Skip to main content
Log in

Introduction: New approaches to linear programming

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This issue ofAlgorithmica present papers on various aspects of nonlinear methods for solving linear programming problems, inspired by the work of Karmarkar. This introduction describes some of these aspects and briefly mentions other recent developments in the field. A bibliography of recent articles is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. K. M. Anstreicher, A monotonic projective algorithm for fractional linear programming,Algorithmica,1 (1986), 483–498.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. M. Anstreicher, A strengthened acceptance criterion for approximate projections in Karmarkar's algorithm, Report, Yale School of Organization and Management, 1986.

  3. I. Adler, M. G. C. Resende, and G. Veiga, An implementation of Karmarkar's algorithm for linear programming, Report ORC 86-8, Operations Research Center, University of California, Berkeley, CA, 1986.

    Google Scholar 

  4. E. R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Research Report No. RC 11136, IBM T. S. Watson Research Center, Yorktown Heights, NY, 1985.

    Google Scholar 

  5. D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming, I: affine and projective rescaling trajectories, AT&T preprint, 1986.

  6. U. Betke and P. Gritzmann, Projection algorithms for linear programming, presented at the 1986 AMS-IMS-SIAM Summer Research Conference on Discrete and Computational Geoemtry, Santa Cruz, CA, 1986.

  7. C. E. Blair, The iterative step in the linear programming algorithm of N. Karmarkar,Algorithmica,1 (1986), 537–539.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. G. Blum, Towards an asymptotic analysis of Karmarkar's algorithm, Extended Abstract, 1985.

  9. T. M. Cavalier and A. L. Soyster, Some computational experience and a modification of the Karmarkar algorithm, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  10. V. Chandru and B. P. Kochar, A class of algorithms for linear programming, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  11. A. Charnes, T. Song, and M. Wolfe, An explicit solution sequence and convergence of Karmarkar's algorithm, manuscript, University of Texas at Austin, 1984.

  12. S. Chen, Computational experience with the Karmarkar algorithm, presented at the Joint National TIMS/ORSA Meeting, Los Angeles, CA, 1986.

  13. G. de Ghellinck and J.-Ph. Vial, An extension of Karmarkar's algorithm for solving a system of linear homogenous equations on the simplex, Discussion Paper No. 8538, C.O.R.E., Catholic University of Louvain, 1985.

  14. G. de Ghellinck and J.-Ph. Vial, A polynomial Newton method for linear programming,Algorithmica,1 (1986), 425–453.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. R. Frisch, The logarithmic potential method of convex programming, unpublished manuscript, University Institute of Economics, Oslo, 1955.

    Google Scholar 

  16. D. M. Gay, A variant of Karmarkar's linear programming algorithm for problems in standard form, Report, AT&T Bell Laboratories, Murray Hill, NJ, 1985.

    Google Scholar 

  17. P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method, Technical Report SOL 85-11, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, CA, 1985.

    Google Scholar 

  18. D. Goldfarb and S. Mehrotra, A relaxed version of Karmarkar's method, Technical Report, Department of Industrial Engineering and Operations Research, Columbia University, New York, 1986.

    Google Scholar 

  19. C. Gonzaga, A conical projection algorithm for linear programming, Report Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 1985.

    Google Scholar 

  20. P. Huard, Resolution of mathematical programming with nonlinear constraints by the method of centers, inNonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam, 1967, pp. 207–219.

    Google Scholar 

  21. M. Iri and H. Imai, A multiplicative barrier function method for linear programming,Algorithmica,1 (1986), 455–482.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Kapoor and P. M. Vaidya, Fast algorithms for convex quadratic programming and multicommodity flows,Proceedings of the 18th Annual ACM Symposium on Theory of Computing, ACM, New York, 1986, pp. 147–159.

    Google Scholar 

  23. N. Karmarkar, A new polynomial-time algorithm for linear programming,Proceedings of the 16th Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 302–311; revised version:Combinatorica,4 (1984), 373–395.

    Google Scholar 

  24. N. K. Karmarkar, Further developments in the new polynomial time algorithm for linear programming, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  25. N. K. Karmarkar and L. P. Sinha, Application of Karmarkar's algorithm to overseas telecommunications facilities planning, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  26. L. G. Khachiyan, A polynomial algorithm in linear programming,Soviet Math. Dokl,20 (1979), 191–194.

    MATH  Google Scholar 

  27. M. Kojima, Determining basic variables of optimum solutions in Karmarkar's new LP algorithm,Algorithmica,1 (1986), 499–515.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Kojima and K. Tone, An efficient implementation of Karmarkar's new LP algorithm, Research Report No. B-180, Department of Information Sciences, Tokyo Institute of Technology, Tokyo, 1986.

    Google Scholar 

  29. K. O. Kortanek, D. N. Lee, and M. Shi, An application of a hybrid algorithm for semi-infinite programming, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  30. O. Mangasarian, Normal solutions of linear programs,Math. Programming Stud.,22 (1984), 206–216.

    MATH  MathSciNet  Google Scholar 

  31. N. Megiddo, A variation on Karmarkar's algorithm, unpublished manuscript, 1984.

  32. N. Megiddo, On the complexity of linear programming, inAdvances in Economic Theory (T. Bewley, ed.), Cambridge University Press, Cambridge (to appear).

  33. N. Megiddo, Pathways to the set of optimal solutions in linear programming, IBM Research Report RJ5295, Almaden Research Center, 1986.

  34. N. Megiddo and M. Shub, Boundary behavior of interior point algorithms for linear programming, IBM Research Report RJ5319, 1986.

  35. G. Mitra, M. Tamiz, J. Yadegar, and K. Darby-Dowman, Experimental investigation of an interior search algorithm for linear programming, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  36. K. G. Murty, A new interior variant of the gradient projection method for linear programming, Technical Paper 85-18, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 1985.

    Google Scholar 

  37. K. G. Murty and Y. Fathi, A feasible direction method for linear programming,Oper. Res. Lett.,3 (1984), 121–127.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. L. Nazareth, Homotopy techniques in linear programming,Algorithmica,1 (1986), 529–535.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. W. Padberg, A different convergence proof of the projective method for linear programming, Report, New York University, 1985.

  40. M. W. Padberg, Solution of a nonlinear programming problem arising in the projective method for linear programming, Report, New York University, 1985.

  41. P. F. Pickel, Implementing the Karmarkar algorithm using simplex techniques, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

  42. P. F. Pickel, Approximate projections for the Karmarkar algorithm, I, Theory, Report, Polytechnic Institute of New York, Farmingdale, NY, 1985.

    Google Scholar 

  43. J. Renegar, A polynomial-time algorithm, based on Newton's method, for linear programming, Report MSRI 07118-86, Mathematical Sciences Research Institute, Berkeley, CA, 1986.

    Google Scholar 

  44. G. Rinaldi, A projective method for linear programming with box-type constraints,Algorithmica,1 (1986), 517–527.

    Article  MATH  MathSciNet  Google Scholar 

  45. D. F. Shanno and R. E. Marsten, On implementing Karmarkar's algorithm, Working Paper, Graduate School of Administration, University of California, Davis, CA, 1985.

    Google Scholar 

  46. M. J. Todd and B. P. Burrell, An extension of Karmarkar's algorithm for linear programming using dual variables,Algorithmica,1 (1986), 409–424.

    Article  MATH  MathSciNet  Google Scholar 

  47. J. A. Tomlin, An experimental approach to Karmarkar's projective method for linear programming, Report, Ketron, Inc., Mountain View, CA 94040, 1985.

  48. R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, A modification of Karmarkar's linear programming algorithm,Algorithmica,1 (1986), 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  49. Y. Ye,K-Projection and the cutting-objective methods for linear programming, presented at the 12th Symposium on Mathematical Programming, Cambridge, MA, 1985.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megiddo, N. Introduction: New approaches to linear programming. Algorithmica 1, 387–394 (1986). https://doi.org/10.1007/BF01840453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840453

Key words

Navigation