
Discrete Event Dynamic Systems: Theory and Applications 2, (1992): 139-172 
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

A Graph-Theoretic Optimal Control Problem for 
Terminating Discrete Event Processes* 

RAJA SENGUPTA AND STt~PHANE LAFORTUNE 
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 

Received October 7, 1991; Revised May 11, 1992 

Abstract. Most of the results to date in discrete event supervisory control assume a "zero-or-infinity" structure 
for the cost of controlling a discrete event system, in the sense that it costs nothing to disable controllable events 
while uncontrollable events cannot be disabled (i.e., their disablement entails infinite cost). In several applica- 
tions however, a more refined structure of the control cost becomes necessary in order to quantify the tradeoffs 
between candidate supervisors. In this paper, we formulate and solve a new optimal control problem for a class 
of discrete event systems. We assume that the system can be modeled as a finite acylic directed graph, i.e., the 
system process has a finite set of event trajectories and thus is "terminating." The optimal control problem ex- 
plicitly considers the cost of control in the objective function. In general terms, this problem involves a tradeoff 
between the cost of system evolution, which is quantified in terms of a path cost on the event trajectories generated 
by the system, and the cost of impacting on the external environment, which is quantified as a dynamic cost 
on control. We also seek a least restrictive solution. An algorithm based on dynamic programming is developed 
for the solution of this problem. This algorithm is based on a graph-theoretic formulation of the problem. The 
use of dynamic programming allows for the efficient construction of an "optimal subgraph" (i.e., optimal supervisor) 
of the given graph (i.e., discrete event system) with respect to the cost structure imposed. We show that this 
algorithm is of polynomial complexity in the number of vertices of the graph of the system. 
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1. Introduction 

L1. Problem Description 

This paper  formulates  and solves a new opt imal  control  p rob lem for logical  discrete event 

systems. The  uncontrol led discrete event system is modeled  as a finite acylic directed graph. 

A set o f  paths (sequences  o f  edges) is associated with  this graph. This  set is referred to as 

the language associated with the graph. This language represents the behavior  of  the discrete 

event  system (DES);  the system may execute any one of  the paths of  this language in a 

given t ime line. Since this language is finite, we say that the system process is "terminating." 

Contro l  is assumed to be the removal  o f  edges directed outwards  f rom a vertex. This  

is analogous to the disabling of  events in the parad igm of  the superv isory  control  theory 

for DESs  initiated by Ramadge  and Wonham [1987]. A control  law is a funct ion,  defined 

at every vertex,  which  removes  edges f r o m  the g iven  graph. The  control led D E S  is thus 
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a subgraph of the uncontrolled graph and the language described by the controlled system 
is a sublanguage of the language of the uncontrolled DES. 

We define two cost functions on the set of edges of the uncontrolled digraph. They are 
called the path cost function and the control cost function. Both functions map into the set 
of nonnegative real numbers. The path cost represents the cost incurred in traversing or 
executing an edge, whereas the control cost is the cost of removing or disabling the edge. 
We use these two costs to define the cost associated with a path in a controlled DES to be 

(i) The sum of the path cost of each edge in the path 
(ii) The sum of the control cost of each edge that lies in the uncontrolled DES but not 

in the controlled DES, and is attached to a vertex visited by the path 

Thus the cost associated with one path lying in two different subgraphs or controlled DESs 
may be different. 

It is now evident that there is a maximum cost path in each controlled DES or subgraph 
which represents the worst case for the control taw defining the subgraph. Our aim is to con- 
struct the subgraph which minimizes this maximum cost. This is our concept of optimality. 

1.2. Motivation 

Various notions of optimality have already been examined in the context of logical DESs. 
In the Ramadge and Wonham [1987] framework the supremal controllable sublanguage of 
a given language has been considered optimal in the sense of being minimally restrictive 
within the given specifications of legality. The same spirit of optimality pervades the devel- 
opment of the infimal closed and controllable superlanguage and the examination of super- 
visory control with blocking by Chen and Lafortune [1990, 1991]. Accordingly in our 
investigation we have tried to remain consistent with this idea. We have examined the con- 
struction of a minimally restrictive optimal solution. This solution is supremal in a class 
of interesting optimal solutions, in the sense that every other optimal solution in this class 
is a subgraph of it. 

In the area of cost-oriented optimal control of DESs, we first draw attention to the work 
of Passino and Antsaklis [1989] and Brave and Heymann [1990]. The former examines op- 
timality with respect to a single event cost function which is used to associate a cost with 
every possible state trajectory. The objective is then to find an input sequence which forces 
a state trajectory that minimizes this cost. Our problem specializes to this when the control 
costs are set to zero. The report by Brave and Heymann [1990] on the optimal attraction 
in discrete event processes also analyzes a cost-oriented optimization problem. The DES 
is modeled by a finite state directed graph. The edges of the directed graph are assigned 
weights which are analogous to our path costs. This defines a maximum cost path in a 
controlled system. The objective is to build a supervisor that achieves minimal cost attrac- 
tion with respect to an arbitrary initial state. Once again we differ in our formulation due 
to the additional control cost function. 

In recent work, Kumar and Garg [1991] have also formulated a cost-oriented optimal 
control problem for DESs. Their definition of control cost is quite similar to ours. However 
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the control objective in our problem is quite different from theirs. Kumar and Garg attempt 
to reach a specified target behavior, and optimality is defined by proximity to this specified 
behavior. In our problem we have no specified target behavior. Instead we have a path cost 
function against which the control costs are traded off. 

In a general sense, our problem formulation is motivated by the paradigm of classical 
optimal control theory. The system dynamics are represented by the finite digraph of the 
uncontrolled DES. The cost associated with a path in the uncontrolled DES is merely the 
sum of the path costs. There are no control costs in the uncontrolled system. We may attempt 
to exclude the maximum cost path in the uncontrolled DES but hitherto absent control 
costs are introduced. As we restrict behavior to smaller subsets of the superset of behavior, 
the control costs associated with the surviving paths are found to rise in general. On the 
other hand we can use more control to leave out the paths with higher path costs. Our 
formulation thus captures the fundamental tradeoff which has motivated the science of opti- 
rnal control--the tradeoff between the cost of the system trajectory and the cost of the con- 
trol necessary to produce the trajectory. 

The rationale for the existence of a positive control cost ties in our interpretation of con- 
trol. The control objective of the supervisor is to drive the system to a terminal state which 
represents some completed task or terminated process. To fulfill this objective in minimum 
time or space (depending on the interpretation of path cost), the supervisor disables certain 
events. We view this as impacting on the environment in which the system operates. The 
environment is inhibited by the action of the supervisor and consequently cost is incurred. 
For instance the disabling of events may obstruct other processes occurring in the environ- 
ment of the system for which the supervisor is not responsible. The cost of control would 
then represent a penalty for such unknowing interference, We present an example in Sec- 
tion 7 to illustrate this interpretation. 

It may be noted that our optimal solution is a sublanguage of a given uncontrolled language. 
In this sense we conform to the paradigm of supervisory control theory where the aim 
is to restrict system behavior to a subset of the set of all possible behaviors. Control does 
not, in general, force one particular behavior or one single path. Given the validity of this 
paradigm and the intuition of optimal control theory, we believe that the problem discussed 
in this paper is a natural and general formulation of a deterministic optimal control prob- 
lem for logical DESs. 

The reader will note that the forthcoming results assume no specification of illegal behavior 
in the uncontrolled system. We hope to extend our results to cover specifications of greater 
sophistication in the future. 

L 3. Organization 

Our presentation is organized as follows. Section 2 contains several definitions that are 
necessary for the graph-theoretic framework adopted in this paper. Given these definitions, 
the optimal control problem is precisely formulated in Section 3, and our principal results 
stated in Section 4. The solution algorithm together with an intuitive explanation is presented 
in Section 5. The proofs of our results, together with the necessary intermediate results, 
are grouped in Section 6. A simple example and a conclusion follow in Sections 7 and 8, 
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respectively. Some technical results, used in this paper, are collected in the appendix. A 
synopsis of the first four sections of this paper (excluding Section 4.3) appears in Sengupta 
and Lafortune [1991a]. Several proofs have also been omitted in this paper. The full exposi- 
tion may be found in Sengupta and Lafortune [1991b]. 

2. Preliminary Definitions 

2.1. The DES Model 

As already mentioned in the introduction, the DES is modeled as a finite directed graph. 
Accordingly we define a digraph G to have the following structure: G = (V, E) where 
V is the finite set of vertices of G and E is the finite set of directed edges of G. Moreover, 
each edge e fi E m a y  be expressed as a pair, e = (v, v ')  where {v, v'} _ V, and the edge 
is assumed to be directed from v to v'. If  A be any digraph then for notational convenience, 
we define the functions Vf(A) and Ef(A)  as returning the set of vertices and the set of 
edges of A respectively. A path lying in the digraph A is a sequence of directed edges 
p = ele2 . . .  en-le,~, n ~ gg, where ¥i s.t. 1 <_ i <_ n, ei = (vi, vi+~) E Ef(A) .  The vertex 
v 1 is called the start vertex. The vertex Vn+l is called the end vertex. The number n is the 
length of the path. We adopt the notation Ilpll = n to denote this length and p[Va, Vb] 
tO represent a path p with start vertex v~ and end vertex v b. Observe that a path is also 
a digraph. Thus the functions Ef (p )  and Vf(p) are defined. Accordingly a path p lies in 
a digraph G i f f E f ( p )  c_ Ef(G) and Vf(p) c Vf(G). We admit the operation of concatena- 
tion of paths in the usual way. It will be denoted by the symbol o 

The terms acyclic, accessibility and coaccessibility are frequently used in the subsequent 
development. A path is said to be acyclic if no two vertices on it are the same. An acyclic 
graph is one which has no acyclic paths. A vertex v is accessible in G w.r.t, v o if there 
is a path in G from Vo to v. A vertex v is coaccessible in G w.r.t. Vm if there is a path 
in G from v to Vm. 

Our investigations have thus far been confined to systems modeled by a restricted class 
of finite directed graphs. We refer to this class as the set of admissible graphs. 

DEFINITION 2.1. An admissible graph G is a 4-tuple G = <V 6, Ea, v 0, v m > having the 
following properties: 

(i) Va = Vf(G) is finite. 
(ii) Eo = Ef(G) is finite. 
(iii) G is acyclic. 
(iv) There exists one and only one vertex of zero indegree denoted v0. 
(v) There exists one and only one vertex of zero outdegree denoted by v m. 
(vi) There is at most one edge between a pair of vertices. 
(vii) Every vertex in G is accessible w.r.t, v 0. 
(viii) Every vertex in G is coaccessible w.r.t. Vm. 

It may be noted that henceforth the symbol G will always denote the admissible graph rep- 
resenting the uncontrolled DES. 
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An admissible path lying in an admissible graph G is one which starts at % and termi- 
nates at Vm. The set of admissible paths associated with the graph G is denoted by Lm(G). 
The suffix-prefix closure ofLm(G ) is denoted by Lsp(G) and is the set of all possible paths 
lying in G. 

Lm(G ) represents the set of all possible acceptable behaviors of the uncontrolled system. 
It is the (marked) language generated by G. Each path in Lm(G ) represents a possible, 
appropriately terminated behavior of the system. Clearly if A I is a subgraph of A2, then 
Lm(A1) c Lm(A2). 

By the finiteness of the admissible graph we can associate with each of its vertices a 
number which is the length of the longest path from the vertex to the vertex v m. This is 
a useful way of ordering the vertices when examining them algorithmically. 

DEFINITION 2.2. Maximum path length f irm a vertex. 
Let G be the usual admissible graph. We define the function lm: Vf(G) ~ g7 U {0} by 

lm(v) = max tiP [l. 
P[V,VmlELsp(G) 

2.2. 7he Optimization Space 

We are interested in searching the space of subgraphs of G to find a subgraph which mini- 
mizes a cost function. The following definitions define this space. 

DEFINITION 2.3. Let G be as usual and va fi VI(G). A graph A is an admissible subgraph 
of G rooted at vd iff 

(i) Vu(A) c Vu(G) and Eu(A) c_ Ef(G). 
(ii) A = (Vu(A), Ef(A), va, Vm) is admissible. 

We also define the set 

$(G, va) = {A: A is an admissible subgraph of G rooted at va}. 

The results stated in Section 4 establish that it is possible to construct an optimal solution 
by a backward recursive dynamic programming algorithm. For this procedure, we require 
the one-step subgraph. 

DEFINITION 2.4. Let v d E Vu(G). A is a one-step subgraph of G rooted at v d iff 

(i) vs e VI(A).  

(ii) v E Vf(A) = v = v d o r  3(vd, v) E E l ( A ) .  
(iii) l(f(A) c__ V f ( G ) a n d  El(A)  c El(G).  
(iv) (v, v')  ~ EI(A)  = v = vs. 
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We also define the set 

$1(G, Vd) = {A: A is a one-step subgraph of G rooted at Vd}. 

It may be noted that A is not an admissible graph. 
Next a binary operation called Merge, denoted by @, is defined in the space of graphs. 

DEFINITION 2.5. Merge. 
Let A, B be finite directed graphs. Then A @ B is a finite directed graph such that 

(i) v~(A ® B) = V~4A) U V~(~). 
(ii) Ef(A @ B) = Ef(A) U Ef(B). 

This operation is used to construct larger graphs from smaller ones. The following two 
defmitions illustrate the natural utility of this operation. The definitions are subsequently 
illustrated with examples. 

DEFINITION 2.6. Define 

S(G, Vd) = @ A, 
A~S(G, vd) 

Vd (Vf(G). 

Then S(G, vd) is the maximal admissible subgraph of G rooted at v d. The set $(G, vd) 
is finite. Thus S(G, Vd) is well defined by inductively applying Theorem 4.1 on $(G, Vd) 
(see Section 4). The proof is straightforward and hence omitted. 

DEFINITION 2.7. S l ( a  , l~d) is the maximal one-step subgraph of G rooted at v d iff 

(i) SI(G, Vd) is a one-step subgraph of G rooted at v d. 
(ii) YA E $1(G, vd) we have Vf(A) c Vf(S~(G, Vd)) and El(A) c Ef(SI(G, vd)). 

EXAMPLE 2.1. Figures 1 to 5 illustrate the above definitions. The overall uncontrolled system 
G is given in Figure 1. The graph A in Figure 2 is a particular member of the set $(G, Vd) 
and the graph in Figure 3 represents S(G, Vd), the merge of all such As. A1 in Figure 4 
is a particular member of the set $1(G, v0) while Figure 5 is the maximal one-step sub- 
graph Sa(G, Vo). 

2.3. The Cost Structure 

As mentioned in the introduction, two cost functions are defined on El(G). They are 

Cp: Ej(~) --, ~ "  u {o} 

and 

c~: E~(c) --, ~+ u {o}. 
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Figure 1. G of Examples 2.1 and 3.1. 
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T/2 

Figure 2. A of Example 2.1. 

d 

f/2 

Figure 3. S(G, va) of Example 2.1. 
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d 

Figure 4. AI of Example 2.1. 

0 

a 

Figure 5. SI(G, Vo) of Example 2.1. 

They denote the path and control costs respectively and map into the set of nonnegative 
real numbers. 

DEFINITION 2.8. Cost of a path lying in an admissible subgraph A of G. 
This cost is a function denoted by c(', ") and defined Yp[va, Vb] E L~p(A) by 

c(p, A) = Z cp(e) + Z Cc(e), 
e~Ef(p) eEX 

where 

X = {(v, v ' ) :  (v, v ' )  ~ E f ( G )  - E f (A ) ,  v ~ Vf (p)  - {Vb}}.  

If  p ~ Lw(A) then the function is undefined. 

The set X in the definition above represents the set of edges lying in G but not in A, 
which are connected to vertices visited by the path p. 

DEFINITION 2.9. Maximum cost of a subgraph. 
This is a function defined on the set of all admissible subgraphs of G and denoted by 

Cmax('). Let A be an admissible subgraph of G. Then 

Cmax(a) = max c(pm, A). 
P,nELm(A ) 

The required definitions are now complete. 
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3. Problem Formulation 

Let G = (V~, E c, %, v m) represent the uncontrolled DES. Consider the set $(G, %) of 
all admissible subgraphs of G rooted at %. Pick any A ~ $(G, v0) and consider the func- 
tion C~x(A) of Definition 2.9. The set L,,(A) represents all possible behaviors or paths 
of the controlled system A. With each possible behavior, we have the associated cost 
C(pm, A). 'Observe that the control cost is dynamic since it is only incurred if the path 
visits a vertex where an edge in the set Xhas to be disabled. The maximization in Cmax(A) 
thus represents the worst-case cost which may be incurred by the evolution of the system 
A. It is thus evident that for the purposes of a worst case analysis, Cm~x(') is the appropriate 
cost function or performance index. Consequently, our optimization problem is stated as 
follows: 

We wish to find Ao E $(G, Vo) such that Cmax(A0) = mina~s(6,Vo) Cmax(A). 
It may be noted that we search over the entire set $(G, vo). The admissibility of G en- 

sures that this set is finite. Moreover, we assume that each member of $(G, %) is con- 
structible or there exists some control law which will yield the particular subgraph. Thus 
any edge can be removed or equivalently we have total controllability. 

It may be noted that the optimal solution is not unique. It is also true that all solutions 
are not subgraphs of one another. Thus there exist incomparable optimal solutions. Moreover 
the dynamic programming (DP) principle is not universally applicable to all optimal solu- 
tions. In other words there exist optimal solutions which have no optimal substructure. 
The following example iUustrates these observations. 

EXAMPLE 3.1. Let the uncontrolled system be the graph G in Figure 1. 
The costs are 

Edge cp c c 

0a 4 10 
0d 1 20 
db 1 2 
dc 1 3 
am 3 5 
bm 1 5 
cm 1 5 

The largest optimal solution is obviously G itself with an associated worst-case cost of 
seven. The optimal solution rooted at v d is depicted in Figure 6 and has an associated cost 
of two. However, the two subgraphs in Figures 7 and 8 are also optimal solutions at v 0. 

These examples establish that the optimal solution is not unique. Note that both of the 
solutions in Figures 7 and 8 violate the DP principle at vertex v d. Moreover neither solu- 
tion is a subgraph of the other; i.e., there exist incomparable optimal solutions. 

The maximization part of the min-max problem is performed over a space of paths but 
the minimization part is performed over a space of graphs. In this aspect of the problem 
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d 

T/2 

Figure 6. Unique optimal solution at v a for Example 3.1, 

/TZ 

Figure 7. An optimal solution at Vo for Example 3.1, 

we find ourselves entirely in uncharted territory. In the following section we present a se- 
quence of seven theorems which allow us to resolve these issues and extract a unique inter- 
esting minimally restrictive optimal solution to the afbrementioned problem. 

4. Statement of Principal Results 

There are seven theorems stated in this section. Their basic purposes are as follows. 

• Theorem 4.1 establishes the closure of the space of admissible graphs under the merge 
operation. 

• Theorem 4.2 captures the tradeoff between the path and control costs of path. 
• Theorem 4.3 is the dynamic programming (DP) equation for the max part of the min- 

max problem. 
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frt  

Figure 8 An optimal solution at vo for Example 3.1. 

g Theorem 4.4 establishes the closure of the class of DP-optimal solutions under the merge 
operation. 

• Theorem 4.5 is the DP construction for the min part of the rain-max problem. 
• Theorem 4.6 establishes that the complexity of the one-step minimization required in 

Theorem 4.5 is that of sorting at most II v II numbers. Thus it is not necessary to search 
over the set of all subsets of the one-step subgraph rooted at a vertex, which may in 
the worst case be 2 Ilvll . 

• Theorem 4.7 proves that the computational complexity of the overall solution is polynomial. 

4.t. The Merge Operation and the Cost Function 

THEOREM 4.1. Let A, B be admissible subgraphs of an admissible graph G where G = 

(VG, EG, v O, Vm),A = (VA, Ea, va, vm), andB = (V~,E B, Vb, Vm). Letvo ~ Vf(A) = V A. 
Then A @ B = (I"A U V 8, EA U E B, v~, vm) is admissible. 

This theorem is of fundamental importance in the incremental construction of solutions. 
The merger of admissible graphs is admissible subject to the simple condition: va ~ Vf(B) 
v v b ~ Vf(A). This restriction turns out to be quite trivial. The proof of this result follows 
from a straightforward and exhaustive examination of the definition of admissibility. It has 
been omitted in this paper. 

TgEOREM 4.2. Let G = (VG, EG, v0, Vm) and A1, A2 E $(G, Vd) , A1 ~ $(A2, va). Then 
fbr all Pm ~ Lm(AO, C(pm, A1) --> C(pm, A2). 

This theorem represents our contention that our cost structure captures the tradeoff bet- 
ween the cost of control and the path costs. More edges are removed in A 1 than A 2. Thus 
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for the surviving paths in A1 control costs are higher than in A2. On the other hand the 
maximum cost among the paths in Aa is possibly lower than the maximum cost among 
the paths in Az. 

The following result establishes that the maximum cost associated with any admissible 
subgraph may be recursively computed from the costs associated with smaller admissible 
subgraphs attached to a one-step subgraph. If the reader looks ahead to the structure of 
the optimal solution, as indicated in Theorem 4.5, the importance of this result becomes 
obvious. 

THEOREM 4.3. Let A E $(G, vd). Then 

Cmax(A) = m a x  [c((va, v ' ) ,  SI(A , Vd) ) --}- Cmax(S(a , v ' ) ) ] .  
(Vd, V')EE f (St(A,Vd)) 

4. 2. The Dynamic Programming (DP) Principle for Subgraphs 

Recall that if A 0 is optimal in the set $(G, Vo) then Cmax(A0) = minA~S(~,vo) Cmax(A). We 
define Ao to be DP-optimal iff 

(i) A 0 is optimal, and 
(ii) (Vv E Vf(A0)) Cmax(S(Ao, v)) = min/~$(c,~) Cmax(n). 

We also adopt the notation $~(G, va) for the set of all DP-optimal solutions of the graph 
G rooted at the vertex va. 

The content of (ii) above is that every maximal subgraph of a DP-optimal solution is 
itself DP-optimal in its appropriate class or $(G, v) for some v E Vy(A0). It is nontrivial 
to prove that the class of DP-optimal solutions is nonempty. This is the content of Corollary 
4.1. It is satisfying that there exist optimal solutions whose subsolutions are also optimal. 
This is suggestive of a dynamic programming principle of sets or languages rather than 
of single paths. However the development of this idea requires the elucidation of the behavior 
of DP-optimal solutions under the merge operation. The following theorem together with 
Theorem 4.5 establishes the existence of a unique maximal DP-optimal solution. 

THEOREM 4.4. Let G = (Vc, E6, v0, Vm) be an admissible graph. Let S ° E $~(G, Va) 
and S~ E $~(G, Vb) where Vb E Vf(S°). Then S ° 0 S~ E $~(G, va). 

Assuming that the set $~(G, Vd) is nonempty, we obtain the interesting conclusion that 
the merger of DP-optimal solutions is DP-optimal. The admissibility of G ensures the finite- 
ness of the set $~(G, Vd). Thus by induction on Theorem 4.4 the merger of all elements 
of $~(G, Vd) is its unique maximal element. Observe that Theorem 4.1 establishes the ad- 
missibility of S ° e S~. 

Using the above theorem we are able to establish the following recursive construction 
of the DP-optimal solution. In the following, for any one-step subgraph S' rooted at a vertex 
v a, we define the set of vertices I(S') = {v E Vf(S'): v ~ Vd}. 
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THEOREM 4.5. Let S" = S'  @ (@vEI(s') S°v), S' E $1(G, vd), S ° E $~(G, v) be such that 

.axI  o  oll 
A 'E$I(G, Vd) vEI(A ') 

where S ° E $~(G, v). Then S" E $~(G, Vd). 

COROLLARY 4.1. For all Vd E V G, $~(G, vd) ~ 0. 

Theorem 4.5 states that if the set $~(G, v) is nonempty for the descendents v of the ver- 
tex vd, then the set $~(G, Vd) is also nonempty. Consider a vertex v which is directly con- 
nected to v m. The set $~ (G, v) is obviously nonempty for such a vertex. Proceeding intui- 
tively from this case soon makes Corollary 4.1 apparent. The proof quite naturally is based 
on induction. It is omitted. 

We next state another corollary of Theorem 4.5. This corollary establishes that the cost 
associated with S" may be directly computed from its structural components as defined 
in the theorem. 

COROLLARY 4.2. Let S" = S'  @ ((~)veI(s') S°) E $~(G, vd), where S ° ~. $~(G, v) for 
all v E I(S'). Then 

%ax(S") = max [c((v d, v), S') q- Cmax(Sv°)]. 
(Vd,V)Eef(s') 

The proof of this corollary has been omitted since it is a straightforward application of 
Theorem 4.3 to Theorem 4.5. 

The definition of S" in Theorem 4.5 shows how to construct an element of $~(G, Vd) 
given S ° E $~(G, v) where v is a direct descendent of vd. This construction may he done 
by a backward DP-recursion. The theorem also shows that while the various Sv ° may be 
known, it is still necessary to find the minimizing S'  in the set $1(G, Vd). The structt~al 
properties of this set are elucidated in the following subsection. 

To conclude this section we state the last and most important corollary of Theorem 4.5, 
on the existence of maximal DP-optimal solutions. Before stating the result it is necessary 
to introduce some notation. We define M~(G, vd) to be the maximal DP-optimal solution 
of G rooted at va iff 

(i) it is DP-optimal 
(ii) VA E $~(G, Vd), A E $(M~(G, va), Vd). 

We use the shorthand Mvd for the symbol M~)(G, vd) in most places. The reader is re- 
quested to note that all subgraphs of maximal DP-optimal solutions are themselves maxi- 
mal DP-optimal. We now state the corollary. 
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COROLLARY 4.3. For all Vd EVc, M~(G, Vd) exists and is unique. Moreover 

MD(G'Vd)=M'(~fv(~eI(M') MD(G'v) l ' 

where M' is the unique maximal A' satisfying the hypotheses of Theorem 4.5. 

The proof of the existence part is obtained by inductively applying Corollary 4.1 and 
Theorem 4.4 on the merger of DP-optimal solutions. The proof of the constructive part 
is easily obtained from Theorems 4.4, 4.5, and the finiteness of the set &(G, vd). The 
proof is straightforward and hence omitted. 

The maximal DP-optimal solution may be viewed as the minimally restrictive optimal 
solution in this class of interesting solutions. Thus it possesses the optimality of Ramadge 
and Wonham's supremal controllable sublanguage and other work in the same paradigm. 

It may be noted that conformity with the above DP principle is sufficient for optimality. 
This is evident from Theorem 4.5. But this conformity is not necessary. As seen in Example 
3.1, it is easy to construct specific cases where a solution is optimal in the set $(G, v0) 
but some subgraphs of the solution are not optimal in their respective classes. 

4.3. Computation of One-Step Subgraphs for Optimal Solutions 

The results of the prior subsection indicate that for all vd fi Va it is possible to compute 
a DP-optimal solution by recursing backwards from vm to Vd. At each step it is necessary 
to search through the set of all subsets of $1(G, va). This set could have cardinality 2 ~ 
for an n vertex graph. This subsection establishes that if the descendent set of a vertex 
v be appropriately ordered then the maximal DP-optimal solution at the vertex v may be 
computed in as many steps as there are descendents. The sort algorithm is O(n log n) and 
it bounds the complexity of this stage. 

Since subgraphs of maximal DP-optimal solutions are also maximal DP-optimal we state 
the following equivalent form of Mva: 

M v d = M ' ( ~  ') 

where M' = SI(Mvd , Vd) and My denotes the maximal DP-optimal solution in the class 
$(G, v). Next consider the set Ef(SI(G, Vd)). We order this set by increasing cost as fol- 
lows. If Ef(SI(G, v~/)) = {el . . . . .  en} , ei = (vd, vi), then ¥i, j, 1 <- i <- j < n, we have 

Cp(ei) -]- Cmax(Mvi) ~ Op(ej) q- ¢max(Mvj). 

Note that no control costs are to be considered. For all j such that 0 _< j _< n define 
E/ = {el . . . . .  en-/}. Thus E0 = Ef(&(G, Vd)) and En = 0. It is evident that ~ defines 



A GRAPH-THEORETIC OPTIMAL CONTROL PROBLEM 153 

a unique one-step subgraph in the class $1(G, vd). Let this graph be denoted by El" using 
this one-step subgraph we define a graph Aj for all j as follows: 

As = E~ ® L i=I 

It is ,obvious that Aj E $(G, vd) and Aj+I E $(A i, vd). The principal result follows: 

/A'\j=n-1 be the associated sequence TaEOREM 4.6. Let Mvd be as defined above and let \"J,j=0 
of graphs constructed as above. Let M '  denote the maximal one-step subgraph of Mvd. 
Then 3j, 0 < j _< n - 1, s.t. Mvd = Aj. 

It is evident from this theorem that if the set Ef(SI(G, Vd) ) be sorted as recommended 
then the number of candidates for M'  is restricted to the cardinality of the set Ef(SI(G, vd)) 
= Eo. Thus the complexity of this step is linear in n. 

On the basis of Theorems 4.5 and 4.6 we are able to prove the computational complexity 
of the algorithm stated in Section 6. Accordingly the following theorem concludes our in- 
vestigation of the problem formulated in Section 3. 

'I-~IEOREM 4.7. Let G be as usual and 11Vo 1[ = n. Then the computation of M~)(G, Vo) is 
at most O(n 2 log n). 

The proof of the above theorem is straightforward. Theorem 4.5 establishes that there 
are at most n steps in the backward DP-recursion. At each step of the recursion there are 
two computations, namely the sorting of the set Ef(SI(G, Vd)) and cost computation for 

IA .xj=n-1 The former is of order O(n log n) and the latter of order O(n). the sequence,  j,j=o • 
Since the first grows faster than the second the total complexity is O(n 2 log n). A detailed 
proof is omitted. 

5. Algorithm 

We present in this section an algorithm to compute the maximal DP-optimal solution of 
an admissible graph G described as usual by G = <Va,.Ea, Vo, vm). The application of 
this algorithm will be illustrated by a simple example in Section 7. 

All new notation adopted in this section is defined below for easy reference. 

(i) SL = solved list of vertices, i.e., optimal solution already computed. 
(ii) UL = unsolved list of vertices, i.e., optimal solution to be computed. 
(iii) Eopt(V ) ~--- the set of edges of SI(M~(G, v), v). 
(iv) CL = {(v, Cmax(M~)(G, v))): v £ V6}. This is the cost list maintained by the algo- 

rithm for the recursive computation of the cost associated with a particular subgraph. 
(v) C = set of vertices to be optimized in the current iteration. 
(vi) P = set of predecessor vertices from which C is to be chosen. 
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(vii) Pf (C)  = {v E V~: (v, v ' )  E Eo, v' E C} .  

(viii) Sf(v) = {v' EVa:  (v, v') E E~}. This is the set of successor vertices of the vertex v. 

To enhance modularity we present the algorithm as a main program and two subprograms 
referred to as Optimize and One-Step Optimize respectively. The main program calls the 
program Optimize which in turn calls the subprogram One-Step Optimize. 

The main program determines which vertices may be solved in the next iteration. These 
are contained in the set C. Thus a vertex is a member of C if and only if the maximal 
DP-optimal solutions are known for all its successor or descendent vertices. Since all paths 
terminate at v m and the graph G is acyclic the set C is guaranteed never to be empty. The 
program Optimize iterates until all vertices in C are exhausted. It also orders the edges 
directed out of a vertex in C by increasing cost as required for the use of Theorem 4.6. 
The program One-Step Optimize simply examines the ordered set of edges starting with 
the last edge and determines which is the maximal DP-optimal subset. It uses the termina- 
tion condition given by the two parts of Lemma 6.3 which is presented in the section on 
intermediate results (6.1). 

5.1. The Main Program 

(i) Input: V o, Ec;, Vo, Vm. 
(ii) Initialize: C =  {Vm}, P = O, SL = {Vm}, UL = VO - SL, CL = 0. 
(iii) Optimize: Call subprogram Optimize with argument C. 
(iv) Termination Condition: Is Vo E C? If yes then STOP. Otherwise continue. 
(v) Computation of the vertices to be optimized in the next iteration: First compute 

P ,-- P U P f (C)  - C and then find C = {v E P: Sf(V) c_ SL}. 

(vi) Update set of optimized vertices: SL , -  SL L) C. 
(vii) Update remaining set of vertices: UL ~- UL - C. 
(viii) GOTO (iii). 

5.2. Optimize 

This program aside from iterating until C is empty essentially orders in step (v) the descen- 
dents of Vd. This ordering together with the construction of the Aj's referred to in Section 
4.3 and the statement of Theorem 4.6, will make One-Step Optimize linear in II v II. 

(i) Input: C. 
(ii) Let Co = C. 

(iii) Pick any Vd E Co. 
(iv) Update Co: Co ~ Co - {vd}. 
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(v) Compute 

Eo = Ef(SI(G, vd)) = {el, . . . ,  en},' 

v0 = ~ ( s ~ ( ~ ,  vd)) - {vd} = {vl . . . . .  vn}, 

where ei = (va, vi) and order the e i such that 

i < j ~ cp(ei) + Cmax(M~(G, vi)) < cp(ej) + Cmax(MD(G , vj)). 2 

(vi) If E0 = 0 then set Cmax(E0) = 0. 
Else set Cmax(E0) = @(en) + Cmax(M~(G, Vn)). 

(vii) Call subprogram One-Step Optimize with arguments Eo, Cma×(Eo), vd. 
(viii) Termination condition: Is Co = 0? If yes then return to the main program. Other- 

wise GOTO (iii). 

5.3. One-Step Optimize 

In this section we indulge in an abuse of notation. The symbol C~x(E')  where E '  = 
{e 1 . . . . .  ej } is used to denote the following calculation: 

i=n 

Cmax(E' ) = Cp(ej) + Cma×(M~(G , vj)) + Z Cc(ei) ,3 
i=j+l  

where it is assumed that E 0 = {e~, . . . ,  en} is ordered by increasing cost as described 
in (v) of Optimize. The notational abuse is justified since the set E', generated in each 
iteration of One-Step Optimize, is bijectively identifiable with the Aj's constructed for the 
statement of Theorem 4.6 in Section 4.3. Because of the DP principle the optimal Aj may 
be determined by a purely local or one-step view. Hence each step of the algorithm only 
looks at the one step subgraph rooted at v d. All other required information has already 
been computed in prior iterations and stored in CL and the sets Eopt(V ) where v is a child 
of v~. 

(i) Input: E0, Cmax(E0) , Yd" 

(ii) Initialize: E = Eo, E'  = Eo, CMAX = Cmax(Eo), Eopt(vd) = O. 
(iii) Compute 4 E'  ~ E'  - { e l :  i = max~jee,j}. 

If E '  ~ 0 then set 

k=/'/ 

emax(E') ep(ei-l) + ' o = C~x(M/~(G, vi_l) ) + ~ Cc(ek). 
k = i  
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(iv) Termination condition: E'  = 0? If yes then set 

Eopt(Vd) *- Eopt(Vd) U E and CL ~CL tO {(vd, Cmax(E)) } 

and return to Optimize. 2 Otherwise continue. 
(v) Recursion condition? Is Cmax(E') < CMAX? If not then G(YIO (iii). If yes then 

continue. 
(vi) Set E = E', CMAX = Cmax(E'). 
(vii) GOTO (iii). 

It may be noted that in the above E represents the set of edges currently being minimized 
and CMAX represents the current minimum cost. We point out that the above subprogram 
basically performs the minimization inherent in the following statement: 

Cmax(Mvd) = min CmaxIS'@ I @ M~(G,v ) I I .  
S' E$,(G,vd) v~I(S') 

The aim is to find the Aj that will satisfy Theorem 4.6. 

6. Development of Principal Results 

61. Intermediate Results 

The following results will be used in Section 5.2 to prove the theorems of the previous 
section. The first lemma is essentially a mathematically convenient alternative form of the 
merge of two or more subgraphs. 

LEMMA 6.1. 

s(& ® &, vd) = I ® 
v~vf(s(s~®Sb,vd))n Vf(Sa) S(&, v) 1 

°I 
where Vd E Vf(S.), Sa E $(G, Va), and Sb ~ $(G, vb). 

Proof Let 

xa = vj(s(& ® &), vd) n v~(sa), 

xb = Vs(S(Sa ® &), vd) n VS(&), 

@ s(&, v) 1 , v~ vS(s b) n Vf(S(S~®Sb, Vd)) 



A GRAPH-THEORETIC OPTIMAL CONTROL PROBLEM 157 

x 

(a) We first prove the following claim: A ~ $(G, Vd). 
Since Vd ~ Vu(Sa) we have 

v, t E Xa = vci ~ Vf(A). 

To prove by contradiction we assume that there exists v 6 Vf(A) such that 

p[v, Vd] ~ Lsp(A ) ~ Lsp(G ). 

Since 

v E Vf(A) = U Vf(S(Sa, v') U U Vf(S(Sb, v') , 
v'~x~ v'~x b 

let it be assumed w.l.o.g, that v E Vf(S(Sa, v')) where v' E Xa. Then there existsp[v', v] 
E Lsp(S(S a, v')) c Lw(G).  But 

v' ~ x~ = v' ~ vi(s(& ® &, v~)) 

= ~ p[vd, v'] E Lsp(S a (~ Sb) ~ Lsp(G). 

Thus p[v, Vd] o p[vd ' v'] o p[v', v] ~ Lw(G),  which implies that G is cyclic. Since this 
contradicts the admissibility of G, ~tp[v, vd] ~ Lw(A ) and v d is of zero indegree. 

Next pick any v' E VT(A). Then v' ~ Vf(S(Sa, v)) or v' E Vf(S(Sb, v)) for some v E X~ 
or Xb, and 3p[v, v'] ~ Lsp(S(S,~, v)) or Lsp(S(Sb, v)) C L~p(S(Sa @ Sb, Vd)). But 

v ( X~ or Xo = v ~ V(S(Sa @ &, va)) = 3p[vd, vl ~ L~p(S(Sa @ &,  Vd)). 

Thus p[vd, V'] = p[vd, v] Op[v, v'] ~ Lsp(S(Sa @ Sb, Vd)) and Vd is the one and only vertex 
of zero indegree. Since the other requirements of admissibility are trivial, we have 

A = (VA, EA, Vd, Vm), 

= 

where 
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vA=IU~xo vI(s(&'°)lUIUv~x~ vAs(&'v)) 1 " 

(b) Letpm = p[vd, vm] E Lm(A). Then Ef(pm) ~ EA ~ Ef(Sa) U Ef(Sb) and by Lemma 
A.1, Pm E Lm(S(Sa @ &, Va)). Therefore Lm(A) c Lm(S(Sa @ &, vd)). 

(c) Again letpm E Lm(S(Sa @ Sb, Vd)). Thenpm = p[va, Vm] and Ef(pm) c Ef(Sa) U 
Eu(Sb). Now Pm E Lm(S(Sa @ Sb, Vd)) =Pm E Lsp(S(S a @ Sb, va)) whence, ve E Ef(pm), 
e = (v, v"), we have 

e E Ef(S(Sa @ Sb, v~)) ~ Ef(Sa) U Eu(Sb) 

= v'~ V~(S(Sa ® &, vd)) c_ vs(so) u v~(&) 

= v ' E X a  or v ' E X b  

= e E Ef(S(Sa, v')) or e E Ef(S(Sb, v')) 

= Ef(pm ) c ET(A). 

Accordingly, by Lemma A.1, Pm E Lm(A) and thus Lm(S(S ~ @ Sb, vd)) ~ Lm(A). 
(d) From (b) and (c) we obtain Lm(A ) = Lm(S(S a @ Sb, Vd)). The result then follows 

by Lemma A.2. Q.E.D. 

We next present a lemma which is essential to prove our main theorem on the recursive 
construction of DP-optimal solutions. This lemma is derived from Theorem 4.4. While 
the proof of Theorem 4.4 is presented in the following section it does not use this lemma. 

LEMMA 6.2. Consider A := S(S' (~(@viEI(S,) Sv°), vi, ) where 

(i) S' E $1(G, vd). 
(ii) I(S') = {v I . . . . .  vn}, where vi E Vf(S'), v i ~ v d, 1 <_ i <_ n. 
(iii) vvi E I(S'), S~ E $~(G, vi). 
(iv) vi, E I(S'). 

Then A is DP-optimal, i.e., A E $~(G, vi,). 

Proof We define for each vi E I(S') 

A, = < {vd} U V~(S~), {(~d, ~;)} U E~(S~), vd, v~>. 
ThenAi E $(G, vd) and S' @ ((~ct(s ' )  S~.) = @ l < i < n A i  E $(G, Vd) by Theorem 4.1. 
Consequently 
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A = S  Ai ' Vi~ • 
l <--i <--n _) 

Consider Ai, corresponding to vi E I(S'). We wish to evaluate S(Ai, @ (@l___i_<n Ai) ,  v i ) .  
By Lemma 6.1 i#i, 

S 

where 

il @ A ,vi = @ S(Ai~,v @ @ S Ai, , 
l _ i _ n  vEXi vEX2 L li-i~i-in 

L iNi~ 

i~eil 

Xz=VfiS i,@ A ,,,, @ A . 
L l _ i _ n  1 - i ~ n  

i # il i ;~ i 1 

We proceed by induction on n, which is the cardinality of  I(S'). Let n = 1. Then 

S [ @  Ai, v 
l<_i<_n 

= A = S ( A 1 ,  Vl) ~-- S ° E $~(G, v O, ~q 

which is the desired result. Next let S(@l<_i<_n Ai, vi) E $~)(G, vl,). Consider 

S ~ Ai, vl = A  = S  i~@ @ A , v  i . 
k.  l < i < n + l  t<_i<_n+l 

• i# i l  

Rearranging the indices we have 

A = S  

Let 
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By Lemma 6.1 

A = 
v6X ' 1 <-j<-n 

0 Now ¥v E X, we have v ¢ Vd and thus S(Ai~, v) = S(Sv°? v) ~ $~(G, v), since Svi ' 
$~(G, vi). Also, Yv E X '  we have v ~ v d. Thus 

= s  ® +  , 
l <_j<_n l < - j ~ n  

for some k such that 1 < k < n. 
But by our induction hypothesis 

where v E X'.  

Therefore by Theorem 4.4 we have A ~ $~(G, vi). Q.E.D. 

We present next the primary lemma needed for the proof of Theorem 4.6. Three lemmas 
referred to in the following proof may be found in the appendix. The notation Aj is as de- 
fined in Section 4.3. 

LEMMA 6.3. 

(i) I f  Cmax(hj+l) • mino<_i<_ j Cmax(Ai) then Mv~ = Aj+ t or M~ d E $(Aj+2, Vd). 
(ii) I f  Cmax(Aj+l) >- mino<_i<_j Cmax(Ai) = Cmax(A), where A = Ak for the smallest k such 

that 0 < k < j ,  then M,, d = A or Mva E $(Aj+2, vd). 

Proof Part (i). Let M~, d ~ Aj+I and Mvd ¢ $(Aj+2, Vd). By Lermna A.8, M~. d ~ $(Aj+I, Vd), 
which in conjunction with Lemma A.6 implies that en-~j+l E Ef(M~d). It is now immediate 
from Lemma A.7 that Mva = Aj+ 1. The result follows by contradiction. 

Part (ii). We prove by induction. 
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Base CASE. j = O. Let Cmax(A1) ::~ Cmax(Ao). We wish to show that M~a = Ao or Mud E 
$(,42, va). Let it be assumed that Mua ~ A o and Mud ¢. $(A2, va). By Lemma A.6 we have 
that en E Ef(Mva) or en-1 ~ Ef(Mva). If  en ~ Ef(Mu a) then by Lemma A.7, Mva = Ao. Thus 
e n f~ Ef(M~d). If en-1 E Ef(Mu d) and e, ~ Ef(Mud) then by Lemma A.7 

Mva = A 1 ~ Cmax(Mva) = Cmax(A1) -> Cmax(Ao). 

By the maximality of Mud we see that Mvd= A o. Consequently by contradiction the base 
case is established. 

INDUCTION HYPOTHESIS. If  Cmax(Aj) >~ mino<_r<j_l Cmax(Ar) = Cmax(A'), where A' = A k 
for the smallest k such that 0 _ k _< j - 1, then Mvd= A' or Mud E $(Aj+t, vd). 

PROPOSITION. If  C~x(Aj+l) > mino<_i<j Cmax(Ai) = Cmax(A), where A is as usual, then Mvd 
= A or mva E X(Aj+2, Vd). 

Case L Let Aj be such that Cmax(Aj) - mino~i<j-  1 Cmax(Zi) = Cmax(a'). Then rnino<_i<j 
Cmax(Zi) = mino<i<j_ 1 Cmax(hi) = Cmax(Z') = Cmax(h ). Obviously Z '  = a and by our in- 
duction hypothesis Mud = A or Mud E $(Aj+ 1, Vd). 

Case 2. Let Aj be such that Cmax(Zj) ~ mino<i<.j_ 1 Cmax(hi). It is obvious that A = Aj 
and by Lemma 6.3, Mu~ = Aj = A or Mvd ~ $(Aj+I, va). 

We now continue on both cases by contradiction. Let it be assumed that Mua ;~ A and 
My d ~ $(Aj+2, v,i). Then by Lemma A.6, en-j+l E Ef(Mu d) and hence by Lemma A.7, 
M~e = Aj+~. Thus Crnax(Mva) = Cma×(Aj+l) >- Cmax(A)- By the maximality of Mve we see 
that Mud = A. This is a contradiction and thus our proposition is established. Q.E.D. 

6. 2. Proofs of  Principal Results 

As noted earlier the proof of the conservation of admissibility under the merge operation 
stated in Theorem 4.1 has been omitted. For the sake of readability, the statement of the 
principal results in Section 4 are repeated before their proofs. 

The following is the proof of the monotonicity of cost expressed in Theorem 4.2. 

THEOREM 4.2. Let G = (V 6, EG, Vo, Vm) and A 1, A2 ~ $(G, va), A 1 E $(A2, va). Then 
for all Pm E Lm(A), C(pm, A1) > C(pm, A2). 

Proof Since A 1 E $(A 2, va), Pm E Lm(AI) implies Pm E Lm(A2). Thus C(pm, A2) is defined. 
In general for Pm ~ Lm(Ai), 

C(pm, Ai) = ~-a cp(e) + ~__a Cc(e), 
eEEf(p m) e~X i 
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where 

X/ = {(v, v ' ) :  (v, v') E E c - Ef(Ai) and v E Vf(pm)}.' 

Since A1 E $(A2, vd) we have 

EI(A1) ~ Es(A2) 

= EG - Ef(A2) c E 6 - Eu(A1) 

=x2c_x~ 

= ~ cc(e) < - ~  cc(e), since Cc(e) >- 0 
eeX~ e~X1 

= ~ cp(e) + ~ ]  co(e) < ~] Cp(e) + ~ ]  cc(e) 
eEEf (Pro) eEX~ eEEf (Pro) eEXI 

= c(pm, A2) <- C(pm, A1). Q.E.D.  

The following is the proof of the recursive computation of the cost associated with a 
subgraph referred to in Theorem 4.3. 

TrtEOe.EM 4.3. Let A E $(G, vd). Then 

Cmax(A ) = max [c((va, v ' ) ,  SI(A, vd) ) + Cm~x(S(A, v'))] .  
(Vd, V')EEf (Sl(A,Vd)) 

Proof Since A E $(G, vd) we have 

Cmax(a ) = max C(Pm, A) 
PmELm(A ) 

= max [c((vd, v'), A) + c(p/n, A)] 
(va,v'),p~, 

(Vd,V')°p;nELm(A ) 

= max [c((v~, v'), SI(A, vz)) + c(pL, S(A, v'))] 
(va,v'),pL 

(vd,v')°PmELm(A) 

by Lernmas A.4 and A.5. It is now clear that 

Cmax(A) = max [c((va, v'), SI(A, va)) + Cm,x(S(A, v'))] 
(Vd,V')EEf(SI(A,Vd)) 



A GRAPH-THEORETIC OPTIMAL CONTROL PROBLEM 163 

if  one observes that by Lemma A.3 

(Vd, v') E Ef(SI(A, vd)) = 3pro E Lm(S(A, v')) s.t. (Vd, V') ° Pin E Lm(A) 

and 

Pm E Lm(A) = 3(Vd, V') E Ef(SI(A, Vd)) s.t. P m =  (Vd, V') ° p~. 
Q.E.D.  

The following is the proof  of Theorem 4.4 which may be used inductively to establish 
the existence of a maximal DP-optimal solution. 

TrIEOREM 4.4. Let G = (V~, Ea, Vo, Vm) be an admissible graph. Let S ° E $~(G, Va) 
and S~, E $~9(G, Vb) where Vb E Vf(S°). Then S ° @ Sff E $~(G, Va). 

Proof Since V b (z V f (S°) ,  S ° (~ Sff E $(G, va) by Theorem 4.1. Thus admissibility is estab- 
lished. We prove the DP-optimality by induction. 

Base case. Let gm(Va) = 1. Then S ° = ({va, vm}, {(Va, Vm)}, Va, Vm). Since v b E Vf(S °) 
there are two possibilities for S~. 

(i) em(Vb) = O. Then S~ = ({Vm}, O, Vm, v m) and S ° @ S~ = Sff E $~(G, Va). 
(ii) em(Vb) = 1. Then Vb = Va and thus Sa ° = Sff. Again, S ° ® SC = S ° E $~(G, Va). 

Thus the result is valid for gm(Va) = 1. 

The induction step. Suppose that em(v~) = n. We hypothesize as follows. Let v d E Vf(G) 
where em(Vd) < n -- 1. Furthermore let there exist S~ E $~(G, va) and Sc ° E $~(G, vc) 
where vc E Vf(Sff). Then S,~ @ Sc ° E $~(G, vd) by the induction hypothesis. 

Now letpm E L(S ° @ S~). Thenpm may be partitioned as Pm = Pl[Va, Vd] o p2[Vd, Vm ] 
where 

(i) Vd ~ V~ and v d E Vf(S °) U Vf(S~). 
(ii) pq[Va, Vd] E Lsp(S °) or Lw(S~). 
(iii) p2[vd, Vm] E Lm(S(S ° @ S~,, Vd)). 

Thus lm(Vd) < n since Im(Va) = n. 
By Lemma 6.1 

S(S° @ Sf,, Vd) = I ( ~  S(S°, v) 1 
vEV~(S(Sg®Sg,~d))CW~(Sg) 

® s(sf, . 
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Since Ira(v) <-- Im(Vd) < n and 

s ° ~ S~,(G, v~) = S(Sg, v) ~ S~(G, v), 

S~ E $~(G, Vb) ~ S(S~, v) E $~(G, v), 

we obtain from the induction hypothesis that S(S ° @ S~, Vd) E $~)(G, vd). Thus it is estab- 
lished that every subgraph of S ° @ S~ (except possibly itself) is DP-opfimal. 

It remains to establish the optimality of S0 @ S~. Consider first the case where Pl[Va, 
v d] ~ Lw(SO). Then by Theorem 4.2 and Lemma A.4, we have that 

c(pm, s ° ® s t )  = c(m[va, vA, SO ® s t )  + c(p2[v~, v,n], s ° ® so) 

c(pl[v a, Vd], S °)  + c(p2[vd, Vm], S(S ° (~ aft, Vd) ) 

<<- C(pl[Va, Vd], S °)  "[- Cmax(S(S ° (~ aft, Vd) ). 

Since S(S °, va) E $~(G, Vd) and S(S ° @ S~, Vd) ~ $~(G, Vd), we have 

Cmax(S(S °, vd)) = Cma~(S(S ° ® SO, vd)). 

Accordingly, 

C(pm, S ° @ SO) <~ ¢(Pl Ira, Vd], S°) + Cmax(S( S°, Vd)) <~ Cmax(Sg)" 

If  pl(Va, Vd] ~ Lsp(Sff) then v~ = v b since Va ~ Vf(S°a). Thus by a similar argument 

C(pm ' $o ® SO) "< c(p 1 Ira, Vd], SO) + Cmax(S(Sff, Vd) ) "< C~ax(Sff) = Cmax(S°), 

since vb = va. 
Thus Vpm E Zm(S ° (~ SO) we obtain C(pm, S ° (~ St)  <~ Crnax(S °) which implies that 

Cm.x(S ° @ SO) < C~x(S°). But by the optimality of SO, Cma~(S °) < Cm,x(S ° @ SO) 
whence 

Cmax(S ° @ Sg) = Cm,x(S°). 

Thus S ° @ SO E $~(G, v~) and the proof of the induction step is completed. Q.E.D. 
The next result is Theorem 4.5 which establishes the existence of a backward DP recur- 

sion method for the construction of DP-optimal solutions. Lemmas A.4 and A.5 referred 
to in this proof may be found in the appendix. Lenmaa 6.2 has already been presented in 
the prior subsection. 
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THEOREM 4.5. Let S" = S' @ ((~)vel(S') S°), S' E $1(G, Vd), S ° E $~(G, v) be such that 

Cma  ' CmxI   I 'oll 
A'E$1(G, v d) vEI(A') 

where S, ° E $~(G, v). Then S" E $~(G, vd). 

Proof We first establish S' @ (@~I(s ')  Sv °) E $(G, va) for any S' E $1(G, Vd). 
For each v E I(S') define A~ = S ° @ ( {v a, v}, {(Vd, V)} ). Then A~ E $(G, va) since 

S, ° is admissible. Next note that 

v~i( S' ) v~I(S') 

and by Theorem 4.1, (~)v~l(S') Av E $(G, Vd). Thus admissibility is established. 
By Lemma 6.2, for all v' E I(S'), S(S' @ ((~v~(s') S°), v') is DP-optimat for all 

S' E $1(G, vd). For any A E $(G, Vd) we have SI(A, Vd) E $1(G, Vd) and hence Vv' E 
Vf(SI(A, vd)), v' # vd, 

Cmax(S(a~ vr)) >" ¢maxfSISt(a' Vd) (~) IvEl(&(A,vd))@ S°~ ' v l l  " 

Therefore by Theorem 4.3, 

Cmax(a ) = max [c((va, v'), SI(A, Vd)) + Cmax(S(A, v'))] 
(Vd,V')EEf (St(A,v d )) 

F 
>_ max |c((va, v'), &(A, Vd) ) 

(Vd,V')EEf(S,(A,Vd)) L 

+ Cma x ' l ( h ,  Vd) @ @ S , v 
vEt(Sl(A,Vd)) 

F 
ra in  max Ic((vd, v'), S') 

S'E&(G,v d) IVd,V')EEf(S') L 
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S'El;l(G, Vd) vEI(S') 

where the second inequality follows from SI(A, Vd) E $1(G, Vd) and the equality once again 
from Theorem 4.3. 

Thus YA E $(G, v,t), Cmax(A) > Cmax(S") and we have proved that S" is optimal. It re- 
mains to show that S" is DP-optimal. 

Pick any v" E Vf(S"), v" ~ Vd, and S" = S' G ((~a(s') S°), where S'  is the minimiz- 
ing one among the elements of $1(G, vd). If V" E I(S') then the DP-optimality has already 
been established by Lemma 6.2. If v" ~ I(S') then 

S ' ®  ( ~  S , v '  = S  ' ®  
v~I(S') 1 v I v 1 vEI(S') 

for some v' E I(S'). But the right-hand side subgraph is DP-optimal since, by Lemma 6.2 
again, 

S @ ( ~  , v E $~)(G, v'), Vv'E I(S'). 
vC:l(S') 

Thus S" E $~(G, Vd). Q.E.D. 

Finally, we prove the result on the construction of maximal one-step subgraphs. All nota- 
tion in the following proof is as defined in Section 4.3. 

TtaEOREr~I 4.6. Let Mvd be as defined above and let ¢A ~j=n-1 be the associated sequence jsj=o 
of graphs constructed as above. Let M' denote the maximal one-step subgraph of Mvd. 
Then 3j, 0 < j  < n - 1, s.t. Mva =Aj. 

Proof For Vd E V~ consider the set Ef(SI(G, vd)) = Eo and the sequence of graphs 
A ~j=n-1 Let E0 be ordered by increasing cost. It is obvious that for allj  either Cmax(Aj+l) ~/sj=0 • 

< mino<i<j Cmax(Ai) or c~x(Aj+l) >- mino<i<j Cmax(Ai). By the two parts of Lemma 6.3 
/ A x  i=j+l in both cases My. is one of the elements in the sequence ~ ili=o or it is a subgraph of 

Aj+ 2. Since Mvd exists and A. = 0 it is evident that Mvd = Aj for some j.  

7. Example 

We present here a simple example which illustrates a situation in which our two-cost for- 
mulation is meaningful and an optimal solution is constructed by backward DP recursion. 

Consider Figure 9 and assume that it represents the floorplan of a house with a robot 
in it that delivers things from the lobby to the backroorn. It is assumed that there are plenty 
of people moving around this house who may obstruct the robot. The robot can protect 
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Figure 9. Floorplan of house of Section 7. 
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Figure 10. G of Section 7. 

its path by closing various doors in the house. However, such control action would obstruct 
other people in the house and consequently cost is incurred. This is the control cost. 

The system may be modeled by the following finite digraph G = <V, E, Vo, Vm> where 
V ~-- {V0, V1, V2, V3, Vm} and E = {e01, e02, e03, e23, e21, elm, e2m, e3m}.  Gis  depicted 
in Figure 10. 

The cost functions are defined as follows: 

Edge cp c c 

eol 2 2 

e02 2 2 

e03 2 2 

e21 3 1 

e23 3 1 

elm 4 0 
e2m 4 0 
e2m 4 0 
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The first call to the program Optimize of the algorithm in Section 5 is with C = {v m }, 
which immediately returns since v m has no successors. At the next step, the main program 
puts vertices v 1 and v3 into the set C. 

By admissibility, M~(G, Vl) is 

V 1 ,;  : o V m 

with cost Cmax(M~)(G, vl) ) = 4, and M~(G, v3) is 

with cost Cm,x(M~(G, v3)) = 4 also. At the next step, C = {v2} and it is found that 
M3(G, v2) is 

with cost Cmax(M~)(G, v2) ) = Cp(e2m ) -t- Cc(e21 ) + Cc(e23 ) = 6. To see this, we apply The- 
orem 4.6 and observe that we need only compare the above subgraph with the subgraphs 
Al and A a in Figure 11, since a valid ordering of  the set Ef(S(G, v2)) is {ezra, eel, e23} 
(cf. Section 4.3). This ordering would be produced algorithmically by step (v) of Optimize 
and One-Step Optimize would identify Eopt(v2) = {Vm} as the optimal subgraph of G 
rooted at v2. Indeed, Cmax(A1) = Cp(e21 ) + Cp(elm ) = 7 and Cmax(Ae) = cp(e20 + cp(e~) 
+ cc(ez3) = 8, which proves our contention. 

Finally, we proceed similarly to analyze vertex v 0 in the last iteration of the main pro- 
gram. An appropriate ordering o f t  h e  set Ef(S~(G, Vo) ) is {e01, e03, e02} and thus we need 
only compare the subgraphs A3, An, and A 5 depicted in Figure 12. 

Using Corollary 4.2, we obtain 

Cmax(h3) = max [Cp(eoi) + Cmax(Mfi(G, vi))] 
iE{1,2,3} 

= max[2 + 4, 2 + 6, 2 + 4] = 8 

Cmax(A4) = max [cp(eoi) + cc(eo2) + Cmax(M~)(G, vi))] 
iE{1,3} 

= max[2 + 2 + 4 , 2  + 2 + 4] = 8 

Cmax(Z5) = Cp(eol) + Cc(e02) + Cc(eo3) + Cmax(M~(G, v1)) = 10 

which shows that M~)(G, Vo) = A3. 

8. Conclusion 

We have formulated and solved a new optimal control problem for DESs in a graph-theoretic 
framework. To the best of  our knowledge, our development of a dynamic programming 
recursion on subgraphs (Theorem 4.5, Corollary 4.2,  and other related results), together 
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Figure 11. AI and Az of Section 7. 

Vo ?3O VO v()v 
Ym Vrn Vrn 
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Figure 12. A3, A4, and As of Section 7. 

with the consideration of a cost structure comprising "path" and "control" costs, are novel 
contributions to the optimal control theory of DESs. This approach is also suitable for 
several generalizations of the problem considered in this paper. We are currently engaged 
in extending this work by relaxing the assumptions defining an admissible graph, thereby 
enabling our solutions to encompass a wider variety of DESs. Most of the admissibility 
restrictions are fairly trivially generalized. If accessibility and coaccessibility are violated 
then we would simply extract the maximal accessible and coaccessible snbgraph of G, This 
computation would be O(n). The single initial vertex restriction can easily be generalized 
to one of multiple initial vertices without affecting the complexity. The incorporation of 
uncontrollable events would only entail minor modifications to the algorithm. However 
we would have to state existence conditions. These would be almost similar to those already 
in the literature, e.g., Brave and Heymann [1990] and Ramadge and Wonham [1987]. The 
hard restrictions are the absence of cycles and the assmnption of a single terminal vertex. 
These restrictions are currently under investigation. We believe that the cyclic problem 
would only be solvable with a higher order of complexity, which may however be better 
than exponential. We are however unable to make any formal statements on the relaxation 
of these two restrictions at this point. 

The advantage of using an approach based on a graph model is evidenced by the com- 
plexity result in Theorem 4.7. In the language-theoretic approach, finding an optimal solu- 
tion would require examining all the sublanguages of the language Lm(G) corresponding 
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to the uncontrolled DES. This is of exponential complexity in the cardinality of the set 
Lm(G). In our graph-theoretic approach, we are able to reduce, the complexity to O(n ~ 
log n), where n could be as low as the number of Nerode equivalence classes of L,~(G). 
In general the optimization space is not as large in this case, since not all sublanguages 
of Lm(G) need be subgraphs of G. But if the graph structure G is rich enough (as is the 
case in the example in Section 7), then there is no reduction of the optimization space. 

Appendix 

The proofs of the following results are straightforward from the definitions in Section 2 
and omitted here. 

LEMMA A.1. Let G = (V6, E6, v0, Vm) be an admissible graph and v a E Vf(G). Then 
p[v a, v b] E Lsp(S(G, Vd)) iff 

(i) Ef(p[Va, Vo]) ~ Ef(G). 
(ii) 3p[va, Va] such that Ef(p[vd, va]) c Ef(G). 

In particular, Lm(S(G, va)) = {p[va, Vm]: Ef(p[va, Vm]) ~ Ef(G)}. (It may be noted that 
(ii) is redundant if Vd = v0, in which case S(G, va) = G). 

LEMMA A.2. Let A and B be admissible subgraphs of an admissible graph G where 
A = (VA, EA, Va, vain) andB = (V B, ER, vb, v~). ThenA = Bi f fLm(A)  = Lm(B). 

LEMMA A.3. Let G = (Vc, E6, Vo, Vm ) be as usual and vd E VG. Then SI(G, va) is de- 
fined by 

(i) Ef(St(G, vd)) = {(vd, V): (Va, v) ~ Ef(G)}. 
(ii) Vf(SI(G, Vd)) = {v:  (Vd, V) E Ef(G)} t3 {Vd}. 

The next two lemmas are required for the proof of Theorem 4.5. They are stated without 
proof since they are intuitively clear. 

LEMMA A.4. Let A E $(G, Vd). Then C((Vd, V'), A) = c((v d, v'), SI(A, vd)). 

LEMMA A.5. Letp[v~, Vo] ~ Lsp(D), where D E $(G, v~). Then c(p[v~, vb],D) = c(p[Va, 

Vb], S(D, v~)). 

We conclude this appendix with three lemmas that are required for the proofs of Lemma 
6.3 and Theorem 4.6. All special notation used in this lemmas is as defined in Section 4.3. 

LEMMA A.6. If  Mvd ~ $(Aj, Vd) then 3i such that e i E Ef(Mvd) c Eo and n - j < i <- n. 
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Proof We have M~ d = M'  @ ((~vst(M') Mv) where Ef(M' )  c_ { e  1 . . . .  , e,}.  Let it be 
assumed that for all i s.t., e i E Ef(Mvd) we have 1 _< i _< n - j .  Then ei ~. Ej c_ Ef(Aj) 

g('~i=n-j  M ' Thus Ef(M' )  c since Aj = Ej' @ ~,/i=1 v?. _ Eu(Aj) and for each v E I (M' )  there ex- 
ists v~ with 1 _< i _< n - j ,  whence by the uniqueness of the maximal DP-optimal solution 
we see that M v = M~i if v = v i. Thus Ef(M~) c Ef(Aj) where from Ey(Mva ) c_ Ef(Ai). 
It is not immediate that M~d E $(Aj, Vd). Thus the contrapositive is true and the result 
follows. Q.E.D. 

LEMMA A.7. Let en-j E El(Mud ) and ¥i s.t. n - j < i <_ n, ei ¢ Ef(Mvd). Then M = Aj. 

Proof. Since en-j c: Ef(Mvd ) we have that 

Cmax(Mvd) >-- cp(en_j) + Crnax(Mvn_ 2) + 
i=n 

Z 
i=n-j+ l 

cc(ei) 

= Cmax(Aj) ,  

the latter equality being obtained from the definition of Aj and the ordering of the set 
Ef(SI(G, va)) = Eo. By the optimality of Mvd we have that Cmax(Mvd) = Cmax(Aj). By the 
maximality of  M~d, Aj is a subgraph of Mvd. By the contrapositive of Lemma  A.6, Mvd is 
a subgraph of Aj. Thus Mvd = Aj. Q.E.D. 

LEMMA A.8. I f  Cmax(Zj+l) "~ mino<_i<_j Cmax(hi) , then Mvd E $(Aj+I, Vd). 

Proof Let Cmax(Aj+l) < min0_<i_j Cmax(Ai) and Mvd ~ $(Aj+l, vd). Then by Lemma A.6, 
there exists e i E Ef(Mv a) such that n - (j + 1) < i < n. Let the largest such i be denoted 
by ip. Then for all i such that ip < i < n, ei ~ Ef(Mva). By Lemma A.7 we obtain that 
Mvd = 

N o w n - j  <<. ip < n = j - n >_ - ip  >- - n  = j >_ n - ip > O. Since0  < n -  
ip <_ j we have 

Cmax(Mva ) = Cmax(an_ip ) >-- rain ¢max(Ai) ~> Cmax(Aj+l), 
o<_i<_j 

which is absurd. Thus M ~  E $(Aj+b Vd). Q.E.D. 

Acknowledgment  

The authors wish to acknowledge useful discussions with Professor Kevin Compton (EECS 
Department, University of Michigan). We are also grateful to the reviewers for their careful 
and insightful suggestions on improving the presentation of this paper. 



172 RAJA SENGUPTA AND STI~PHANE LAFORTUNE 

Notes 

1. By Collorary 4.3, which is immediate from Theorems 4.4 and 4.5, the maximal DP-optimal solution can be 
constructed from a subset of E 0. 

2. emax(M ~ (G, vj)) is obtained from CL which is indexed by vj (see One-Step Optimize, step (iv)). 
3. Since the set E 0 is ordered as in (v) of Optimize this equation is obtained by Theorem 4.3. 
4. The set E'  is being searched in order of decreasing cost. By Theorem 4.6 this is sufficient to find the maximal 

DP-optimal solution. The two cases of the recursion condition are the two parts of Lemma 63 which at~ears 
in the next section. 
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