
Discrete Event Dynamic Systems: Theory and Applications, 6, 379-427 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Centralized and Distributed Algorithms for
On-Line Synthesis of Maximal Control Policies
under Partial Observation

NEJIB BEN HADJ-ALOUANE
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, M148109-2122

STt~PHANE LAFORTUNE stephane@eecs.umich.edu
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, M148109-2122

FENG LI~N flin@ece.eng.wayne.edu
Department of Electrical and Computer Engineering, Wayne State University, Detroit, M148202

Received November 21, 1994; Revised September 25, 1995

Abstract. This paper deals with the on-line control of partially observed discrete event systems (DES), The goal
is to restrict the behavior of the system within a prefix-closed legal language while accounting for the presence of
uncontrollable and unobservable events. In the spirit of recent work on the on-line control of partially observed
DES (Heymann and Lin 1994) and on variable lookahead control of fully observed DES (Ben Hadj-Alouane et al.
1994c), we propose an approach where, following each observable event, a control action is computed on-line
using an algorithm of linear worst-case complexity. This algorithm, called VLP-PO, has the following additional
properties: (i) the resulting behavior is guaranteed to be a maximal controllable and observable sublanguage of
the legal language; (ii) different maximals may be generated by varying the priorities assigned to the controllable
even~:s, a parameter of VLP-PO; (iii) a maximal containing the supremal controllable and normal sublanguage
of the legal language can be generated by a proper selection of controllable event priorities; and (iv) no off-line
calculations are necessary. We also present a parallel/distributed version of the VLP-PO algorithm called DI-
VLP-PO. This version uses several communicating agents that simultaneously run (on-line) identical versions of
the algorithm but on possibly different parts of the system model and the legal language, according to the structural
properties of the system and the specifications. While achieving the same behavior as VLO-PO, DI-VLP-PO
runs at a total complexity (for computation and communication) that is significantly lower than its sequential
counterpart,

Keywords: supervisory control, partial observation, variable tookahead policies, on-line control, paraUet/distri-
buted algorithms, modular control

1. Introduct ion

On-l ine schemes for the control o f discrete event systems (DES) have been cons idered in

the recent li terature because o f the potential that they offer to mit igate the computa t ional

burden associated with off- l ine control ler synthesis techniques for large-scale DES. On- l ine

techniques also a l low us to deal with incomple te system models , t ime-vary ing systems, and

infinite state systems (see (Chung et al. 1992), (Ben Hadj -Alouane et al. 1994c)). An off-

l ine scheme is one where the comple te control pol icy for all possible states o f the contro l led

sys tem is calculated off- l ine and then stored; at run-t ime, the desired control act ion at each

step (i.e., after each observable event executed by the system) is then retr ieved f rom a look-

380 HADJ-ALOUANE, LAFORTUNE AND LIN

up table and enforced. We call a scheme on-line if at each run-time step the control action to
be applied is calculated using part or all of the system model and possibly also using stored
results from prior calculations. When the DES to be controlled is only partially observed,
the need for on-line techniques is even stronger as off-line controller synthesis techniques
generally require building an observer for the system model, a procedure which is, in the
worst case, of exponential complexity in the cardinality of the system state space. In on-
line control, the objective is to calculate the control action at each step with an algorithm
of polynomial (preferably linear) complexity. Thus, the exponential complexity of off-line
synthesis of a complete control policy is "broken down" into a set of polynomial complexity
calculations along the specific trace of events generated by the system at run-time.

This paper deals with the on-line control of partially observed DES. The goal is to restrict
the behavior of the system within a prefix-closed legal language (a sublanguage of the system
language) while accounting for the presence of uncontrollable and unobservable events
(cf. (Cieslak et al. 1988), (Lin and Wonham 1988), (Ramadge and Wonham 1987) and the
survey paper (Ramadge and Wonham 1989)). Our initial work in (Chung et al. 1992) is for
completely observed DES and deals with the so-called limited lookahead situation where
the controller has only access to the next N possible events that the system can execute,
and not to the true system state. An efficient forward search algorithm termed VLP (for
Variable Lookahead Policy algorithm) is proposed for this situation in (Chung et al. 1994);
the forward search feature of this algorithm motivated the terminology "variable lookahead."
The situation where the controller does have access to the true system state is considered
in (Ben Hadj-Alouane et al. 1994c) where the VLP-S algorithm (for Variable Lookahead
Policy with State information) is developed. Observe that the VLP-S algorithm can be
used in a limited lookahead context (i.e., the forward search is limited to N steps into the
future) as well as in the more general context where no such N is specified. The latter
situation is of course bounded too, but by the total number of states in the system, in the
worst-case; and since there is no apriori bound N, this situation corresponds to an exact on-
line implementation of the standard off-line controller synthesis techniques for DES. In the
spirit of this work and that of (Heymann and Lin 1994), we propose a new algorithm for the
on-line synthesis of control policies for partially observed DES. This algorithm, acronymed
VLP-PO (for variable lookaheadpolicies under partial observation), is based on a forward
search over the system model. In the ,variable lookahead" version of this algorithm, the
depth of the search window is not set a priori, and if necessary, the resulting control action is
determined based on the entire system and legal language models (though we hope that only
part of these models is sufficient). VLP-PO is called immediately following the execution
of a new observable event; it computes, based on the current observer state, the system and
legal language models, and previously stored computation, the next control action and the
next observer state. This process is repeated after each observable event along the trace of
events (i.e., sample path) executed by the system at run-time.

The VLP-PO algorithm has the following properties:

(i) The worst-case computational complexity for calculating the next control action is
O (max(lXII ~c 12, I Xll I~ I)), where X denotes the state space of the system, N the
set of events, and I;c the subset of controllable events.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 3 81

(ii) VLP-PO always generates a maximal controllable and observable sublanguage
of the legal language; this guarantees that if the given partial observation control
problem has solutions (i.e., the legal language has a non-empty controllable and
observable sublanguage) one is generated.

(iii) Hence, if the supremal controllable and observable sublanguage of the legal lan-
guage exists, it is automatically generated. (Note that this will not be the case for
approaches based on the supremal controllable and normal sublanguage, as this
language could be empty even if a solution exists.)

(iv) Moreover, one of the parameters given to VLP-PO before each control action
computation is a total ordering over the subset of controllable events, I;c; by
varying this parameter, different maximals may be generated. If the ordering of
controllable events is carefully selected to reflect some performance measure (such
as event priorities) a desirable maximal may be generated.

(v) In addition, VLP-PO is guaranteed to generate a maximal that contains the supre-
mal controllable and normal sublanguage of the legal language, if the ordering of
the controllable events that is selected satisfies a certain property (see Section 5.2).

(vi) VLP-PO works completely on-line; i.e., no off-line calculations, such as finding
the supremal controllable sublanguage of the legal language, are necessary.

VLP-PO is best viewed as an extension of the VLP-S algorithm of Ben Hadj-Alouane et al.
(1994c) to the case of partially-observed systems, but for the special case of prefix-closed
legal languages. Properties (ii)-(vi) of VLP-PO, listed above, are in contrast with the prop-
erties of the algorithms proposed in (Heymann and Lin 1994). tn (Cho and Marcus 1989b)
an off-line method for generating a maximal observable and controllable subtanguage of
t.he legal language for prefix-closed languages is presented. However, the convergence of
this method is still an open question (obviously, if it converges, it incurs an exponential
worst-case complexity). By running VLP-PO "off-line" (i.e., run it for each state of the
observer), we are guaranteed to produce a control policy that will generate a maximal.
Moreover, the method in (Cho and Marcus 1989b) does not possess properties (iv) and (v),
which provide some flexibility in the selection of the generated maximal, a useful tool in
practice.

As mentioned above, in VLP-PO no a priori bound is imposed on the depth of the
forward search needed for the calculation of a control action. If the system is finite-state,
the search is guaranteed to terminate. However, the termination of VLP-PO when used
with an infinite-state system is contingent upon the finiteness of a given bound. In this
regard, we present and discuss a so-called "limited lookahead version" of VLP-PO, where
the depth of the search cannot exceed a preset bound. This bound, N, can be used to deal
with. infinite state systems or to model situations where only partial knowledge about the
system model is available at each run-time step (even though the system may be finite-state).
The bound can also be used to model situations where a control action has to be returned
by a given deadline during the on-line operation of the system.

Next we present a parallel/distributed version of VLP-PO, termed DI-¥LP-PO. We show
that by making mild assumptions on the structure of the DES and of the legal language, we

382 HADJ-ALOUANE, LAFORTUNE AND LIN

are able to "distribute" the work performed by the VLP-PO algorithm over several com-
municating agents which run concurrently. The resulting DI-VLP-PO algorithm preserves
all the properties of VLP-PO but has a total execution complexity that is significantly less
than the sequential VLP-PO algorithm. More specifically, the situation under considera-
tion is that of a DES G whose structure is such that it can be expressed as the shuffle of
several state machines (with disjoint event sets). The legal language K is global, but it
can be expressed as the parallel composition of several sublanguages. The algorithm uses
several communicating agents that simultaneously run (on-line) identical versions of the
DI-VLP-PO algorithm but on possibly different parts of the system model and of the legal
language; in fact, there is exactly one agent for each sublanguage constituting the legal
language. We show that this scheme achieves the same behavior as the sequential VLP-PO
algorithm and thus all the properties of VLP-PO are preserved. Significant savings in
computation time are achieved by the parallel/distributed implementation: The worst-case
execution complexity (at each control action computation) of DI-VLP-PO can be several
orders of magnitude better than its sequential counter-part VLP-PO (see Sections 8 and 10
for exact expressions). The maximum number of messages exchanged between the agents
of DI-VLP-PO (at each control action computation) is of the same order as I~cI 2 (see
Sections 8 and 10 for exact expressions). In many practical applications, the system G does
satisfy the above assumption. Even if this is not the case, significant computational savings
can still be achieved by DI-VLP-PO (see Section 11, where the only assumption is that K
is the intersection of several sublanguages).

In (Garg 1993), parallel implementations of existing sequential supervisory control syn-
thesis algorithms are given. However, this work is different from ours because no particular
structure of the system or legal language is assumed and the emphasis is on fine grain paral-
lelization. In (Ramadge 1989), system and legal language structures slightly similar to ours
are used to reduce the problem complexity (within the context of BiJchi automata). However,
only full observation supervision is considered, and the complexity reduction is achieved by
adopting a "decentralized-like" supervision scheme (not via an on-line distributed/parallel
calculation of the control, as we propose here).

Notice that we use the expression parallel/distributed to emphasize that the DI-VLP-PO
algorithm could be implemented in a "parallel" (or systolic) manner, i.e., each agent would
be assigned to a processor in a multiprocessor machine and communication would occur
via shared memory or message passing on a common bus; or it could be implemented in
a "distributed" manner, i.e., each agent would be assigned to a different workstation and
communication would occur via a (fast) communication network. The latter situation is
typical of a factory floor for instance.

This paper is organized as follows. In Section 2, we present necessary background
material on the supervisory control theory of DES. In Section 3, we recall results from
(Ben Hadj-Alouane et al. 1994c) on the on-line control of fully observed DES which are
used in this paper. In Section 4 we present the VLP-PO algorithm, prove its correctness
(in the sense that no illegal behavior can be generated) and determine its worst-case com-
putational complexity. In Section 5 the properties related to the maximality of VLP-PO
generated policies are proved. In Section 6 a resource allocation problem is presented
to illustrate the application of VLP-PO. In Section 7 the limited lookahead version of

CENTRALIZED AND DISTRIBUTED ALGORITHMS 383

VLP-PO is discussed. In Section 8 we present the two-agent version of the DI-VLP-
PO algorithm and establish its properties in terms of correctness, execution complexity and
communication complexity (the part of the execution complexity dealing with the exchange
of messages). As it turns out this special case possesses all the key features of the general
structure, but it can be easily presented and understood since it involves only two agents.
Section 9 illustrates the use of the two-agent DI-VLP-PO with the resource allocation
problem. Section 10 presents the general multi-agent DI-VLP-PO and extends the results
of the two-agent version to the general case. Section 11 discusses the two special cases
of modular control and of control under complete event observations. Some concluding
remarks are made in Section 12. (We note that preliminary versions of some of the re-
suits in this paper have been presented, without proof, in (Ben Hadj-Alouane et al. 1993),
(Ben Hadj-Alouane et al. 1994a), (Ben Hadj-Alouane et al. 1994b).)

2. Background on Supervisory Control

First, we overview the standard supervisory control problem--SSCP-- described in detail
in (Ramadge and Wonham 1987). Then, we outline the corresponding partial observation
version introduced in (Lin and Wonham 1988).

The discrete event system is modeled by a generator (or state machine) G = (E, X, 3,
x0, Xm), where E denotes the events, X the state space, ~: X x E > X the transition
function, x0 the initial state, and Xm the set of marked states. The set of traces generated
by G is the language

L(G) de~ {S e]~*: ~(X0, S) is defined },

where 6 is extended to strings in the usual way. The language L(G) is prefix closed. In
this paper, we only deal with prefix-closed languages. Therefore, we assume that X = Xm.
The notation L/s will be used to denote the post-language of language L c E* after trace
s • ~*:

L/s ~f {t E E;*: st • L}.

In the SSCP framework, a prefix-closed subset of L(G), K, is referred to as the legal lan-
guage (the allowable or desired part of the behavi or of G); and, a supervisor (or controller) is
imposed on G with the task of dynamically enabling/disabling events in order to "achieve"
K. The supervisor's task is further complicated by the partitioning of E into two subsets:
Zc, the subset of controllable events (those that can be enabled/disabled by the supervisor)
and E,c, the subset of uncontrollable events. Formally, a supervisor or control policy is
a function F: L(G) ~ 2 ~, with the following constraint: (¥s e L(G))(Euc c y(s)).
The prefix-closed behavior that results from imposing y on G is denoted by L(G, F) and
defined as,

(1) e • L(G, F),

(2) [(s e L(G, F)) A (scre L(G)) A (cr e g(s))] ¢~ [s~r e L(G, F)]-

384 HADJ-ALOUANE, LAFORTUNE AND LIN

As mentioned above, ideally y is such that L(G, y) = K. In practice, however, such a
y may not exist. Instead, there is a "least restrictive" alternative. This is formally captured
by the following definition.

DEFINITION 1 A prefix-closed subtanguage K is controIIable if

(Vs ~ K, ~r ~ I?,uc)(S~r ~ L(G) ~ scr E K).

Obviously, only controllable subsets (sublanguages) of K can be achieved by means of
the control method outlined above, In (Wonham and Ramadge 1987) it is shown that the
supremal controllable sublanguage of K, the least restrictive solution, denoted by K *,
always exists. Moreover, there are algorithms for computing y 's that achieve K t, when
L(G) and K are given byfinite state machines. An on-line algorithm which can provide the
control action for a single state at a time (the state just entered by the system), by examining
only a portion of G x H (where x denotes the Cartesian product and H is a finite state
machine generating K) is provided in (Ben Hadj-Alouane et al. 1994c) and reviewed in the
next section.

Under the partial observation assumption of (Lin and Wonham 1988), E is also parti-
tioned into the subset of observable events, No, and the subset of unobservable events, I3uo.
The projection, P: I2" ~ E~ defined by,

P(s)a if 0r c No
P(e) = ~ and (¥s ~ E*,a ~ E)P(scr) = P(s) i f a 6 Euo,

characterizes the behavior observed by the supervisor, namely P(L(G)). The inverse of P

is denoted by p-1 and is defined as p - l : 2 ~* ~ 2 z* with P- l (A) def{t C ~*: P(t) =

s for some s ~ A}.
A partial observation supervisor is a function yp: P(L(G)) ~ 2 ~, with the following

constraint: (¥s ~ P(L(G)))(Euc c__ yp(S)). The behavior, L(G, yp), generated by the
above supervisor is defined similarly (with y(s) replaced by gp(P(s)). The property of
observability, defined below, is key in characterizing the existence of partial observation
supervisors.

DEFINITION 2 A prefix-closed subIanguage K is observable if

(¥s, s' ~ K, a ~ E)((P(s) = P(s') /x sa 6 K m s'a ~ L(G)) ==~ s'a ~ K).

Given a prefix closed legal language K, a partial observation supervisor generating K
exists if and only if K is controllable and observable (Lin and Wonham 1988). Unfortu-
nately, unlike the full observation case, if K does not satisfy the above condition, there is
not an optimal sublanguage that could be generated instead; i.e., the supremal controllable
and observable sublanguage need not exist (this is because the union of two observable
languages is not necessarily observable), tn general, there are many (possibly infinitely
many) maximal controllable and observable sublanguages. This paper is concerned with
computing them on-line. (Note that for closed languages, the property of observability is

CENTRALIZED AND DISTRIBUTED ALGORITHMS 385

preserved under intersection and hence the infimal closed observable superlanguage exists;
see (Lin and Wonham 1988), (Rudie and Wonham 1990).)

The notion of normality (stronger than observability), defined below, is important in
partial observation supervision since it results in a supremal normal sublanguage.

DEFINITION 3 A prefix-closed sublanguage K is normal if

(¥s e L(G))(P(s) e P(K) ¢~ s e K)

As it turns out, the supremal controllable and normal sublanguage of the legal language
K, denoted by sup CN(K), also exists and is often offered as a solution to partial obser-
vation supervision problems; see, e.g. (Cieslak et al. 1988), (Lin and Wonham 1988) (the
computation of sup CN(K) is addressed in (Brandt et al. 1990), (Cho and Marcus 198%),
(Barbeau et al. 1995)). (One should note however that under the assumption that all the
controllable events are observable, the supremal controllable and observable sublanguage
exists and coincides with the supremal controllable and normal one.) In this paper, we
improve on this situation by specifying the appropriate parameters that force VLP-PO to
generate maximals that contain the supremal controllable and normal sublanguage.

3. Review of On-Line Control with Full Observation

Variable lookahead control of fully observed systems and with state information was most
recently discussed in (Ben Hadj-Alouane et al. 1994c). Under this approach, control ac-
tions are determined as needed on-line and by exploring only a portion of the state space of
the system using a forward search algorithm. Below, we review from Ben Hadj-Alouane
et al. (t994c) only the aspects that are utilized in this paper, namely the prefix-closed
version of the algorithm named VLP-S. We assume (without loss of generality) that the
legal language K is generated by the machine H which is a submachine of G (see Ap-
pendix A); thus, we can talk of the legality or illegality of states of X rather than traces of
L(G). The subset of legal states of X is denoted by XH (which coincides with the state set
of H).

The following cost function V (which can be partial) is used to record the relevant
information obtained from computing all the previously issued control actions: V: X ----+
{0, c~}. In the case of prefix closed languages, dealt with here, an infinite cost is assigned to
a state if and only if it can uncontrollably lead (i.e., through a trace of uncontrollable events)
to an illegal state. The least restrictive full observation policy), for SSCP is obtained from
V as follows:

• If V(3(xo, s)) = 0 then y(s) = {~ 6 Ec(6(xo, s): V(3(xo, s~r)) = 0}

• If V(3(xo, s)) = ec then y(s) = (Zuc N Z~(6(xo, s)))

where Ec(x) ~ef {~ e N: 3(x, ~r) is defined in G} denotes the active event set of G at
state x.

Each time the system executes a new event, a new control action needs to be determined and
issued. For this purpose, values of V which are needed and are yet undefined are computed.

386 HADJ-ALOUANE, LAFORTUNE AND LIN

The set Dom(V) denotes the current domain of the partial function V, consisting of those
states whose costs have already been computed. The following algorithm VLP-S is used to
efficiently perform this task for prefix-closed languages (the general algorithm is presented
in (Ben Hadj-Alouane et al. 1994c)).

PROCEDURE

1.

2.

3.

.

5.

VLP-S(x0 • X):

Exp := 13; Expand(x0); D := Dora(V);

(¥y • ((E x p - X H) - D))V(y) := cx~; D := Dom(V);

WHILE [(3y • E x p - D) (3 t r • E,c)(V(~(y, or)) = c~)]
Dom(V);

FOR [y • Exp - D] DO V(y) := 0;

RETURN;

DO V(y) := oo; D :=

Step 1 of VLP-S calls the procedure Expand which is not shown here for brevity purposes.
Expand returns in the variable Exp the state space of a submachine of G rooted at x. This
submachine is expanded in a tree-like manner and includes the states accessible from x
that may need to be examined in order to determine the cost of x (for Closed languages,
this is at most the uncontrollable reach of x, defined as the set of states reachable via an
uncontrollable trace from x). In steps 2 and 3, the submachine is trimmed by removing the
states that are illegal and states that cannot be prevented (by control) from reaching illegal
states.

The worst-case complexity of a single execution of VLP-S is linear in the number of
expanded states. Moreover, the combined effort required to determine the cost of every state
in X is, in the worst case, O (IXII :c I) (this is due to efficient reuse of previous computations;
all expanded states are assigned costs and states of known costs are not expanded).

The following lemma and theorem (simplified versions of results given in Ben Hadj-
Alouane et al. 1994c) address the correctness of VLP-S (the lemma is repeatedly referred
to in this paper).

LEMMA 1 V(x) = cx~ ¢~ Kt/[x] = 0.

In the above lemma [x] denotes the equivalence class of the state x, i.e., the set of all
traces in L(G) that lead to state x from the initial state; K*/[x] denotes the post-language
of K 1" from Ix]. Roughly speaking, the lemma states that when a state is assigned cost oc
it has an uncontrollable trace (possibly E) emanating from it and leading to an illegal state.
The following theorem hints at how VLP-S can be used in a procedure to compute a control
policy (on-line or off-line) generating the supremal controllable sublanguage of K, K t.

THEOREM 10t E E U {e} A S E K 1" m V(6(xo, set)) = 0 4* set E K t.

4. The VLP-PO Algorithm for On-Line Control under Partial Observation

This section has two subsections. In the first one we give the statement of the algorithm
VLP-PO and illustrate its operation with an example. In the second subsection we prove

CENTRALIZED AND DISTRIBUTED ALGORITHMS 387

the legality of the control policies computed using VLP-PO and determine the worst-case
computational complexity of the algorithm.

4.1. Statement of VLP-PO

Under the assumption of full observation, the controller can monitor every event that is exe-
cuted by the system; hence a new control action can be computed and issuexl following each
event occurrence. In this paper we consider SSCP with the partial observation assumption.
Under this assumption, a controller can monitor only a subset of the events, the observable
events. As a result, the control action can only he updated following the execution of an
observable event; in between two consecutive observable events (while only unobservable
events are being executed) the system operates under a constant control action.

In the on-line control paradigm, control actions are determined as needed: Almost instan-
taneously following the execution of an observable event the next control action is computed
and issued. In this paper we only deal with closed languages (i.e., blocking is not an issue).
Hence, intuitively, determining the next control action involves ensuring that the execution
of any trace consisting of a sequence of unobservable events possibly followed by a single
observable event (the new control action remains in effect until the next observable event
is executed) does not cause the system to generate illegal behavior, either directly or via an
uncontrollable trace. To state this more precisely, we need to define the following operators.

® The unobservable reach of the subset of states S c X under the subset of events
E _c ~E is given by,

URE(S) de=f {x 6 X: x = 3(y, u) for y 6 S and u 6 (N,o N E)*}.

URE(S) consists of all the states reachable from states in S via traces of unobservable
events from E.

® The extended unobservable reach of the subset of states S c_ X, under the subset of
events E __ Z is given by,

UR+E(S) clef URE(S) t.J {x C X: x = 3(y, fl),

for 3' c URE(S) and/3 6 (Zo 0 E)}.

UR+E(S) consists of all the states reachable from states in S via unobservable traces
over E or unobservable traces over E followed by a single observable event in E.

If S denotes the set of states that the system could be in immediately following the
execution of the last observed event, then a valid next control action E must be such that
UR+E(S) does not contain any "bad" states (the VLP-S algorithm presented in Section 3
associates an infinite cost with bad states). Since it is well know that in the case of SSCP
with partial observation the supremal controllable and observable sublanguage of the given
legal language does not always exist, different strategies for determining a valid next control
action may exist (there is no "optimal" next control action).

388 HADJ-ALOUANE, LAFORTUNE AND LIN

l

• Legal state

• Illegal slate

' a . . a e ~ A u x 2 ", ~ ..

!

~ a g .. ; y . : : : : : : : ~

~ U2 ,,

Figure 1. Unobservable reach.

In (Heymann and Lin 1994) such a strategy is presented 1. Its starting point is a precom-
puted full observation least restrictive control policy 2 for the SSCP problem at hand. Given
S as specified above (i.e., the possible states just prior to application of the next control
action), each state in URn(S), the largest possible unobservable reach of S, is examined.
An event is excluded from the next control action E if and only if it is disabled by the full
observation control policy at a given state in URz(S); i.e.,

= ~ ×(x), E
x~UR~(s)

where y denotes the least restrictive full observation control policy. From the definition of
y given in Section 3 (using the terminology of the VLP-S algorithm), an event is disabled
at a given state if and only if it leads to a bad (infinite cost) state; it is easy to see how
the extended unobservable reach of S resulting from the above described control action
of (Heymann and Lin 1994) consists entirely of good (zero cost) states.

The above strategy, though simple, is in a "local sense" too restrictive. To illustrate this,
consider the situation depicted in Figure 1. The states in S are enclosed by a rectangle; the
states in UR~ (S) are enclosed by a dashed ellipse (though not all the states of UR~ (S) are
displayed, all the traces leading to a displayed state are shown). Disabling the unobservable
fl, for example, automatically excludes the state x2 (reachable only via e~aflu from Xl in S)
from the unobservable reach generated by the next control action. However, the strategy
of (Heymann and Lin 1994) would still examine x2 and as a result the event o~ is disabled
(o~ is not in ?'(x2) since 8(x2, ~) is an illegal state).

The immediate "remedy" to the above situation requires incrementally growing the current
unobservable reach as more events are added to the next control action (it should be pointed
out that while a local improvement of the behavior is guaranteed, a global improvement may
not necessarily follow; this is shown in the next section). However, in committing to the

CENTRALIZED AND DISTRIBUTED ALGORITHMS 389

above process, it is important to be aware of the following issue. Mutually exclusive choices
of events may be involved in the construction of the next control action; and this is one of
the reasons why a supremal controllable and observable sublanguage does not always exist.
This situation is illustrated again by Figure 1: Ensuring that URE(S) (where E denotes the
next control action) consists entirely of good states could be achieved by either disabling

or ft. More importantly, the resulting behaviors (i.e,, the one resulting from a control
action that disables fl and the one resulting from a control action that disables c¢ instead)
are incomparable with respect to set inclusion (notice that the first behavior excludes the
continuation of S,/~, which is included by the second behavior).

Our on-line approach is captured by the algorithm VLP-PO which is given below. VLP-
PO uses a new strategy for computing the next control action, based on the observations
outlined above. (The initialization of VLP-PO is discussed later in this section.)

PROCEDURE VLP-PO(/3o 6 Zo U {E});

1. NS := N~o (PS);
2. Control-Action(NS, Event-Ordering);
3. PS := URAcr(NS);
4. END;

Immediately following the execution of a new observable event/3o, the call VLP-PO(/~o)
is executed. When this execution terminates the next control action is found in the the
global variable ACT. Another global variable, PS, is used by VLP-PO to store the set of
possible states the system could be in while executing any unobservable event under the
newly computed control action (this is the set of possible states immediately after issuing
the returned control action and prior to the execution of the next observable event). The
value of PS computed by the last call to VLP-PO is used in Step 1 to compute NS, the next
set of states the system could be in immediately following the execution of the last observed
event (this is the set of possible states just prior to the application of the next control action);
NS is given by the operator N~ defined below. For S _c X and ~r c E U {E},

No(S) de_f {x 6 X: x = 3(y, cr) for y e S}.

NS is used in Step 2 by the procedure Control-Action, given below, to determine the next
control action. The above process is illustrated by Figure 2.

PROCEDURE Control-Acfion(S _c X, EList : Ordered-Ec);

1. ACT:= Euc; Pt:= 1;

2. WHILE [EListT~0] DO

2.1 IF [P t > l E L i s t])] THEN
ACT := ACT U EList; RETURN;

2.2 IF [(¥x E UR +Ac~. (S)) (3(x, EList.Pt) is not defined)] THEN
Pt := Pt + l; GOTO 2;

390 HADJ-ALOUANE, LAFORTUNE AND LIN

First observable event

[~ OCCURS

! First P S - ",,
i = J t

Fi r s t V L P . P O call

S ~ d observable event

O~ OCCURS

Second NS

[~ Sexond PS ~.~__. .~

Second V L P - P O call

Figure 2. V L P - P O operation.

2.3 FOR [x 6 UR +ACTU{m~,~} (S)] DO
IF [x C DOM(V)] THEN VLP-S(x);
IF [V (x) = ~] THEN

EList := EList - { EList.Pt }; GOTO 2;

2.4 ACT := ACT tO { EList.Pt }; EList := EList - { EList.Pt }; Pt := 1; GOTO 2;

3. END;

Our strategy for computing the next control action is best described as completely on-line
and priority-based. It is completely on-line in the sense that the control action and its
corresponding extended unobservable reach (UR +ACT (S)) are constructed incrementally,
and hence states are never unnecessarily examined. Moreover, state costs are computed
on-line, as needed, using the algorithm VLP-S given in Section 1. The strategy is priority-
based in the sense that the control action is constructed from a given total ordering of the
controllable events (stored in the global variable Event-Ordering before a call is issued
to VLP-PO). This ordering can be changed from one control action computation to the
next (a different ordering may result in a different control action). This changing of the
priorities can be a useful tool in "steering" the resulting system behavior (see Example 1
and Section 6).

The specifics of operation of the procedure Control-Actlon are as follows. In Step 1,
ACT is initialized to the set of uncontrollable events; by definition, these events cannot
be disabled. The WHILE LOOP in Step 2 examines the controllable events in the order
specified by EList (which contains the ordering discussed above). The event currently
being examined is pointed to by Pt. At most two tests can be conducted in relation to the
event being examined. Step 2.2 determines if the examined event can add to the already
enabled behavior; i.e., whether or not UR + ACT (S) 7~ UR +Ac~{~tzt (S). If the event does
not add to the current behavior then it remains on the list and the next event on the list is
examined (i.e., back to Step 2). Step 2.3 determines if the extended unobservable reach
resulting from enabling the event (in addition to the events that are already enabled) has any

CENTRALIZED AND DISTRIBUTED ALGORITHMS 391

bad (infinite cost) states: VLP-S is called to determine the costs of any newly encountered
states. Following this test the examined event is removed from Elist (it will not be further
examined by the WHILE LOOP); it is permanently included in the next control action if
and only if it does not incur any bad states in the resulting extended unobservable reach
(this is a part of Step 2.3). If in Step 2.1 Pt points past the size of Elist the procedure
Control-Action terminates. There are two cases where this can happen. In the first case
Etist is empty; hence a decision has been taken with respect to each controllable event
and the task of determining the next control action is complete. In the second case, none
of the events currently on Elist add to the current behavior; hence it makes no difference
(from a behavior viewpoint) whether the events on Elist are enabled or disabled, but we
choose to enable them. The test of Step 2.3 is required to ensure the validity of the next
control action. As we shall prove later, Step 2.2 is necessary to guarantee the maximality
of the resulting behavior. The event priorities provide a natural solution to the situation of
mutually exclusive events discussed earlier.

The following conditions are needed for the proper operation of VLP-PO, including its
initialization (some of them are discussed above).

• PS := {Xo} prior to the first call to VLP-PO, where Xo is the initial sate of G.

® Event-Ordering := a total ordering on Ec. This ordering need not be the same for
each control action computation.

® VLP-PO(E) must be used to determine the first control action.

The following example illustrates the operation of VLP-PO.

EXAMPLE 1 Consider the finite state machine in Figure 3. Assume that all the events are
controllable. Moreover, the events labeled with ol are observable while the ones labeled
with fl are unobservable.

PS is initialized to the singleton containing the initial state and the call VLP-PO(E) is
issued to compute the first control action. The current set of next states (the value of
NS following Step 1 of VLP-PO) is enclosed in the small rectangle; it includes only the
initial state. The left-most ellipse encloses the largest possible unobservable reach of NS:
URz (NS).

Consider the following ordering of controllable events: The fl's are placed first, in accor-
dance with their subscripts, followed by the t~'s, also in accordance with their subscripts.
With this ordering the event fll is the first to be enabled. When examining f12 the test in Step
2.2 fails (enabling the event does not add a new trace to the current extended unobservable
reach consisting only of the trace fit) and the event is skipped. The event r3 is the second
to be enabled. When r2 is re-examined it passes the test of Step 2.2 but fails test of Step 2.3
(it extends the trace fi3 to fi3fi2/~3, which leads to an illegal state) and it is disabled. The
events oq and ce2 are the last to be enabled. Hence, the first control action is {ill, f13, oq, t~2}.
The value of PS resulting from this control consists of the initial state and the two states
reachable from the initial state via the traces fll and fi3. Note that the above control action
cannot be improved upon; in fact it is the best possible control action (optimal in a local
sense).

392 HADJ-ALOUANE, LAFORTUNE AND LIN

• L e g a l ; state

Illegal s ta te

" ~ 1

',,

-

Figure 3. System illustrating VLP-PO execution.

Let the next observable event executed by the system be Ot 2. Then the call VLP-PO(c~2)
must be issued to compute the second control action. The current NS is enclosed by the
large rectangle; it consist of all the successors of the states in PS (given above) via the event
oe2. By maintaining the previous ordering, we get the following control action {/31, oq, c~2}.
Using an ordering which differs from the above by simply interchanging the positions of [11
and/32 we get a different control action, namely {/32,/33, cq, ~2}. Note that neither control
action can be improved upon (the resulting behaviors are incomparable with respect to set
inclusion).

4.2. Correctness and Complexity

By the definition of a partial observation control policy (see Section 2), all the uncontrollable
events must be part of any control action (that is why Step 1 of Control-Action initializes
ACT to Euc). As a result, a control policy yp generating a non-empty subset of K may not
always exist: Sometimes illegal behavior cannot be avoided even at the onset of system
operation (i.e., at the initial state), even by disabling all the controllable events. In such a
situation a starting error - SE - is said to occur (Chung et al. 1992) (the system cannot be
safely started, or it will generate an erroneous behavior no matter how it is started). The
notion of an SE is formalized below.

DEFINITION 4 A system G is said to incur an SE with respect to a given legal language K
if there does not exist a control policy yp such that L(G, Vp) c_ K.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 393

The following proposition provides a simple test for identifying an SE situation (it basi-
cally formalizes what is stated above).

PROPOSITION 2 There is no SE if and only if K* is non-empty.

Proof: Assume that there is no SE. Then there must exist some Fp such that L (G, Fp) c K.
Consider the simple policy ypl such that (Vs ~ P(L(G)))ypt(s) = E,c: Obviously, y / i s a
sub-policy of Fp (i.e., it is always more constraining); hence L(G, gpt) c K. By definition
L(G, ?/el) is controllable and non-empty, since it always contains the empty trace; hence,
g t ¢ o .

Assume K~ 4 0. Then there must exist a full observation policy Z such that L(G, ~,) =
K t. Furthermore, the above policy y,,t when viewed as a full observation policy (i.e., all
strings of the same equivalence class are assigned the same control action), is a sub-policy
of)/. Hence L(G,)/vO c K, and there is no SE. m

The following result states that VLP-PO is correct.

THEOREM 2 If K "t ~ 0, then for each yp computed using VLP-PO, L(G, yp) is a control-
lable and observable sublanguage of K.

Note that the precondition of the above result, K t 7~ 0, is not a limitation of the algorithm;
as explained above, it is an indication of an SE situation, where essentially nothing can be
done from a control viewpoint. The proof of the theorem is given in Appendix B.

The Iast result of this section gives the worst-case computational complexity of each call
to VLP-PO in terms of IXL, t I]l and]Ec l, respectively, the cardinalities of the state space
of G, of the event set of G and of the subset of controllable events.

THEOREM 3 In the worst case, the effort involved in computing a control action using
VLP-PO is O(max(IXIIZcl 2, IXtlE[)).

Proof: Clearly, each of steps 1 and 3 of VLP-PO requires at most O(tXil'2J) to execute.
The effort required by step 2, consisting of the execution of a call to Control-Action, is
tabulated as follows.

Step 1 of Control-Action requires no more than O (1). The requirements of the WHILE
LOOP, at Step 2, are determined below.

First we show that the loop is executed at most I Ecl 2 times. Following each iteration, the
examined event, EList.Pt, is either removed (Step 2.4), in which case the event pointer, Pt, is
reset to the top of EList, or Pt is advanced; the loop terminates whenever the event pointer is
advanced beyond the the size of the list (Step 2.1). If the current size of Elist is n then in the
worst case, Pt is advanced until the position of the nth event (without removing any events
from EList) and upon examining the nth event, it is either removed, in which case the size of
EList becomes n - 1 and the process repeats, or the loop terminates. Given that the original
size of EList is I Zc J, the loop cannot execute more than (I ~c]+1Zc I - 1 +[Ec I - 2 + . . . + 1) _<
I EcJ 2 times.

Each of steps 2.1 and 2,2 require no more than O(IXI). Step 2.3 involves, in the worst
case, examining all the states in X and for each examined state either work requiring O(1)
is performed or, in addition to that, VLP-S is invoked to compute an unknown state cost.

394 HADJ-ALOUANE, LAFORTUNE AND LIN

From Section 3, the total added effort required by VLP-S to compute the cost of all states in
X is O (I X r[N [). Hence, the total effort expanded on VLP-S calls during the entire WHILE
LOOP execution is no more than O (IX li Iz 1). The remaining effort required by Step 2.3 is at
most O(IX I) per iteration. Hence the total effort required by the WHILE LOOP execution
is O(IXIIEcl 2) + O(IXtl~l) = O(max(IXIIZcl 2, ISll~:l)).

Therefore an execution of Control-Action requires no more than

O(max(lXIl~M 2, IXIl~l)).

When the efforts required by the individual steps of VLP-PO are added, it is clear that
the total effort required by a single execution of VLP-PO is no greater than
O(max([XllI3cl 2, IXIIZCl)). •

5. Properties of VLP-PO Policies

We first present an important result concerning the quality of the policies computed using
VLP-PO, namely that they are guaranteed to generate maximal controllable and observable
sublanguages of K. Then a separate subsection presents a result highlighting an interesting
feature of VLP-PO: By proper parameter selection, the resulting policies are guaranteed
to contain sup CN(K), the supremal controllable and normal sublanguage of K. We
also discuss some interesting problems that cannot be addressed using VLP-PO; counter-
examples are presented to support these discussions.

5.1. Maximality

The following theorem shows the maximality of the language generated by the VLO-PO
algorithm.

THEOREM 4 Let yp be a policy computed using VLP-PO. If K t 7 ~ 0, then L(G, yp) is a
maximal controllable and observable sublanguage of K.

Proof: (by contradiction): Assume that L(G, t'p) is not a maximal controllable and
observable sublanguage of K. By Theorem 2, L(G, yp) is an controllable and observ-
able sublanguage of K; hence, there must exist a partial observation policy ypt such that
L(G,)/pt) is an controllable and observable sublanguage of K and L(G, yp) C L(G, ypt).
This implies that there must exist s ~ P(L(G, yp)) such that,

(P-l(s) UP-l (S)Zo)NL(G, yp) C (P-I(s) UP-1(s)I]o)NL(G, yp) (1)

(¥t < s)P-l(t) f? L(G, yp) = P-l(t) 0 L(G, y~). (2)

Equation (1) follows from the fact that since L(G, yp) C L(G, yet), there has to be a point
where ypl allows more events than yp. Let that occur at trace s and look at all that L(G, yp)
and L(G, ypt) can do after s, until the next control action is issued; then we see that equation

CENTRALIZED AND DISTRIBUTED ALGORITHMS 395

(1) holds. If we pick the first such s, then equation (2) is true. Note that if s = wr (i.e.,
s ¢ E), we have that (from (2) and the fact that s ~ P(L(G, yp)))

(P-l(v)a) A L(G, yp) = (p-I (v)cr) f) L(G, T~). (3)

(If equation (3) were not true, this would contradict the observability of L(G, y) proved
previously.) Hence from Equation (1), there must exist a/3 E Ec such that 13 6 yp(S) and
¢~ ¢ ×p(s).

Consider the computation of yp (s) by VLP-PO (i.e., the computation of ACT immediately
after observing s). By an induction argument similar to the one used in the proof of
Theorem 2 and by the initial conditions of VLP-PO it can be shown that,

NS~ = {x0}

for s = E (4)

NS, = {x c X: x = 6(xo, t) for t 6 (P-l(v)cr) N L(G, gp)}

for s = vcr with a E So. (5)

Moreover, at the the point of the computation when fl is disabled we must have by Step
2.3 of Control-Action that (3x 6 UR + Acru~I (NSs))V(x) = oo. Also, by Step 2.2 of
Control-Action, every event that is already in ACT contributes to the behavior (a crucial
fact for this proof), It follows from equations (3), (5) and (1) that ACTU{fl} c yfi(s)
and that (3t c L(G, yp))3(x0, t) = x. Therefore, from Lemma 1 and the fact that K is
prefix-closed, we have that (3u ~ ESc)3(xo, tu) f[K. By the controllability o fL(G, ypt) it
follows that tu E L(G, yp) and, hence, L(G, yp) ~ K. This clearly contradicts our proof
hypothesis. Hence, L(G, yp) must be a maximal controllable and observable sublanguage
of K. II

The following corollary highlights an interesting feature of the previous result.

COROLLARY 3 If K ¢ ~ 0 and if the supremal controllable and observable sublanguage
of K exists, then this supremal is generated by every policy computed using VLP-PO.

It was shown in the previous section (see Example 1) how different maximal control-
lable and observable sublanguages can be generated by varying the controllable events
ordering given to VLP-PO each time it is called. The following example shows, how-
ever, that not all maximal controllable and observable sublanguages can be generated using
VLP-PO policies. (This example contradicts the claim incorrectly made in Theorem 7
of (Ben Hadj-Alouane et aI. 1993).)

EXAMPLE 2 Consider the finite state machine in Figure 4. Assume that all the events are
controllable and that only the event o is observable.

The first call to VLP-PO (with NS consisting only of the initial state) results in yp(~) =
{fl, or, o} irrespective of the ordering of controllable events used. The second call to VLP-
PO is issued after the event o is executed; it uses the NS enclosed by the right-most

396 HADJ-ALOUANE, LAFORTUNE AND LIN

Legal state

II Illegal state

o

Figure 4. Maximal not achievable.

0 Legal state

II Illegal state

• ~ i j w

1"!
Figure 5. Other maximal not achievable.

!

B

A
v

rectangle. Hence, ct must be disabled. The resulting language generated by the only
possible VLP-PO policy is {o,/3o}, where - denotes the prefix closure. Note, however, that
{oot} is another maximal controllable and observable sublanguage of the legal language;
generating it requires disabling/3 at the first control action, something that runs counter to
the local optimization that VLP-PO performs.

The first control action required to generate the maximal sublanguage {oot} (i.e., {or, o})
does not constitute a "maximal control action"; i.e., as specified above, {/3, or, o}, which
is a superset of the above control action, also constitutes a legal first control action. In
fact one can talk about a maximal control policy (where each control action constitutes a
maximal among the set of legal control actions), and clearly the above maximal sublanguage
is not generated by a maximal control policy. It can be easily verified that all sublanguages
computed using VLP-PO are generated by maximal control actions. However, not all
maximal sublanguages with maximal control policies can be computed using VLP-PO.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 397

This is demonstrated by the finite state machine of Figure 5 (a modified version of the
finite state machine of Figure 4). Note that {oct} is a maximal sublanguage that can be
generated with the maximal control policy yp(S) = {oe, o} and yp(o) = {/~, or, o}. However,
this sublanguage cannot be computed with VLP-PO, because, in the first control action,
oe cannot be enabled without first enabling/~ (c~ cannot generate new behavior with /3
disabled).

5.2. Maximals Containing the Supremal Controllable and Normal

The following result shows that by an appropriate selection of the ordering of the controllable
events given to V L P - P O each time it is called, the maximal controllable and observable
sublanguage that is generated is guaranteed to contain sup CN(K) . Moreover, this ordering
can be statically determined, in the sense that it is both independent of K and of the currently
observed trace for which a control action is to be computed.

THEOREM 5 If yp is a policy computed with V L P - P O using controllable events orderings
placing all the unobservable events first, then sup CN(K) c_ L(G, yp).

Proof: (by contradiction): Assume that sup CN(K) ~ L(G, yp) and take the shortest
trace that is in sup CN(K) and not in L(G, yp); i.e., we have s ~ sup CN(K) N L(G, yp)
and se ~ sup C N (K) - L(G, yp), f o r e c I3. Clearly, cr 6 Zc and e ¢" yp(P(s)).

Consider the computation of yp(P(s)) by V L P - P O and more specifically the point at
which e was disabled: From Step 2.3 of Control-Act ion it follows that (gx e UR +AcTUI~)
(NS))V(x) = co. There are exactly two cases.

Case e c Euo: We must have ACTf3I]c __ Euo. To see this, observe that from the
hypothesis of the theorem (concerning the ordering of events), each event in Ec f3 Euo must
be examined at least once by Control-Act ion before any observable event is examined. As
a result, by the time the first observable event is examined, the unobservabte events that are
on Elist are surely to remain on EList until the WHILE LOOP terminates and are added to
ACT by Step 2.1, since they can never cause Step 2.3 to execute (adding observable events
to ACT will not help unobservable events generate new behavior in UR +,c~ (NSs)).

Hence, x is reachable from a state y in NS either via t c Z,,+ or via a r/3, where r e I]* o
and/3 6 Z,c; moreover, in the second case, we have V(3(y, r)) = c~z (a simple application
of Lemma 1). Let 3(x0, w) = y; clearly, wt ¢ K t and wr ¢ K t (simple applications of
Theorem 1). However, wr c p-1 (s)and wt c p - i (s); hence, wt c sup CN(K)and wr e
sup C N (K), by the definition of normality. This contradicts the fact that sup C N (K) _c K 1"

Case e ~ Zo: It must be that x is reachable from some y 6 NS via r e , for r 6 E~, o
(adding the observable event e to the current ACT can add new states to the extended
unobservable reach; however, all the new states are successors via e of states already in the
unobservable reach). Let 3(xo, w) = y; with a simple application of Theorem 1 we can see
that w r e ~ K 1". At the same time, we have w r e E p - I (s~r), and scr e sup CN(K) . By
normality, wrc~ ~ sup CN(K). This again contradicts the fact that sup CN(K) c K t.

398 HADJ-ALOUANE, LAFORTUNE AND LIN

• Legal st,~

• Illegal s~tc . 1 [

i

. _-

Figure 6. Incomparable policies.

Both of the above cases lead to a contradiction, and therefore sup CN(K) ~_ L(G, yp).

In (Ben Hadj-Alouane et al. 1993) a different method, based on a dynamically computed
ordering scheme, is presented to generate maximal controllable and observable sublan-
guages that contain sup CN(K) using VLP-PO. For each new control action, a suitable
ordering of controllable events is first computed based on the control action given by the
strategy of (Heymann and Lin 1994) described in Section 4 (the events enabled by this
control action are placed first in the ordering); this ordering is then used to call VLP-PO
in the usual way to compute the real control action. It can be easily shown (though we do
not pursue it for brevity purposes) that L(G, ?'p) obtained in this way includes L(G, y~),
where Y~r is the first policy of (Heymann and Lin 1994) (two policies are described in that
paper, and the second one subsumes the first) 3. In (Heymann and Lin 1994) it is shown
that L(G, y~) contains sup CN(K). Hence, L(G, yp) D sup CN(K).

The above results give two examples of sublanguages, sup CN(K) and L(G, y~), that
can be "maximized" using VLP-PO. However, the following example shows that VLP-PO
cannot be used to compute a maximal controllable and observable sublanguage containing
L(G, ~) , where ~ is the second policy presented in (Heymann and Lin 1994).

EXAMPLE 3 Consider the finite state machine in Figure 6. Assume that all the events are
controllable and that o is the only observable event.

The first call to VLP-PO (with NS consisting only of the initial state) results in yp(e) =
{~, o} irrespective of the controllable events ordering used. The second call to VLP-PO
issued after the event o is executed uses the NS enclosed by the right-most solid rectangle.
Hence, oe must be disabled in the second control action. The resulting language generated
by the only possible VLP-PO policy is {o, c~o/3}.

The first control action of the second policy of (Heymann and Lin 1994), 7r~r (computed

CENTRALIZED AND DISTRIBUTED ALGORITHMS 399

I R,q; Req; R,q'.~ R,~^

Ret k l I • !
I i i t

1 , " ql 1_ .

Figure 7. Model of user i.

as described in Section 4), enables only the event o. The NS that it uses to compute its
second control action, after observing o, is enclosed by the right-most dotted rectangle; as
a result, the second control action enables all events. The language generated by this policy
is {ooe} which is incomparable (with respect to set inclusion) to the one generated by the
above VLP-PO policy.

6. A Resource Allocation Problem

In this section we present a more detailed illustrative example of the use of the VLP-PO
algorithm. The purpose of this example is to compare VLP-PO with (i) the control policy
implementing the supremal controllable normal sublanguage and (ii) the second policy
of (Heymann and Lin 1994). We also use this example to comment on typical problems
encountered in attempting to tackle partial observation problems with currently available
synthesis tools (including the one presented in this paper).

We consider a resource allocation problem with one resource pool dispensing two re-
sources, denoted by A and B, to two users numbered 1 and 2. We assume that the users
communicate directly with the resource pool to ensure mutual exclusion; i.e., a user issues
a request for a particular resource to the pool, and only when permitted by the pool can
the user access the resource. Also, the resource is returned back to the pool when the task
involving the resource is completed.

The models of user i, denoted by Gui, and the resource pool, denoted by Gp, are show in
Figures 7 and 8 (in each figure, the initial state is the bold one). The events Req~, Use~ and
Ret~, capture, respectively, a request for resource A by user i, the granting of permission
by the resource pool to user i to access resource A, and the return of resource A by user
i to the resource pool. The complete system model G consists of the parallel (also called

4 0 0 HADJ-ALOUANE, LAFORTUNE AND LIN

2 !
Use s O~e B

r Use2B

U,e]

Re, ~ Re, '~
Figure 8. Model of resource pool.

'R~t'^

U s e 2 B ~ RetlB

Figure 9. Non-blocking specification for user 1.

synchronous) composition of the three models Gul, G,2 and G p , i.e., G = Gu~ [[Gu2llGp.
We assume that each user will request and return a resource in finite time. Each user

CENTRALIZED AND DISTRIBUTED ALGORITHMS 401

A
w > "- I
Y o Req^ Y x

f
2

ReqA

2 Y3 t Y 4 ReqB ReqB

Figure 10. Blocking solution.

-;Y2

must acquire both resources (in any order), presumably to perform an unmodeled task (for
simplicity purposes), before returning them to the pool. To avoid a "deadlock" situation
where a given user is allowed to acquire any particular resource and, at the same time,
the other user is allowed to acquire the other resource, we impose a legal specification KI
shown in Figure 9 on user 1 which disallows the above situation. A similar specification
Kz for user 2 can be obtained from the specification K 1 by replacing each event with the
superscript 1 by the comparable event with a superscript 2 and vice versa. A model of the
complete specification Ks is obtained by taking the parallel composition of the above two
specifications, i.e., Ks = K 1 IlK z. The desired legal language is K = Ks N L(G).

Consider the supervision of the system G for the purpose of achieving a subset of the
legal language K with I]c = {Use~, Use~: i = 1, 2} and with No = {Req~, Req~, Ret~,
Ret~: i = 1, 2}. (Observe that K* # 0 for this choice of controllable events.) The
application of VLP-PO requires transforming the machines of G and Ks using the procedure
described in Appendix A (so that K is generated by a submachine of the machine generating
L(G)); note that the actual construction of G and Ks (as parallel compositions) and the
application of this procedure can be performed on-line, as needed by VLP-PO (a new state
is constructed only if it is part of the current extended unobservable reach or if it is required
by VLP-S to compute the cost of a state in the current extended unobservable reach). The
path shown in Figure 10 can be executed by the system under the VLP-PO policy partially
given in Table 1 (as it turns out the ordering is irrelevant in computing the control actions of
Table 1). Note that after reaching Y4 the system cannot execute any additional events under
the given control action and "blocks". Since the control policy enabled both users to access
both resources at Y0 and since the Use events are unobservable, access to resource B must
be denied to both users from Y3 and forward (accounting for this situation requires global
optimization 4, which is likely to be computationally expensive, if systematically feasible).
This problem can be solved by making the Use events observable (possibly instead of the
Req events). We note here that the second policy of (Heymann and Lin 1994) also generates
the path of Figure 10 and that sup CN(K) = 0.

Next, for the sake of illustration, we briefly discuss the case where ~o is modified to
Eo = {Ret~, Ret/s: i = 1, 2}. In this case, the path shown in Figure 11 can be executed by

402 HADJ-ALOUANE, LAFORTUNE AND LIN

Table 1. Policy for
blocking solution.

State Control Action

Y0 {Use~, Use~}

Yl {Use~, Use~}

y2 (US~A, U ~

Y3 (Use~}

Y4 {Use~}

A
w !

x o Req^

, ~ X I _ J A

Ret 1B

~et

;2 Use~

Figure 1L Prioritized solution.

Req B Req A

UsetA 2 R e q a

T
we~

w

the system under the VLP-PO policy partially listed in Table 2 (along with the corresponding
orderings). Note that at Xo the reverse ordering (i.e., User 2 has priority) would enable User
2 to access the resources and deny access to User 1. Also note that at xl the ordering is
irrelevant (since User 1 did not yet return all his resources and hence cannot really execute
any Use events); i.e., the priorities do not have to change to let User 2 proceed. At x2
we change the priorities (so that User 2 has priority) for the sake of fairness. Note that
sup C N (K) = 0 in this case too. Also the first and only control action of the second policy
of (Heymann and Lin 1994) disables all the controllable events, thereby denying access to
the resources to both users forever.

Remark. Although the VLP-PO algorithm always generates a maximal controllable and
observable sublanguage, not all maximals may be desirable. However, since comput-
ing individual control actions is computationally inexpensive, simulation is an attractive

CENTRALIZED AND DISTRIBUTED ALGORITHMS 403

Table 2. Policy for prioritized solution.

State Control Action Ordering

x0 IUse~ ,u~a l tUse~,Use~ ~Se~a,US41

xl {Use~, Use/~ } [Use~, Use~, Use~, Use~]

x2 {USe2A , Use 2 } [Use 2, Use 2 , Use 1 , Use 1]

option for determining (off-line) suitable parameters for a particular problem (good observ-
able/controllable subsets and priorities) which guarantee the generation of "good" maxi-
reals.

7. Limited Lookahead Version of VLP-PO

When the system to be controlled has a large number of states the VLP-PO algorithm given
in Section 4 may not be fast enough to meet the required time constraints for generating a
new control action; it may not converge at all if the state space is infinite. In such cases
we can use limited lookahead policies. In other words, for any given trace s c L(G),
we are given the N-step lookahead window L(G)/SlN and K/SlN with state information
(see (Ben Hadj-Alouane et al. 1994c)). We then use basically the same VLP-PO algorithm
given in Section 4 with the following modification: The legality of pending states on
the boundary (Nth level states) depends on the attitude adopted (see (Chung et al. 1992),
(Ben Hadj-Alouane et al. 1994c)). In this way VLP-S is used within VLP-PO to determine
the cost of the states in the part of the current extended unobservable reach that falls within
the Iookahead window; moreover, for such state x, the residual lookahead window size n,
which is the difference between the level of x and N, must be included as a variable in the
call to VLP-S(x) (this version of VLP-S is described in (Ben Hadj-Alouane et al. 1994c)).

Further investigation of limited lookahead policies reveals that only the conservative
attitude can be adopted under partial observation. The optimistic attitude cannot be used
because under the optimistic attitude, the system may unobservably move out of the current
lookahead window (this happens if the unobservable reach goes beyond the boundary), and
hence cause an ambiguity in determining the next state set, NS, after the occurrence of
the next observable event. Under the conservative attitude, all the states on the boundary
(Nth level states) are assumed to be illegal and hence the system can never go beyond
the boundary (assuming that it can start properly). While within the boundary, VLP-PO
guarantees that the system will stay inside K. Hence, the following result follows as an
immediate corollary of Theorem 2.

COROLLARY 4 If Kt ~ 0, then L(G, VNcons) ~ K.

With limited lookahead under complete observation, we find that the language result-
ing from the conservative policy increases monotonically as the window size N increases

404 HADJ-ALOUANE, LAFORTUNE AND LIN

(Chung etal. 1992), (Ben Hadj-Alouane et al. 1994c). This is not the case for limited
lookahead under partial observation, as demonstrated by the following example.

EXAMPLE4 Let I3 = Euo = Ec = {~,/3}, L(G) = (~ +/3)(otc~a/3 +/300 and K =
(oe +/3) (otc~/3 + 13). If we use the controllable event ordering {o~,/3}, then L (G, 4) =

fl~ow~olfl and L(G, Yp,cons5) = ~a~owt/3. Clearly, L(G, Yp,cons4) g L(G, yScons) , .

The above example also shows that the limited lookahead policy may not generate max-
2) imal controllable and observable sublanguages of K since L(G, Yp,cons = 0.

An important issue associated with the use of limited lookahead consists of determining
a bound on the depth of the lookahead window which guarantees the convergence of the
limited lookahead version of VLO-PO (in the case of infinite state systems) and the recovery
of the policies generated by the unbounded version of VLP-PO given in Section 4. Such a
bound can be derived by noticing that (1) all the states in the current extended unobservable
reach must fall inside the lookahead window and (2) the residual depth of each state in the
current extended unobservable reach must allow for its true cost to be determined. Hence
proceeding as in (Ben Hadj-Alouane et al. 1994c) we obtain the bound

= max [Wc(X, s)[, Np B dee max ItOo(X, s)] + 1 + xeX,seL(a)/Exl
' xrX,s~L(G)/[x]

where

de=f [{3(x, t): t < s} if (¥t < s)(3(x, t) ~ XH) A s ~ E~, o,
tOo(X, S) ! 0 otherwise.

and

def[{S(x,t): t < s } i f (V t < S) (3 (x , t) E X H) m S ~ E * c,
Wc(X, S) ! t3 otherwise.

When N > Np,B the above VLP-PO algorithm behaves exactly as the unbounded version
given in Section 4.1; in the case where the state space is infinite, the unbounded VLP-PO
algorithm converges ifNp.~ is finite (this has to be proved for the particular system at hand).

8. On-Line Parallel/Distributed Supervisory Control

In the remainder of this paper, we present a parallel/distributed implementation of the VLP-
PO algorithm that results in significant computational savings. First, we consider the case
of distributing the VLP-PO algorithm over two communicating agents. In Section 10, we
will consider the case of n agents. In both of these cases, we make structural assumptions
on G and K. In Section 11, we will make no structural assumptions on G but only assume
that K is the intersection of a set of specifications (see Section 11.1). As we shall see, in all
of these cases, computational savings can be achieved over the sequential implementation
of VLP-PO.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 405

In this section we assume G is generated by the shuffle of three finite state machines

Gi = (I]i, Xi, 8i, xoi), for i = 1, 2, and G12 = (~12, XI2,812, xo12), i.e., G = G1]IGI21 tG2
with ~1 A ~2 = ~ and]~i ('1 ~12 = ~, i = 1,2. The sets of observable (unobservable) and
controllable (uncontrollable) events are, respectively, No (E,o) and Ec (I]uc); all are subsets
of ~ = E1 U E~2 U Z2. We assume that the legal language K is the parallel composition
of two prefix-closed legal sublanguages K 1 and K s, where K i c L(GiltGI2), i = 1, 2.
To formally define it, we consider the following two projections, Ti: Z* > (El) , , for
i = 1, 2, where E i = Ei U 2;12, and their inverse operators, respectively denoted by [Ti] -1 .
We have,

K = KI l IK 2 ~f [T l l - I (K 1) f-) [T2]-l(K2).

Hence,

s 6 K ~ Tl(s) c K 1 A T2(s) G K 2. (6)

Obviously, K is prefix-closed. Also, note in passing that K is decomposable (see, e.g.,
Rudie and Wonham 1992) with respect to T 1 and T2; i.e.,

K = [T1]-I (TI(K)) N [T2]-I(Ta(K)) A L(G1]IGIzI]G2).

Each K i, i = 1, 2, is given in terms of the finite state machine G~4 = (•i U][]12, X~/,
S~, X~n). The projections T/: E* > (Ei)*, i = 1,2 and T12: ~* > (El2)* are also
used in the following subsections.

In the two following subsections, we first give the parallel/distributed DI-VLP-PO algo-
rithm that synthesizes the control policy of the above problem in an on-line fashion, and
then present the main properties of the above algorithm and compare its performance, from
a computational viewpoint, to its sequential counterpart VLP-PO.

8.1. Statement of the Algorithm

The situation of parallel/distributed control is captured in Figure 12, where P is defined
as in Section 2. There are two "agents", both observing the same observable events,
running on separate processors (or possibly two workstations connected via a network);
they concurrently invoke copies of the procedure listed below. Agent 1 accesses G1, G 12,
K 1 and invokes DI-VLP-PO l, obtained from DI-VLP-PO i, given below, by setting i = 1
and j = 2. Agent 2 accesses G2, G12, K s and invokes DI-VLP-PO 2, obtained from the
procedure given below by setting i = 2 and j = t.

The execution of observable events by the system G1 IIG~zl IG2 is monitored by both
agents. Each time a new observable event is executed, both agents simultaneously invoke
their respective copies of DI-VLP-PO i as indicated above. The local version of DI-VLP-
PO i works essentially in the same way as VLP-PO. It calls the procedure Control-Aetlon i,
also listed below, to participate in computing the new control action. Control-Action /

operates on the product machine G i aef (Gi x G12 x G~) = (E i, X i, 3i, x~), where G~
is obtained from G% (the machine generating K i) by adding the illegal state, q[t, via the

406 HADJ-ALOUANE LAFORTUNE AND LIN

T (P(s)) I

I Union

T

f li G H G G =G I 12 2 J'C;>

ACT 1

ACT ~

Agent 1
executing on PROCESSOR 1 k

works with G , q 2 ' K1

i

' Z Communication 1
, C

i

Agent 2
executing on PROCESSOR 2

works with (3 2 , G12, K 2
= .

Figure 12. Distributed control under partial observation.

P(s)

method reviewed in Appendix A. V L P - S i, a version of the algorithm VLP-S is used to
compute the state costs of G i with the legal state set, {(x, y, z) ~ xi: z ¢ q[t}.

Both control-action procedures (of agents 1 and 2) work in parallel and in a synchronous
fashion. At each new control action computation, both procedures are invoked with the
same controllable events ordering; i.e. their Elist's start out the same (in terms of the list of
events and the pointer). It is proved in the next subsection that following a WHILE loop
execution (of both WHILE loops) the Elist's remain the same. Hence, during any WHILE
loop execution both procedures examine the same controllable event. Each procedure
takes one of four decisions on the event: (1) NEUTRAL, (2) SKIP, (3) DISABLE and
(4) ENABLE. Then each procedure sends a message to its counterpart (at the remote agent)
indicating the decision and waits (sitting idle) to receive the decision of its counterpart
(which might still be busy determining its decision). Steps 2.4-2.6 of each control-action
procedure use both decisions to take the same action on the event (that is why the Elist's
remain the same throughout the WHILE loop executions). Hence, the message passing
scheme together with the operating conditions and Steps 2A-2.6, ensure that both control-
action procedures remain synchronized and examine in parallel the same event. When
both control-action procedures terminate, the union of the local ACT/, i = 1, 2, constitutes
the new control action, as shown in Figure 12. Note, that due to the workings of the
control-action procedures, the ACT / agree on the ~12 (the shared) events.

The following versions of the operators defined in Section 4 (for VLP-PO) are needed
(unobservable reach, extended unobservable reach and next state set).

• URi(S) def {x ~ Xi: x =3 i (y ,u) fory c Sandu ~ Ti((~,oAE)*)} .

CENTRALIZED AND DISTRIBUTED ALGORITHMS 407

• UR+/e(S) a=ef URn(S) U {x 6 Xi: x = 3i(y, t3), for y e URn(S) and/3 E Ti((Eo M
E))}.

* N i (s) ~ f { x E xi: x =6i(y, Ti(cr))fory e S}.

The procedures DI -VLP-PO I and Control-Action / are as follows.

PROCEDURE DI-VLP-PO;(/~o 6 Eo U {E});

1. NS i := N~o(PS);
2. Control-Actioni(NS, Event-Ordering);
3. PS i := UR~cr(NS);
4. END;

PROCEDURE Control.Actioni(S _c X i, EList : Ordered-Zc);

1. ACT / : = Zuc f") (]~i U El2) ; Pt := 1;
2. WHILE [EListT~0] DO
2.1 IF [P t > l E L i s t l] THEN

ACT / := ACT / U (EList f3 (Ei U E12)); RETURN;
2.2 IF [EList.Pt 6 (Ei U E12)] THEN

{
IF [(¥x 6 URiAcr~ (S))3i(x, EList.Pt) is not defined] THEN

Response := SKIP; GOTO 2.3;
FOR [x 6 UR i +A~u(m~,.a} (S)] DO
{

VLP-Si(x);
IF I V i (x) = e ~] THEN

Response := DISABLE; GOTO 2.3;
}
Response := ENABLE;

}
ELSE Response := NELrHtAL;

2.3 Send-to-AgentJ(Response); Message := Receive-from-Agent/0;
2.4 IF [Response=DISABLE v Message=DISABLE] THEN

EList := EList - { EList.Pt }; GOTO 2;
2.5 IF [Response=ENABLE v Message=ENABLE] THEN

ACT / := ACT / U({ EList.Pt } M (Zg tO][]12));
EList := EList - { EList.Pt }; Pt :=1; GOTO 2;

2.6 Pt := P t + l ; GOTO 2;
3. END;

The following conditions are needed for proper operation of DI -VLP-PO i.

• PS i := {x~} prior to the first call.

408 HADJ-ALOUANE, LAFORTUNE AND LIN

• Event -Order ing := a list reflecting the desired ordering for the events of E~. Both calls
to DI -VLP-PO i, i = 1, 2, to compute any control action, must use the same ordering.

• DI-VLP-pOi(e) , i = 1, 2 are used to determine the first control action.

8.2. Main Results about the Algorithm

The first main result of this section (Corollary 5) states that DI -VLP-PO computes policies
which generate maximal controllable and observable sublanguages of the legal language
K. Our strategy in deriving this result consists of first showing that, under similar operating
conditions, DI -VLP-PO computes exactly the same policies as its sequential counterpart
V L P - P O (Theorem 6). For the purpose of this comparison we assume that V L P - P O is

operating on G ~ G1 × G12 × G2 × G~ × G] = (~ , X, 8, x0) (note that this assumption
can be made w.l.o.g, since the policies generated by VLP-PO are independent of the
actual machine it is given, as long as the machine correctly generates the system and legal
language). The second main result (Theorem 7) gives the computational and communication
complexities required by DI-VLP-PO.

The following is a list of properties of the operators (within the context of the special
structure of our problem) used by the two algorithms. These properties capture the structure
of the problem and are at the core of the proof of Theorem 6.

Property 1:. URE(S)[i = URi~n~e(sIi), i = 1, 2.

The operation [i, i = 1, 2 denotes the familiar projection from the state space of G onto
the state space of G i (i.e., it gives the G i components of a state in G). We argue the case
i = 1 (the case i = 2 is similarly argued):

1 2 URE(S)I I = { (xl, xt2, X2, X h, X h) E X :
1 2 1 2

(Xl, X12, X2, X h , x h) : - 81 × 312 × 82 × ~h 1 × 82 ((y l , Y12, Y2, Yh' Yh) ' t)
for some (Yl, Y12, Y2, Yh 1 , Yh 2) ~ S and t 6 (Euo N E)*}I l

{(xl, x12, x2, l 2 = x h, x~) ~ X:
(Xl, x12, x2, x 1, x~) = (31(Yl, Tl(t)), ~12(Y12, T12(t)), $2(Y2, T2(t)),
8 1 (y ~ , r l (t)) , 2 2 ~h(Yh' T2(t)))

1 2 (]~uo(" I E),}I1 for some (Yl, Y12, y2, Yh, Yh) C S and t c

[By definition of machine cross-products.]

(C ~) = {(xl ,x lz , X2) ~ XI: (xt,x12, x~) = (8~(yl, Tt(v)),•I2(Yl2, T12(v)),
1 1 ~h(Yh, TI(v))) for some (Yt, Yl2, Y~) 6 Sl 1 and v 6 (EuoN E AE1) *}

[The left inclusion is automatic (take v = T ~ (t)). For the right inclusion, observe that

CENTRALIZED AND DISTRIBUTED ALGORITHMS 409

L (h 2) --- (~ 2). and, Z2, the alphabet of G2, is disjoint from ~ , the alphabet of G 1 . Hence,
anything that is executed by G 1 is executed by G, since it cannot be blocked by G2 or h2.]

d e f
= U R ~ , (S I ~) . , ,

Properties 2-4, listed below, can be proved using arguments similar to the above.

Property 2:. UR+E(S)[i = UR+imz,(S[i), i = 1, 2.

Property 3.'. N~(S)[i = N~(s[i), i = 1, 2.

The ~bllowing property states that if new behavior can be generated via the event cr 6]~i
f rom I I R i (Sli~I in G i, i = 1,2, then new behavior can be generated via cr from URz(S) E A] ~ i \ I -'

in G.

Property 4:. i i i i O" [(3x i ~ URm~(S t))6 (x ,) is defined]

[(3x c URE(S))3(x, ~r) is defined] , i = 1, 2.

We argue the case i = 1 (the case i = 2 can be similarly argued): Consider y 6S and
E (E ~ C~ Euo)* such that 61(yl 1, t) = x l. Since L(h 2) = (E2) * and E2 f3 Z 1 = 0, t is not

blocked by h 2 or G2 and can be executed from y in G. Moreover, 6(y, t) ~f x E URE(S).
For the same reasons that t can be executed from y in G, cr can be executed from x in G;
hence, ~(x, ~r) is defined, w

The following property states that if new behavior can be generated via ~r 6 I] from
URn(S) in G, then either new behavior can be generated via cr from UR~z~(SI 1) in G 1 or
new behavior can be generated via cr from URz2n~2(S[2) in G 2. Its proof is similar to the
above.

Property 5:. [(3x cURE(S)) 6(x, c~) is defined]

[(3x ~ ~ UR1Enz~(ST1)) 31(xl, or) is defined v (3x 2 E UR~nz~(S[2)) S2(x z, or) is
defined.]

THEOREM 6 Following the same ordering scheme of controllable events, D I - V L P - P O and
V L P - P O compute the same control policy.

By an ordering scheme, we mean a given selection of orderings for Ec, for each s
P (L (G)). The proof of the above theorem is given in Appendix C.

The following corollary is an immediate consequence of the above theorem together with
Theorem 4.

COROLLARY 5 Let K~ ~ 0. Any control poticy computed using D I - V L P - P O generates a
maximal controllable and observable sublanguage of K.

410 HADJ-ALOUANE, LAFORTUNE AND LIN

The following theorem addresses the computational performance of the algorithm.

THEOREM 7 (1) Under the assumption that a communication and a computation step exe-
cute in times that are of the same order, the worst-case execution time of DI-VLP-PO is
in the order of

O(max(lI3cl2lXl[, I~cl2lX2 l, I~lllXl l, 113211X21)).

(2) The maximum number of messages exchanged between the two agents of DI-VLP-PO
is 21~cl 2.

The term "execution time" above refers to the total time required to compute a control
action (including exchange of messages, actual computation and time an agent spends
waiting to receive a message from another agent).
Proof: (1) Locally, each agent executes like the sequential VLP-PO (operating on G i)
with one exception: At the end of each WHILE loop iteration a communication step is
executed. In this step a message is sent by the "local" agent and then the response of the
"remote" agent is awaited (if the remote agent is still performing its WHILE loop compu-
tations). Hence, in the worst case, the total work performed by each agent in each WHILE
loop iteration equals the sum of his WHILE loop work and the remote agent's WHILE
loop work (i.e., the situation where the local agent performs his WHILE loop and sends his
message while the remote agent is idle and then the remote agent begins his WHILE loop
work.) From the above observations and the analysis of the computational complexity of
VLP-PO in the proof of Theorem 3, it follows that in the worst case an agent terminates
within O(max(l~cl21Xll, I~c121X2t, I~l l lSl l , 12211X21)). The worst-case execution time
of DI.VLP-PO is the maximum of the-worst case execution times of both agents, which is
also O(max(lI;cl2lXlt,]I]c]2[X2l, I~lllXll,]E2IIX21)).

(2) As indicated above, a communication step is executed at the end of each WHILE loop
(a communication step involves two messages across the channel). From the analysis of the
computational complexity of VLP-PO in the proof of Theorem 3, it follows that the WHILE
loop of an agent executes at most T Zc t 2 times. Hence, there are at most) Nc 12 communication
steps; or the maximum number of messages exchanged between the two agents is is 2lEc] 2.

To effectively compare the results of the above theorem with the computational com-
plexity of VLP-PO which is O(max(lEcl2LxI, I~cLiXI)), we note the following explicit
expressions for the sizes of the state spaces: (1) IXI < IX~llX121IX211XlhlIX~l and (2)
I Xil _< [XillXl21lX~l, i = 1, 2 (_< is used since only the accessible part of a cross-product
machines is relevant; for worst-case analysis purposes, however, _< becomes =). Obviously,
an order of magnitude of savings is achieved.

9. A Decoupled Resource Allocation Problem

In this section we illustrate the use of DI-VLP-PO by applying it to a decoupled version
of the resource allocation problem presented in Section 6. The version of the problem

CENTRALIZED AND DISTRIBUTED ALGORITHMS 411

I [, I , , I

I I Req i | Use i

Figure 13. Model of user i.

considered here is decoupled in the sense that the users do not communicate directly with
the resource pool or with each other; hence mutual exclusion, among other issues, must be
enforced by the supervisor.

The models of user i, denoted by Gi (i E {1,2}), and the resource pool, denoted by Gu ,
are shown, respectively, in Figures 13 and 14. The events Req~ t, All,t, Use~, Rel~ and
Ret~ capture, respectively, a request for resource A by user i (issued to the supervisor),
the allocation of resource A to user i (by the resource pool), the actual access of user i to
resource A, the releasing of resource A by user i and the actual return of resource A to the
resource pool. Note, for example, that the two events Atl~ and Use~ above accomplish part
of the function of the single event Use~ in the version of the problem presented in Section 6
(where User i communicates directly with the resource pool; this communication is captured
by the synchronization between the corresponding models). The complete system model
G consists of the shuffle of the three models GI, G2 and G12 (i.e., G = GII[G2I IG12).

With the above model, mutual exclusion is achieved by ensuring that (1) a user only
accesses a resource that is already allocated to him and (2) the resource pool only "grabs"
resources already released by the users. The above is accomplished by a supervisor with the
models partly shown in Figure 15 as part of its legal language. The left model on Figure 15
is denoted A U~ and specifies that User i can access resource A only if it is already allocated
to him. The right model of Figure 15 is denoted RR~A and specifies that resource A must
first be released by User i (obviously, the user must be currently accessing it) before it can
be returned to the resource pool. There are comparable models for resource B which are
not shown in Figure 15.

Note (from the Gi models) that each user must first acquire both resources (in any order),

412 HADJ-ALOUANE, L A F O R T U N E A N D LIN

2
Al l , t l i l

All Ret

All
Ret ~

Ret 2~,

Figure 14. Model of resource pool.

Ret 1B

A l l A

Figure 15, Mutual exclusion specification for user 1, resource A.

1
1 R e t ^ R e l A

CENTRALIZED AND DISTRIBUTED ALGORITHMS 4 t 3

2 All B
Retl 8

All 2

lt
Ret lA (1

Figure 16, Non-blocking specification for user 1.

1 1 Req^ All. X Use1̂ ReqlB

xl

1 Ret 1r3 ~l All n

1 X4 Rel; Ret~ x3 Rel A Us 4

Figure 17. Distributed solution trajectory.

x2

presumably to perform some unmodeled task, before returning them to the pool. Moreover,
if a given user is allowed to acquire a particular resource and, at the same time, the other
user is allowed to acquire the other resource a "deadlock" situation results. To avoid this,
in a manner similar to that of Section 6, B1 displayed in Figure 16 is used to specify the
legal behavior for user 1. B2 for user 2 can be obtained from B1 by replacing each event
with the superscript 1 in its counterpart with a superscript 2, and vice versa.

Hence, the complete model of the specification for user i is the parallel composition
H i = AU~IIRR~I[AU~IIRR~IIBi.

We consider the task consisting of the distributed supervision of the system G for the
purpose of achieving a subset of the specified behavior K (such that K = L(H) ----
L (H I l I H 2)) under :~c = {All~,All/8, Use~ ,Use~ ,Re t~ ,Re t~ : i = 1,2} and So =

414 HADJ-ALOUANE, LAFORTUNE AND LIN

Table 3. Policy for distributed solution.

State Disabled by

Agent 1 Agent 2

xo Use 1 , Use 1 Use~, Use~

Xl Use~, All 2, Ret I Use 1 , Use~, Use~

x2 Ret 1 , Ret I Use~, Use 2

us L Re, Use ,, Us4

x4 Use~, Use 1 Use~, Use~

{All~, AII~, Rely, Rely: i = 1, 2}. Hence DI-VLP-PO is used with the setup previously
discussed in Section 8. The path shown in Figure 17 can be executed by the system under
the resulting DI-VLP-PO policy partially listed in Table 3 (the ordering of events turns out
to be irrelevant; hence, DI-VLP-PO computes a single policy).

We cite the following data to compare the execution time of the distributed solution over
the sequential one (where the sequential VLP-PO is used to solve the above problem). The
size of the state space of G = G IlIG 1211G2 is 1089 whereas the size of the state space of
G i = Gill G 12 is 99 (a ratio of 11). The size of state space of the machine used by Agent i,
Gillh i, is 109 whereas the size of the machine that would be used by the sequential VLP-
PO, G IIh, is 1098 (a ratio of 10). Hence, we expect a factor of 10 speedup in going from the
sequential to the distributed implementation. Moreover, this speedup factor closely matches
the size ratio of the machines used by the agents, versus the global system machine.

10. Generalized Problem Structure

In this section, we extend the distributed approach of Section 8 to the case of n agents,
n > 2. Let G be a system that is the shuffle of m distinct subsystems with mutually disjoint
alphabets; i.e., G = G I [[. . . [[Gm (with Gi = (Ni, Xi, 3i, xoi)). Consider the supervision
of G, under partial observation, with a legal language K which is the parallel composition of
n sublanguages; i.e., K = I]j~l...,n Kj such that K j C L(llieIjGi), where Ij C_ {1 m},

and K j = L(GJ) .
The control action, at each step, can be computed by a generalized version of the two

agents DI-VLP-PO presented in Section 8. This generalized version has one agent for
e a c h K j involved in the above parallel composition constituting K. Agent j operates on
Gj de f ((]liszjai)[laj) ' where G~ is obtained from G j , the machine generating K j, by
adding to it an illegal state as described in Appendix A. The functioning of the multi-agent

CENTRALIZED AND DISTRIBUTED ALGORITHMS 415

DI-VLP-PO is basically the same as that of the two agent version: Each agent sees the
currently observed event; immediately following this observation, each agent proceeds to
compute its part of the next control action. A corresponding version of the following pro-
cedure is used by each agent for the above purpose (it is a modified version of the two agent
Control-Action procedure).

PROCEDURE Control-ActionJ(S c X j, EList : Ordered-Ec);

1 - 2.2 Determine Response in the same way as the two agents version.
2.3 Broadcast(Response);
/* Listen to the broadcasts of all agents; n is the total number of agents */

FOR [k 6 1 . . . n] DO Message k := Receive-broadcast-message();
2.4 IF [(3k, 1 < k < n) Message k =DISABLE] THEN

EList := EList -{ EList.Pt }; GOTO 2;
2.5 IF [(3k, 1 < k < n) Message k =ENABLE] THEN

ACT] := ACTJ U({ EList.Pt } n (UiEli Ei));
EList := EList - { EList.Pt }; Pt :=I; GOTO 2;

2.6 Pt := Pt+l ; GOTO 2;
3. END;

In Step 2.4 the current event is disabled if any of the computations performed by the agents
determine that it must be disabled (it must have generated an illegal state in the current
unobservable reach of some agent). In Step 2.5 (none of the agents determined that the
event must be disabled) the current event is enabled if any of the agents enables it (it must
have generated new behavior in the unobservable reach of some agent). When Step 2.5
is reached the event has not generated any new behavior in the unobservable reach of any
agent and is, therefore, skipped.

Following the termination of every Control-Action] procedure, the next control action
is determined as in the two agent case:

~k]~l,....n /

The proof of correctness of the multi-agent DI-VLP-PO closely follows the proof of
correctness of the two agents version presented in Section 8 (it involves showing that the
multi-agent version generates the exact same policy as the sequential VLP-PO). Proper-
ties 1-5 are easily extended to the case of n agents (since the underlying problem structure
is preserved), and the main argument of the proof of Theorem 6 is preserved. Therefore,
for purposes of brevity we will not present the details of this proof.

The maximum number of messages exchanged between the agents at each execution of
the multi-agent DI-VLP-PO (i.e., following an observable event) is determined as follows.
Following the consideration of the event at the top ofElist, 1 message is broadcast across the
channel by each agent. Since the maximum number of times the top of Elist is examined is
I Ec I 2 (see proof of Theorem 7), the maximum number of messages sent across the channel
during a single control action computation is n1~c 12.

416 HADJ-ALOUANE, LAFORTUNE AND LIN

K 1.2 K 2,3

Figure 18. Chain structure.

m.l.m~
K (m-l),m

Kin,1

K i,2 K 53 K (i-1),i

K m,(m-i)

K i,(i+l)

Figure 19. Mesh structure.

We note however, that the number of exchanged messages can be reduced by keeping
a table (available to each agent) indicating the number of agents "responsible" for each
event (an agent is responsible for the events in its alphabet). A given agent broadcasts its
decision only if it is responsible for the current event (an agent always responds NEUTRAL
to an event that does not belong to its alphabet and its response does not contribute to the
final decision regarding the event). Moreover, the above table determines the number of
messages to be received by each agent in order to decide on the current event.

Under the assumptions that a communication step is of the same order as a computation
step and that n is smaller than (or of the same order as) the largest state space of any
agent subsystem, G J, the total execution time of the algorithm (and this includes actual
computation, exchanging of messages and idle time) can be determined as

O(max(llScl21Xll 113cl21Xnl, IE~liXl I l?~nllX~l)),

where xJ is the state space of G] (see proof of Theorem 7).
Figures 18, 19 and 20 show three interesting special structures, respectively, a chain, a

mesh and a star, where the number of messages sent across the channel is significantly
reduced by the event-agent method outlined above. In the case of the chain and the mesh
structures the event currently at the top of Etist belongs to the alphabet of exactly 2 agents.
Hence the maximum number of messages exchanged during any control action computation
is 21Ec 12. In the case of the star structured system the event at the top of Elist either belongs
to the alphabet of 1 agent (the case where it is in the alphabet of a given Gi) or it belongs to
the alphabet of all agents (the case where it is in the alphabet of G1, the common interface).

CENTRALIZED AND DISTRIBUTED ALGORITHMS 417

IGIJ

Figure 20, Star structure.

In the first case only one message needs to be sent and in the second case n messages have
to be sent.

11. Special Cases

In the following two subsections, we make some observations regarding two special cases
of the control problem considered in this paper: (I) the problem has a modular structure
and (2) the system is fully observed.

I L L Modular Control with Partial Observations

Consider the special case where the entire system consists of a single machine G (i.e.,
not the shuffle of many submachines) and the specification is, as in the general case,
K = I[iel,...,nK i, with K i c_ L(G); hence, K = Aicl.....n Ki. This corresponds to the usual
situation of modular control (see, e.g., (Wonham and Ramadge 1988)), with the important
difference that the system G is partially observed. By the results in the previous section,
the multi-agent DI-VLP-PO algorithm will produce a maximal controllable and observable
sublanguage of K.

Suppose now that we were to solve the same problem in an on-line"decentralized/modular-
like" manner; i.e., first by having Agent i, i = 1 n run the sequential VLP-PO algo-
rithm operating on G with a legal sublanguage K i (without any communication between
the agents) and second by taking the intersection of the n control actions so obtained, as
in modular control (again, the agents do not communicate their respective control actions
to each other; hence each agent "thinks" that the control action he computed is actually
the one issued). Then each agent will generate a maximal controllable and observable
sublanguage of its given legal sublanguage, and the resulting behavior is the intersection

4 1 8 HADJ-ALOUANE, LAFORTUNE AND LIN

• Legal State,

| K ~ Illegal.

• K 2 Illegal.
m
mill

X ~ . , ~ ~ - ~ ~ .

" - I v

Figure 21. Control under partial observation,

L "-- |

of all these maximals. Clearly, this generated behavior need not be a maximal controllable
and observable sublanguage of K.

As it turns out, the behaviors generated by the above two methods (i.e., the multi-agent
DI-VLP-PO and the modular/decentralized algorithm) can be incomparable even when the
same ordering of controllable events is used. This is illustrated by the following example.

EXAMPLE 5 Consider the system G depicted in Figure 21; K 1 and K z are also shown in
this figure. All the events are unobservable with the exception of %. All the events are
controllable. The ordering of the controllable events used to synthesize all control actions
is as follows: oe,/3, X, and %.

At the initial step, in the case of on-line decentralized/modular control, Agent 1 will
enable/3,)~, and % while Agent 2 will enable ~, ~., and %. Thus overall only)~ and %
are enabled. It is easily verified that DI-VLP-PO will have the same initial control action.
After event % is observed, Agent 1 in the decentralized/modular scheme will have {Xl, x~}
as its current state estimate while Agent 2 in the decentralized/modular scheme and both
agents in the case of the DI-VLP-PO algorithm will know that the state of the system is x2.
Thus at the second step, in the case of decentralized/modular control, Agent 1 will enable
%, oe, and/3 while Agent 2 will enable)~, %, ~, and/3; overall oe,/3, and ao are enabled.
DI-VLP-PO on the other hand will enable L, %, ~, and/3. Thus after the second % is
executed, the state estimates will be as follows: {x4} for Agent 1 in decentralized/modular
scheme; {x3, x4} for Agent 2 in decentralized/modular scheme; {x3, x4} for both agents in
DI-VLP-PO. Finally, at the third step, in the case of decentralized/modular control, Agents
1 and 2 will both enable ~., ~, fl, and % while DI-VLP-PO will enable oe, 13, and %.

Thus the trace ~.%)~% is in the behavior generated by the multi-agent DI-VLP-PO but
not in the behavior generated by the decentralized/modular algorithm. Contrarily, the trace
)~%ao)~ is in the behavior generated by the decentralized/modular algorithm but not in the
behavior generated by the multi-agent DI-VLP-PO. This shows that the two generated
languages generated are incomparable.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 419

11.2. Supervision with Complete Observation

Our multi-agent DI-VLP-PO algorithm is designed for supervision under partial event
observation. However, it is interesting to consider the workings of DI-VLP-PO when all
events are observed. In this case, some steps in DI-VLP-PO and Control-Action / can be
modified to reduce computation. First, N S i and PS i a re always singletons. Also, N / (.) and
UR/c.r(.) become identity mappings; and UR+/cr(.) reduces to the set of next states (via
an event in ACT). Furthermore, if an event does not generate new behavior from a given
N S i (i.e., state) while being examined at a particular iteration, then, obviously, it never will
generate behavior during any future examination. Hence there is no point to skip the event:
it can be enabled right away. In other words, Step 2.2 of Control-Action / can be replaced
by

2.2 IF [EList.Pt 6 (gizll Ei)] THEN
{

FOR [x E UR i -bACT/U{m~.~} (S)] DO
{

VLP-Si(x);
IF [V i (x) = o o] THEN

Response := DISABLE; GOTO 2.3;
}
Response := ENABLE;

}
ELSE Response := NEUTRAL;

Since there is no SKIP step, the WHILE loop will be executed exactly]Ec [times. Hence
the worst-case execution complexity of the modified DI-VLP-PO is

O(max(IEcllXll I~o[IX"l , IEIlIX~I I I :n l lX"l)) .

In comparison, the worst-case computational complexity of a sequential procedure using
VLP-S is O (I E IIX I). Therefore, parallel/distributed supervision is still advantageous over
centralized supervision. The maximum number of messages exchanged by the modified
DI-VLP-PO is (n + 1)l~cl. Another important difference is that, since all events are
observable, the maximal controllable and observable sublanguage is unique, which is the
supremal controllable sublanguage. Therefore, the ordering of controllable events is of no
importance: any ordering will result in the supremal controllable sublanguage.

Observe that communication between the agents during the computation of the control
actions is not really required due to complete event observation. Optimal behavior could be
generated by deriving the global control action from the ACT's of the agents computed with-
out communication (e.g. by assuming that the remote agents always sends "NEUTRAL"):
ACT = Uiel (ACT/(q El) •

Finally note that when all the events are observed and the entire system consists of a single
machine G (i.e., not a shuffle) we are in the usual situation of modular control, as considered
in (Wonham and Ramadge 1988). In this case, the modified version of the multi-agent DI-
VLP-PO discussed above, becomes an on-line version with communication, of the off-line

420 HADJ-ALOUANE, LAFORTUNE AND LIN

solution in (Wonham and Ramadge 1988): The intersection of the control actions that has to
be performed after each event execution (in a standard on-line implementation of the solution
in (Wonham and Ramadge 1988)) can in some sense be considered a communication step
analogous to the communication via exchange of messages in DI-VLP-PO.

12. Conclusion

Our approach in this paper has been to address the control of partially-observed DES
from an on-line viewpoint and using an event ordering (or priority) scheme for the on-line
calculation. The on-line technique, an extension of (Ben Hadj-Alouane et al. 1994c) (for
fully observed DES), allows for the computation of a control action in linear complexity
in the size of the state space, an important result for the practical usefulness of this on-line
technique. The ordering scheme, which improves on prior work (Heymann and Lin 1994),
guarantees that maximal controllable and observable sublanguages are generated (unless
we are in the limited lookahead situation discussed in Section 7), and makes it possible
to generate solutions that include the supremal controllable and normal sublanguage. We
believe that this is an interesting and useful contribution.

We also proposed a new framework for distributed control with communication. By
exploiting the structure of the system and of the legal language, we derived a general
parallel/distributed algorithm for on-line control under partial observations that possesses
interesting properties. Such properties include the computational savings made possible by
the parallelism in the algorithm and the guaranteed maximality of the resulting controlled
behavior.

Recently, nondeterministic supervisors have been considered in (Inan 1994) for the control
of partially-observed deterministic systems; the supervisors in that reference nondetermin-
istically "generate" a behavior that is the union of maximal controllable and observable
sublanguages (note that these nondeterministic supervisors allow for all possible control
policies to be potentially implemented). The chosen focus of our paper was deterministic
supervision and the associated computational issues; however, we can easily extend our ap-
proach to a nondeterministic setting as in (Inan 1994), if we adopt a strategy that randomly
selects the event ordering after each occurrence of observable events.

A Preprocessing of the System and Specification Models

Our starting point is a system model Go and a specification model S such that L(S) = Ks;
the legal language K is defined in terms of specification Ks as K = Ks O L(Go) (note that
as a matter of modeling convenience, the specification may or may not be a sublanguage
of the system language). Our goal is to produce a machine G which is a refinement of Go
and such that a model of the legal language K is a submachine of G (this labels each state
of G as either legal or illegal).

Let Go = (~ , X, 3, xo, Xm) and S = (~, Xs, 8s, xos, XmS), with L(S) = Ks (we assume

X s = Xms).

CENTRALIZED AND DISTRIBUTED ALGORITHMS 421

First, S is modified by adding to it a new state, Xil (for illegal state), by complet-
ing its transition function and by marking every one of its states. This results in h =
(I], Xh, 8h, Xoh, Xmh), where xoh = xos, Xh = Xs U {xit}, Xmh = Xh and 3h is the total
transition function defined by

cr) = I 3s(x, ~r) if3s(x, ~r) is defined,
3h(x, xit otherwise. !

Observe that L(h) = E* and Ks = L(S) = {t ~ L(h): 3h(Xoh, t) # Xil }.
The desired machine G is the cross-product Go × h. Observe that L(Go) = L(G). It

is not difficult to see that K is marked by a submachine of G: K = {t 6 L(G): 3 ×
3h((xo, Xoh), t) = (x, y), such that y # xit and x 6 Xm}. Moreover, the "illegal" states of
G are readily available: They are all the states that have xil as their second component.

B Proof of Theorem 2

The fact that L(G, yp) is controllable and observable follows immediately from yp being a
partial observation policy. This is guaranteed by VLP-PO as follows: (1) Following each
execution of VLP-PO, the value of ACT becomes the new control action; since VLP-PO is
only executed following an observable event, yp is truly a mapping from P(L(G)) into 2 x
(i.e., L (G, yp) is observable); (2) Step 1 of Control-Action and the fact that events are never
removed from ACT during the the execution of Control-Action ensure that I3uc c_ yp(s),
for the current observed trajectory s (i.e., L(G, yp) is controllable).

It remains for us to prove that L(G, yp) c K. Our proof is based on the following two
equations,

URAcr(NSs) = {x E X: 3(Xo, t) = x, for t 6 L(G, yp) A P- i (s)}

(¥x c UR +Acr (NSs)) V(x) = 0

(7)

(8)

which we prove to hold following each call to VLP-PO issued upon the observation of a
given s c P(L(G, yp)). NSs denotes the NS computed at Step 1 of the above mentioned
VLP-PO call. This proof is by induction on the length of s.

Induction Basis: The case where s = ¢. From the initial conditions of VLP-PO, we
have NS, = {x0}. The ACT computed by VLP-PO(E) is by definition yp(E).

Equation (7) holds since,

URrp<,~({Xo}) de=f {x ~ X: 3(x0, t) = x lbr t E (Vp(~) N Euo)*}

= {x ~ X: 3(Xo, t) = x for t ~ L(G, yp) NP- l (e) } .

422 HADJ-ALOUANE, LAFORTUNE AND LIN

Equation (8) holds since from the hypothesis of the theorem, we have

KI" 7(:0 =:~ ~ 6 K t

=* ~ c O L (G) c K

=¢, (¥t E E* c M L(G))(E~c fq L(G)/[8(Xo, t)])
c K/[~(Xo, t)]

(¥t ~ Euc N L (G))K t /[8(xo, t)] # 0

=¢. (¥t ~ Euc (3 L(G))V(3(xo, t)) = 0

=~ (¥x E UR + ~ (NS~))V(x) = 0.

[K t is closed]

[by controllability of K t]

[E ~ (E* c fq L(G)/[~(xo, t)])]

[by Lemma 1]

The above implies that just before Control-Action executes the first WHILE LOOP it-
eration (Step 2) we have (¥x 6 UR +Act (NS~))V(x) = 0 (ACT is initialized to I?,uc in
Step 1 of Control-Action). This fact is obviously preserved throughout the execution
of the WHILE LOOP (see Step 2.3). Hence, when Control-Action terminates we have
(¥x c UR +ACT (NS~))V(x) = 0.

Induction Step: We assume that equations (7) and (8) hold for some s E P(L(G, yp)) and
prove that they hold for s t ~ P(L(G, yp)), where fl c No.

Equation (7) holds for sfl since,

URAc~(NSs~) def URvp(s3)(N~(PSs))

= UR~,/st~)(N3 (URyp(S) (NSs)))

= UR×p(sfl)(N3({x ~ X: 8(xo, t) = x for t ~ L(G, gp) M P-l(s)}))
[by (7) and ind. hyp.]

= UR×p(s~)({x c X: 8(xo, t) = x for t E L(G, yp)V1P-l(s)f i})

= {x ~ X: 3(xo, t) = x for t ~ L(G, yp) Mp-I(sf l)} .

The proof that Equation (8) holds for s t is as follows. Since Since NSst~ __q UR+vp(sl (NSD,
the induction hypothesis implies that (¥x c NSs~)V (x) = 0. But for x ~ NSs~,

CENTRALIZED AND DISTRIBUTED ALGORITHMS 423

Y (x) = O =* K t / [x] ¢ O [by Lemma 1]

==~ E ¢ Kt/{x] [K*/[x] is closed]

N*c O L(G)/[x] c K /[x] [by controllability of K*/[x]]

(¥t ~ E~, c n L(G)/[x])
x (E~, c n L(G)/[~(x, t)])

c K/[3(x, t)]

=:~ (Vt e E~c 0 L(G)/[x l)Kt /[~(x , t)] 5& 0 [~ c (E~, c n L(G)/[S(x, t)])]

=, (V t e E~, c n L(G)/[x])V(3(x, t)) = 0 [by Lemma 1]

==~ (¥x c UR +z,~ (NSs~))V(x) = O.

The above implies that just before Control-Action executes the first WHILE LOOP iteration
(Step 2) we have (¥x 6 UR + Act (NSs~))V(x) = 0. As mentioned above, this fact
is obviously preserved throughout the execution of the WHILE LOOR Hence, Control-
Action terminates with (Vx c UR + Act (NS,~))V(x) = 0.

Now we use equations (7) and (8) to argue that L(G, gp) c_ K. Given t ~ L(G, yp) we
have using Equation (7),

(¥v < t)~(xo, v) e URy(p~v))(NSp(~)) :=~ (Vv < t)V(~(xo, v)) = 0

[by Equation (8)]

(Vv < t)v e K t

[by Theorem 1 and since ~ 6 K i"]

t E K .

This completes the proof.

C Proof of Theorem 6

Let yp be the control policy computed by VLP-PO and ?/a be the control policy computed
by DI-VLP-PO. We prove that yp(S) = ?/a(s) for all s c P(L(G, YF))- The fact that the
computed parts of yp and Yd are identical immediately follows.

Our proof consists of showing that the following sets of equalities always hold after the
computation of the control actions at s ~ P(L(G, yp), by induction on the length of s:

(i) NSJ i =- N S i for i = 1, 2

(ii) ACT = ACT l U A C T 2, i.e. yp(s) = yd(S)

(i i i) PSI / = PSi for i = 1,2.

424 HADJ-ALOUANE, LAFORTUNEAND HN

Induct ion Basis (s = E): Recall the following operating conditions. (1) ACT is obtained
via the call VLP-PO(e) with PS={(xol, xo12, xo2, Xoh~, Xoh~)}. (2) ACT 1 is obtained via
the call DI -VLP-POt(E) with PSI={(X01, X012, Xoh~)}. (3) ACT 2 is obtained via the call
DI -VLP-pO2(e) with PSl={(x012, Xo2, x0h0}. (4) The above calls are executed using the
same I3c-ordering.

Set of equalities (i): Immediately following Step 1 of each vtp-po procedure (and since all
three calls are issued with flo = E) we have, PS=NS and pSi=NS i, for i = 1,2. Also,
from the operating conditions, we have psi=PSI/ , for i = 1,2. Hence, it follows that
Nsi=psi=psIi=NSI i, for i = 1, 2.

Equality (ii): We prove, by induction (i.e., we now have two nested inductions) that prior
to the nth iteration of the WHILE loops of the three control-action procedures, the three
EList 's are identical (i.e. they contain the same events ordered in the same way and point
to the same event) and equality (ii) holds.

Clearly, the above holds prior to iteration 1 of the three WHILE loops: Each EList is
set to Ec ordered in the same way and points to the first event (Step 1 of each control-
action procedure initializes Pt to 1). Also, by Step 1 of the three control-action procedures,
ACT=Euc and ACT 1 U ACT 2 = (E~,c A (El U EI2)) U (Euc V1 (]~2 U]~12)) ----- Euc.

Assume the above holds prior to the nth iteration of the three WHILE loops. Let ELists
point to the same event, a , We show that the control-action procedures of the two agents
and Control-Act ion (of VLP-PO) take the same action on a (i.e., ENABLE, DISABLE or
SKIP). As a result the above also holds at the end of the nth iteration, or prior to iteration
n + 1 of the three WHILE loops. There are three distinct cases.

- Case 1, ~r is disabled by agents 1 and 2: One of the agents must have executed "Re-
sponse:=DISABLE" in Step 2.2 of its control-action procedure. Assume it is Agent 1 (the
other case is similar). Then cr E ~ l and,

1 (NSI))VI(x 1) = (X). (Sx I E UR +Ac~Ul~l

By Property 2, (since (ACT U{cr}) N E 1 = ACT I U {cr}) we have,

(3x 6 UR +AeTU/~t (NS)) xl 1 = x 1.

Let t be the string such that S(xo, t) = x. Then, 81 (Xo t , T 1 (t)) = x I . By Lemma 1,

Vl (x 1) = ~ =4, (3u c (~uc r3 ~1) .) T l (t)u ~ L(G 1) A T l (t)u q~ K t
--4, (3u c (~uc n E l) ,) tu C L(G) A Tl (t)u f[K 1
:=~ (3u E Euc) tu c L(G) /x tu qf K

V(x) = e~.

Since cr was disabled by Agent 1, a must generate new behavior from UR1AcTI(NS 1) in
G 1 (i.e., cr is not skipped by Control-Act ion 1). From the induction hypothesis, we have
NS 1 = NSIl; hence, by Property 4, a also generates new behavior from URAcr(NS) in G.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 425

Therefore, Step 2.3 of the procedure Control-Action is executed at the nth iteration of the
WHILE loop and VLP-PO takes the same action as the two agents on o-.

- Case 2, a is enabled by agents 1 and 2: One of the two agents has executed "Re-
sponse:=ENABLE" in Step 2.2 of its control-action procedure and no agent could execute
"Response:= DISABLE". Assume it is Agent 1 (the other case is similar). Hence, cr has
generated new behavior from URl~crl (NS 1) in G 1 . From the induction hypothesis, we have,
NS 1 = NStl; hence, by Property 4, cr generates behavior from UR~c~(NS) in G. We show
that Control-Action takes the same action as the two agents on cr, i.e., a is not disabled.
Assume this is not the case. So, Control-Action disables or, in which case,

(3x ~ UR +Ac~{~} (NS))V(x) = ec.

Let t be the string such that 3(Xo, t) = x. By Lemma 1,

V(x) = ~ =~ (3u C ESc) tu c L(G) /xtu C K

=~ (3u c E*c) T~(tu) c L(G 1)/x T2(tu)

E L(G 2) A (Tl(tu) ¢ K 1 v TZ(tu) ¢ K 2)

[The last implication follows from the contrapositive to equation (6), at the beginning of
Section 8.]

Consider first the case where T 1 (tu) ¢ K 1. Observe that 81 (x0[~, T 1 (t)) = x 11 6 UR+Acr
(NS)I 1. By Property 2, UR-t-AcT(NS)I 1 = UR I +ACT (NSI1). Hence, xl ~ ~ UR t +ACT (NS1).
Since Tl (t)T l (u) E L(G 1)/x Tl(t)T l (u) ¢_ K 1, it follows that Vl(x[~) = c~. Hence,
Agent 1 would have to execute "Response:=DISABLE", which contradicts our assumption.
In the second case, a similar argument leads to Agent 2 executing "Response:=DISABLE",
and this also contradicts our assumption. Hence, Control-Action must enable ~r.

- Case 3, cr is skipped by agents 1 and 2: The control-action procedures of both agents
have executed "Response := SKIP" in Step 2.2. Hence, c~ does not generate new behavior
neither from URA~cTI (NS ~) in G 1 nor from URZcT, (NS 2) in G 2. By the contrapositive of Prop-
erty 5 and the induction hypothesis (ACTl=ACTNE I, ACT2=ACT NE 2, NSI=NSI 1 and
NSZ=NS[2) cr cannot generate new behavior from URAcT(NS) in G. Hence, Control-Action
skips cr at Step 2.2.

This completes the induction to prove Equality (ii).

Set of equalities (iii): By Step 3 of VLP-PO, PS=URAcffNS). Also,

pS i = URiAc.¢ (NS i)

= UR i i Ac~z,(NSI)

= URAc.r(NS)I i

[DI-VLP-PO i Step 3].
[By the sets of equalities (i) and (ii) and the fact that the
agents 1 and 2 take same action on each event.]
[Property 1.]

This completes the proof of the basis of the main induction.

426 HADJ-ALOUANE, LAFORTUNE AND LIN

Induction Step (main induction): Assume the sets of equalities (i-iii) hold for all s
P(L(G, ~'p)) of length n; we prove they also hold for s~r, for cr 6 yp(s).

Set of equalities (i): By Step 3 of VLP-PO, NS=N~(PS). Also,

N S i = N / (p s i)

: N ~ (P S l i)
: N ~ (PS)I i
= NSI i.

[DI-VLP-PO i Step 1.]
[induction hypothesis.]
[Property 3.]

Equality (ii): This is identical to the proof of Equality (ii) in the induction basis, with the
following obvious changes: Xo is replaced by some x ENS such that 8(x0, s r) = x for some
s' = P(s) (the existence is clearly guaranteed) and t is replaced by s't.

Set of equalities (iii): This proof is identical to proof of the set of equalities (iii) in the
induction basis.

This completes the proof of the theorem.

Acknowledgements

The research of the first two authors was supported in part by the National Science Foun-
dation under grant ECS-9057967 with additional support from DEC and GE. The research
of the third author was supported in part by the National Science Foundation under grants
ECS-9213922 and ECS-9315344. We wish to acknowledge several useful discussions with
Karen Rudie, in particular on the topic of decentralized control.

Notes

1. The second policy of the paper.

2. It is assumed that this full observation control policy disables events only if necessary.

3. For s ~ P(L(G)), F~r (s) clef Ns,~p_l(s)(Y(s)) ' where y is the full observation control policy.

4. This means more than a single extended unobservable reach needs to be examined to compute the policy.

References

Barbean, M., Custeau, G. and St-Denis, R. 1995. An algorithm for computing the mask value of the supremal
normal subtanguage of a legal language. IEEE Trans. Automatic" Control 40(4): 699-703.

Ben Hadj-Alouane, N., Lafortune, S. and Lin, E 1993. Control of partially obseved discrete event systems
with maximal variable lookahead policies. Proceedings of the Thirty-first Annual Allerton Conference on
Communications, Control, and Computing pp. 898-907.

Ben Hadj-Alouane, N., Lafortune, S. and Lin, F. 1994a. A distributed on-line algorithm for supervisory control
under partial observation. Proc. 1994 Conf. Information Sciences and Systems Princeton, NJ, March.

CENTRALIZED AND DISTRIBUTED ALGORITHMS 427

Ben Hadj-Alouane, N., Lafortune, S. and Lin, E 1994b, Think globally, communicate, act locally: On-line
parallel/distribued supervisory control. Proc. 33rd lEEE Conf. on Decision and Control Orlando, FL, pp. 3661-
3666. December.

Ben Hadj-Alouane, N., Lafortune, S. and Lin, F. 1994c. Variable lookahead supervisory control with state
information. IEEE Trans. Automatic Control 39(12): 2398-2410.

Bran&, R. D., Garg, V., Kumar, R., Lin, E, Marcus, S. I. and Wonham, W. M. 1990. Formulas for calculating
supremal controllable and normal sublanguages. Systems and Control Letters 15(2): 111-117.

Cho~ H. and Marcus, S. I. 1989a. On supremal languages of classes of sublanguages that arise in supervisor
synthesis problems with partial observation. Math. Control Signals Systems 2: 47-69.

Cho, H. and Marcus, S. I. 1989b. Supremal and maximal sublanguages arising in superior synthesis problems
with partial observations. Math. Systems Theory 22:177-211.

Chung, S. L., Lafortune, S. and Lin, E 1992. Limited lookahead policies in supervisory control of discrete event
systems. IEEE Trans. Automatic Control 37(12): 1921-1935.

Chung, S. L., Lafortune, S. and Lin, E i994. Supervisory control using variable lookahead policies. Discrete
Event Dynamic Systems: Theory and Applications 4(3): 237-268.

Cieslak, R., Desclaux, C, Fawaz, A. and Varaiya, E 1988. Supervisory control of discrete-event processes with
partial observations. IEEE Trans. Automatic Control 33(3): 249-260.

Garg, V. K. 1993. Parallel and distributed algorithms for supervisory control of discrete event systems. Proc. 32th
IEEE Conf. on Decision and Control San Antonio, TX, pp. 2236-2241.

Heymann, M. and Lin, E 1994. On-line control of partially observed discrete event systems. Discrete Event
Dynamic Systems: Theory and Applications 4(3): 221-236.

Inan~ K. 1994. Nondeterministic supervision under partial observations. Proc. l l th International Conference
on Analysis and Optimization of Systems 1994, pp. 39-48, Springer-Verlag, Lecture Notes in Control and
Information Sciences, vol. 199.

Lin, E and Wonham, W. M. 1988. On observability of discrete-event systems. Information Sciences 44:173-198.
Ramadge, E J. 1989. Some tractable supervisory control problems for discrete-event systems modeled by Buchi

automata. 1EEE Trans. Automatic Control 34(1): 10-19.
Ramadge, E J. and Wonham, W. M. 1987. Supervisory control of a class of discrete event processes. SIAM J.

Control and Optimization 25(1): 206-230.
Ramadge, E J. and Wonham, W. M. 1989. The control of discrete event systems. Proc. IEEE 77(1): 81-98.
Rudie, K. and Wonham, W. M. 1990. The infimal prefix-closed and observable superlanguage of a given language.

Systems and Control Letters 15: 361-371.
Rudie, K. and Wonham, W. M. 199Z Think globally, act locally: Decentralized supervisory control. IEEE Trans.

Automatic Control 37(11): 1692-1708.
Wonham, W. M. and Ramadge, E J. 1987. On the supremeal controllable sublanguage of a given language. SIAM

J. Control and Optimization 25(3): 637-659.
Wonham, W. M. and Ramadge, R J. 1988. Modular supervisory control of discrete event systems. Math. Control

Signals Systems 1(1): t3-30.

