, Theorem 16], which says 
that (since we have NCF) q/-prodo9 has cofinality b. As there are fewer than 
b [max~]'s, they must have an upper bound [hi; by increasing h, we can make it 
strictly monotone. 

To obtain [ I1  we first observe that q/is not rapid. Indeed, rapidity would mean 
that the enumerating functions 

n~---~n th element of A, 

as A ranges over a basis of q/, constitute a dominating family, but q/has  a basis of 
cardinality < b. Using an alternate characterization of rapidity due to Puritz [14, 
p. 733], we find that there is a finite-to-one monotone function / :  o9~o9 such that 
[1] is below [ f ]  in q/-prodo9 for all f that are one-to-one on a set in q/. Since min~ 
is one-to-one on range(f~), this [ / ]  is as desired. 
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(As Puritz does not give a proof  of the result quoted above, we provide one. 
Suppose there is no d with the required property. Let g:co~c0 be strictly 
increasing. Define r the smallest y with g(y)> x. By assumption, there is a set 
A e q /and  there is a one-to-one function f :  A~co such that f (x)  < f(x) for all x e A. 
Then, on the first n elements of A, f takes n different values, so at least one of them 
is ___ n -  1. So f also takes a value > n -  1 at one of the first n elements of A, hence at 
t h e  n th element of A (as f is monotone). So, if x is the n th element of A, then, by 
definition of d, g ( n -  2) < x. This means that the enumerating function of A minus 
its first two elements majorizes g. As g is arbitrary, q / i s  rapid.) 

Inductively define, using f and h as above, a sequence a o < a l < a 2 < . . ,  by 
setting a0 = 0  and choosing a ,+l  so large that d(a,+ 1)> h(an). Let X = {h(a,)ln~co}. 

We shall show that, for each ~, there exists a set D~ ~ q /such  that, 

if x, y e X  and f~(x)=f~(y)~D~, then x = y .  

In other words, f~ is one-to-one on X insofar as its values are in D~. The required set 
D~ is simply the set in q /on  which the inequalities ~(n) < min~(n) and max,(n) < h(n) 
hold. To see that this works, suppose x < y in X and f~(x), f~(y) ~ D~; we shall show 
f~(x) < f~,(y). By definition of X, we have x = h(aj) and y = h(ak) for some j < k. 
Combining this with the definitions of min~ and max~ and with the meaning of 
f~(x), f~(y)~ D~, we find that 

h(ak) = y < max~(f~(y)) < h(f~(y)) 
and 

f(a~ +1) > h(a~) = x > min~(f~(x)) > r . 

As h is strictly monotone,  we have a k < f~,(y). As ~ is monotone, we have a~ + 1 > f~,(x). 
But j < k ,  so 

J'~(x) < a j+ 1 < ak < f~(Y). 

This completes the proof  that f~ is one-to-one on X insofar as its values lie in D~. 
Let ~r be a family of c almost disjoint infinite subsets of X. By the claim just 

proved, for each ~ the sets f~,(Y)nD~, for Y~ ~/are almost disjoint, so at most one of 
them is in q/. As there are c Y's and fewer than b (hence certainly fewer than c) s 
there must be at least one Y E ~r (in fact c of them) such that f~(Y)nD~ q~ ql for any a. 
Fix such a Y 

For  each a, we have f~,(Y)~D~,(~ql, but D ~ q / ,  so f~,(Y)q~ql, and therefore 
09 - f~(Y) e q/. As q/~ f~(A~) we conclude that co -  f~- l(f~(y)) = f -  1(O ) - -  L ( Y ) )  e ~r 
and therefore, by definition of d~,, f~,-l(f~,(y))E~#~,. Finally, as ~#~ is closed under 
subsets, Y~f#~. Thus, we have a set Y belonging to all of the given fg[s. []  

In [12], Laflamme deduced from u < g that 

(A) the ordering of (equivalence classes of) subsets of co ,~ co in 
Sect. 1 is a chain of length 5. 

From this, he deduced the fact, used near the beginning of the proof of Theorem 8, 
that 

(B) every upward closed subset of [co],o is sent, by some finite-to- 
one function e~co ,  to [09] ~ or an ultrafilter or a family of 
co finite sets. 
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The  p r o o f  of  T h e o r e m  8 al lows us to  comple t e  the cycle of  impl ica t ions .  

Corol lary .  u < g is equivalent to each of (A) and (B). 

Proof. In  view of  La f l amme ' s  results,  we need only  deduce  u < g f rom (B). So 
assume (B). As the  image  of  a filter unde r  a (f inite-to-one) m a p  is a filter a n d  no t  
[co] ~ we have  F i l t e r  D i c h o t o m y  and  therefore  N C F .  All  uses of  u < g in the  p r o o f  
of  T h e o r e m  8 were uses of  N C F ,  except  for  one use of  (B). So ou r  presen t  
a s sump t ion  (B) a l lows us to ca r ry  ou t  the  same p r o o f  a n d  conc lude  ~ = b. But, as we 
have  N C F ,  [1, C o r o l l a r y  15] gives us u < b .  Therefore  u < f f  [ ]  
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