
The Journal of Real-Time Systems, 2, 99-125 (1990)
�9 1990 Kluwer Academic Publishers. Manufactured in The Netherlands.

Architectural Foundations for Real-Time Performance
in Intelligent Agents

BARBARA HAYES-ROTH
Knowledge Systems Laboratory, Computer Science Department, Stanford University, Palo Alto, CA 94304

Abstract. Intelligent agents perform multiple concurrent tasks requiring both knowledge-based reasoning and
interaction with dynamic entities in the environment, under real-time constraints. Because an agent's opportunities
to perceive, reason about, and act upon the environment typically exceed its computational resources, it must
determine which operations to perform and when to perform them so as to achieve its most important objectives
in a timely manner. Accordingly, we view the problem of real-time performance as a problem in intelligent real-
time control. We propose and define several important control requirements and present an agent architecture
that is designed to address those requirements. The proposed architecture is a blackboard architecture, whose
key features include: distribution of perception, action, and cognition among parallel processes, limited-capacity
I/O buffers with best-first retrieval and worst-first overflow, dynamic control planning, dynamic focus of attention,
and a satisficing execution cycle. Together, these features allow an intelligent agent to trade quality for speed
of response under dynamic goals, resource limitations, and performance constraints. We illustrate application
of the proposed architecture in the Guardian system for surgical intensive care monitoring and contrast it with
alternative agent architectures.

1. Real-Time Performance in Intelligent Agents

Imagine an errand robot driving an automobile on its way to some destination. Noticing
a yellow traffic light at the next intersection in its path, the robot infers from its current
speed, distance to the light, and conservative traffic-light policy that it should stop. The
robot immediately releases the accelerator and, after a few seconds, applies the brake to
bring its vehicle to a gradual stop just before entering the intersection. The robot's behavior
is staisfactory not simply because it produces the correct result, but because it does so
at the right time. If the robot stopped very much before or after reaching the intersection,
its behavior would be unsatisfactory and potentially catastrophic.

The errand robot illustrates a class of computer systems, which we call intelligent agents,
whose tasks require both knowledge-based reasoning and interaction with dynamic entities
in the environment, such as human beings, physical processes, other computer systems,
or complex configurations of such entities. Tasks requiring an intelligent agent occur in

This research was supported by DARPA contract N00039-83-C-0136, NIH contract 5P41-RR-O0785, EPRI con-
tract RF2614-48, and AFOSR contract F49620-g9-c-0103DEF, and by gifts from Rockwell International, Inc.
and FMC Corporation, Inc. The Guardian system is being developed in collaboration with Adam Seiver, Rich
Washington, David Ash, Rattikorn Hewett, Anne Collinot, Luc Boureau, Angel Vina, Ida Sim, and Michael
Falk. The paper's treatment of real-time requirements reflects discussions with colleagues involved in the AFOSR
Program on Intelligent Real-Time Problem Solving Systems--especially Start Rosenschein, Lee Erman, and Yoav
Shoham. The paper also benefited from constructive criticism by several anonymous reviewers. Thanks to Ed
Feigenbaum for sponsoring the work at the Knowledge Systems Laboratory.

100 B. HAYES-ROTH

diverse domains, such as power plant monitoring (Touchton, 1988), process control
(d'Ambrosio et al. 1987; Pardee, Shaft and Hayes-Roth 1989), experiment monitoring
(O'Neill and Mullarkey 1989), student tutoring (Murray 1989), aircraft pilot advising (Smith
and Broadwell 1988), and intensive care patient monitoring (Fagan 1980; Hayes-Roth et
al. 1989).

To perform such tasks, an agent must possess capabilities for: perception--acquiring and
interpreting sensed data to obtain knowledge of external entities; cognition--knowledge-
based reasoning to assess situations, solve problems, and determine actions; and action--
actuating effectors to execute intended actions and influence external entities. For example,
the errand robot perceives signals from which it infers that the traffic light is yellow. It
reasons with this perception, its traffic light policies, and other perceptions and knowledge
to determine that gradually coming to a stop at the intersection is the desired result and
that releasing the accelerator and applying the brake are the appropriate actions. It performs
those actions in the appropriate temporal organization, thereby achieving the intended result.

Because external entities have their own temporal dynamics, interacting with them imposes
aperiodic hard and soft real-time constraints on the agent's behavior. Following (Baker and
Shaw 1989) we use the term aperiodic to describe tasks having irregular arrival times. Fol-
lowing (Faulk and Parnas 1988; Stankovic and Zhao 1988) we use the terms hard and sofi
to distinguish between constraints whose violation precludes a successful result versus those
whose violation merely degrades the utility of the result. For example, a vehicle that happens
to stop in front of the errand robot is an aperiodic event with a hard deadline. The robot
must stop in time to avoid colliding with the other vehicle. When that is not possible, the
robot should consider alternative actions, such as maneuvering around the stopped vehicle.

In a complex environment, an agent's opportunities for perception, action, and cognition
typically exceed its computational resources. For example, in the scenario above, the errand
robot has opportunities to perceive the physical features and occupants of other automobiles
on the road and the buildings and landscape along the sides of the road. It might reason
about any of these perceptions or other facts in its knowledge-base. It might perform a
variety of actions more or less related to driving its automobile. Fortunately, the robot largely
ignores most of these opportunities to focus on matters related to the traffic light. Otherwise,
it might fail to perform the necessary perception, reasoning, and actions in time to stop
its automobile at the right time. On the other hand, the errand robot cannot totally ignore
incidental information without risking the consequences of rare catastrophic events. For
example, the robot should notice a child running into its path. In some cases, the robot
might benefit from noticing information that is not immediately useful. For example, it
might notice a sign posting business hours on a shop window and use that information
when planning a subsequent day's errands.

Because an intelligent agent is almost always in a state of perceptual, cognitive, and action
overload, it generally cannot perform all potential operations in a timely fashion. While
faster hardware or software optimization may solve this problem for selected application
systems, they will not solve the general problem of limited resources or obviate its con-
comitant resource-allocation task (Stankovic 1988). For an agent of any speed, we can define
tasks whose computational requirements exceed its resources. Moreover, we seek more
from an intelligent agent than satisfactory performance of a predetermined task for which
it has been optimized. Rather, we seek satisfactory performance of a range of tasks varying

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 101

in required functionality and available knowledge as well as real-time constraints. And we
seek adaptation to unanticipated conditions and requirements. For example, the errand robot
should be able to respond appropriately to traffic signals and other usual and unusual events
in a broad range of driving situations. It should drive competently on freeways as well
as on surface streets. If it unexpectedly finds itself on surface streets where others are driving
at freeway speeds (or, more likely, vice versa), it should adapt its own behavior accordingly.
The agent might have other sorts of skills, such as planning its own errands under high-
level goals and constraints or learning new routes from experience taking necessary detours.
Other things being equal, the broader the range of tasks an agent can handle and the wider
the range of circumstances to which it can adapt, the more intelligent it is.

For these reasons, we view real-time performance as a problem in intelligent control.
An agent must use knowledge of its goals, constraints, resources, and environment to deter-
mine which of its many potential operations to perform at each opportunity. For example,
the errand robot might decide to give high-priority to perceiving and reasoning about traffic
lights so that it can always stop in time for yellow or red lights. When the operations required
to achieve an agent's current goals under its specified constraints exceed its computational
resources, it may have to modify them as well. For example, if the errand robot finds itself
unexpectedly late to an important destination, it might decide to relax its conservative traffic-
light policy and drive through selected yellow lights. Because it is situated in a dynamic
environment and faces a continuing stream of events, an agent must make a continuing
series of control decisions so as to meet demands and exploit opportunities for action as
they occur. For example, if the errand robot is making a planned gradual stop at a traffic
light and a child runs into its path, the robot should perceive the child and stop immediately.
In general, an agent should use intelligent control to produce the best results it can under
real-time constraints and other resource (for example, information, knowledge) constraints.

Our conception of real-time performance in intelligent agents is qualitatively different
from conceptions embodied in other sorts of computer systems (Baker and Shaw 1989;
Brinkley, Sha and Lehoczky 1989; Faulk and Parnas 1988). In particular, we do not view
real-time performance as a provable, guaranteed, universal property of the agent. Nor do
we seek real-time performance through effective engineering of the agent for narrowly
specified task environments. We feel that these constructs are surely premature and probably
unrealistic for the versatile and highly adaptive agents we envision. Rather, we view real-
time performance as one of an agent's several objectives, which it will achieve to a greater
or lesser degree as the result of interactions between the environment it encounters, the
resources available to it, and the decisions it makes. In many cases, the agent will produce
timely results for a task only at the expense of quality of result or by compromising the
quality or timeliness of its performance of other tasks. Ironically, as the agent's competence
expands, so will its need to make such compromises.

From this perspective, real-time performance in intelligent agents depends on an underly-
ing architecture that enables agents to make and apply effective control decisions. Sections
2, 3, and 4 def'me requirements for real-time control and the architecture we have designed
to address the requirements. Section 5 illustrates application of the architecture in the
Guardian system for intensive care monitoring. Section 6 discusses alternative approaches
to real-time performance in intelligent agents. Section 7 discusses the architectnre's emphasis
on satisficing methods--dynamically balancing quality and speed of performance.

102 B. HAYES-ROTH

2. Requirements for real-time control in intelligent agents

In section 2.1, we introduce a neutral framework in which to discuss agents and their envi-
ronments. In sections 2.2 and 2.3, we operationalize environmental characteristics and agent
requirements in the terms of the framework and show how the former motivate the latter
(see also Dodhiawala et al. 1989; Hayes-Roth 1989; Hayes-Roth 1987; Laffey et al. 1988;
Rosenschein, Hayes-Roth and Erman 1989; Shoham and Hayes-Roth 1989; Stankovic 1988).

2.1. A framework

Following (Rosenschein, Hayes-Roth and Erman 1989), we model an intelligent agent as
a dynamic embedded system. The overall system is modeled as a time series of states in
which instants of time are mapped to a state space of values representing the variables of
interest. A change in the value of a state variable is an event, e. The system's behavior
is described with measurements defined as functions on state values. Because the system
is dynamic, we describe properties of both individual states and time series of states.
Descriptive measurements represent objective properties, for example, the importance of
an event el or the latency of event e2 following the occurrence of el. Utility measurements
represent valuational properties, for example, the satisfaction of particular constraints on
the latency of e2.

We partition the overall system into components representing the intelligent agent, I, and
the environment, E. Each component has its own dynamic state, which varies as a function
of information passed among its internal components, as well as information received from
the other component. We further partition the agent, L into components for perception,
P, cognition, C, and action, A, which similarly manifest events generated internally or by
other components. To describe interactions between components, we refer to pairs of trigger
and response events, where both events occur in one component but presumably are mediated
by interaction with another component. For example, a trigger-response pair in E may be
mediated by events in L In some cases, we refer simply to a mediated event, for example
an/-mediated event in E.

2.2. The environment of an intelligent agent

In the terms of our framework, intrinsic characteristics of an agent's environment may be
defined as measurements on events in E, while characteristics of the relationship between
an agent and its environment may be defined as measurements on events in E and L Where
definitions of environmental characteristics require domain-specific assumptions, we simply
indicate the forms such definitions would take.

Data Glut. It is not feasible for the agent to process all potentially interesting events in
the environment. That is, the average rate of events in E very much exceeds the maximum
rate of E-mediated events in L

Data Distribution. Important environmental conditions may correspond to configurations
of events on different state variables and over variable time intervals. This can be described
as particular kinds of many-to-one mappings of events in E to events in I.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 103

Diversity of Events. Environmental conditions vary in importance. This can be expressed
as the variability of values on an importance attribute of events in E.

Real-Time Constraints. The values of events vary, in part, as a function of when they
occur. This can be expressed in terms of utility measurements that incorporate the absolute
or relative times of occurrence of events in E.

Multiplicity of Conditions. It is not feasible to enumerate all interesting conditions the
agent will encounter, that is, the set of E-mediated events in I that produce criterial values
on some measurement.

Predictability. The environment is orderly enough to permit probabilistic prediction of
some future events. This can be expressed as descriptive measurements on particular patterns
of events in E.

Potential Interactions. Globally coordinated courses of action are sometimes superior
to sequences of locally determined actions. This can be expressed as utility measurements
on particular patterns of/-mediated events in E.

Underlying Model. Some knowledge of the environment is available. This can be expressed
as descriptive measurements on the correspondence between patterns of state values or
events in E and L

Diverse Demands. Multiple interacting demands for interaction with the environment
include: interpretation, diagnosis, prediction, reaction, planning, and explanation. These
can be expressed as utility measurements on particular types of/-mediated events in E.

Variable Stress. The environment varies in its stressfulness over time. This can be opera-
tionalized as descriptive measures involving particular environmental variables, for example,
the rate of important events or the number and types of different demands for interaction.

2.3. Agent requirements

We define the primary objective of an intelligent agent very generally:

To maintain the value of its own behavior within an acceptable range over time.

For a given agent in a given environment, we could formalize this requirement in terms
of some utility measurement on/-mediated events in E and also on events in I if we wish
to constrain the agent's management of its own resources. Although we could use this utility
measurement to evaluate the agent's behavior in the given context, it would provide little
guidance toward the design of effective agents.

We need a more specific set of requirements to constrain the space of possible agent
architectures. Below, we define several requirements that we hypothesize will allow an agent
to meet its primary objective in the kinds of environments characterized above. (This is
a sufficiency hypothesis, not a necessity hypothesis. There may well be other requirements
whose satisfaction would enable an agent to meet its primary objective.) In the terms of
our framework, these requirements refer primarily to events in E and to interactions between
land E. In some cases, we extrapolate requirements to interactions among/ 's components,
P, C, and A, in an effort to support satisfaction of the higher-level requirement. Again,
where requirements involve domain-specific assumptions, we simply indicate the forms
their definitions would take.

104 B. HAYES-ROTH

Communications. Given the need for I to interact with E, there must be appropriate com-
munications involving/'s components, with information passing at least: from E to P, from
P to C, from C to A, and from A to E.

Asynchrony. Given data glut and real-time constraints, the agent must function asynchro-
nously with respect to the environment. That is, the rates of events in I and E must be
independent and the rates of events in P, C, and A must be independent.

Selectivity. Given data glut and the diversity of events in the environment, the agent must
determine whether and how to perceive, reason about, and act upon different environmental
events. Other things being equal, the conditional probability of an/-mediated response event
in E, given its trigger event, should be an increasing function of the trigger event's impor-
tance. The same holds for events in P, C, and A.

Recency. An agent's sensory information is perishable, the utility of its reasoning degrades
with time, and the efficacy of its actions depends upon synchronization with fleeting external
events. Therefore, recency is one important selectivity criterion. This can be expressed
as a sharply decreasing conditional probability of an/-mediated response event in E, given
its trigger event, over time. The same holds for events in P, C, and A.

Coherence. The agent should produce a globally coordinated course of action when that is
preferable to a sequence of locally determined actions. That is, we impose utility
measurements on certain patterns of/-mediated response events in E, as well as on mediated
response events in P, C, and A. Other things being equal, we require a low conditional
probability of mediated response events, given associated trigger events, when those response
events would not fit an ongoing pattern.

Flexibility. Conversely, the agent must react to important unexpected events in a dynamic
environment. Other things being equal, we require a high-conditional probability for an
/-mediated response event in E, even if it does not fit an ongoing pattern, given a very
important trigger event. The same holds for anomalous response events in P, C, and A.

Responsiveness. Other things being equal, the more urgent a situation is, the more quickly
the agent should perceive relevant information, perform necessary reasoning, and execute
appropriate actions. That is, the latency of an/-mediated response event in E, following
its trigger event, should decrease as the urgency of the trigger event increases. Similar
constraints apply to response events in P, C, and A.

Timeliness. Given its dynamic environment, the agent must meet various hard and soft
real-time constraints on the utility of its behavior. These may be expressed as utility measure-
ments involving latencies within/-mediated pairs of trigger and response events in E. Similar
measurements could be applied to events in P, C, and A.

Robustness. An agent must adapt to resource-stressing situations by gracefully degrading
the utility of its behavior. As environmental stress increases (for example, as event rates
increase or required latencies (deadlines) for trigger-response pairs decrease), the global
utility of the agent's behavior (for example, the rate of/-mediated response events in E,
weighted by importance) should decrease gradually, rather than precipitously. The same
holds for interactions among P, C, and A.

Scalability. In the terms of our framework, the agent's satisfaction of the requirements
above (but perhaps not its absolute level of performance on any one task) should be invariant
over increases in problem size.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 105

Development. An agent must exploit new knowledge to improve the utility of its behavior,
As the amount of relevant knowledge in I increases, we should observe improvement in
the agent's satisfaction of some of the above requirements and, therefore, in the global utility
of its behavior.

3. Proposed agent architecture

The proposed agent architecture is designed to address the above requirements. Except
where noted, the architecture is implemented as described.

3.1. Top-level organization

Following the terminology of Section 2, we propose an architecture for the agent,/, com-
prising subsystems for perception, cognition, and action--P, C, and A. The architecture
(see Figure 1) partitions each subsystem into smaller components and permits multiple
subsystems for different application-specific perception/action modalities. A communications
interface (CI) routes data among the I/O buffers of different subsystems. Subsystems function
and interact as follows. Signals from the environment enter sensory buffers in perception
subsystems, which selectively interpret and filter the signals under attentional parameters
determined by the cognitive subsystem and place the resulting perceptions in their output
buffers. The CI relays these perceptions to input buffers in action subsystems, where they
directly drive action execution, or to input buffers in the cognitive subsystem, where they
compete with other perceptions and internally generated events for cognitive processing.
The cognitive subsystem retrieves perceptions from its input buffers for incorporation in
its knowledge-base, performs all knowledge-based reasoning, and places decisions regarding
attentional parameters or intended actions in its output buffers. The CI relays these decisions
to the input buffers of appropriate perception/action subsystems. Each action subsystem
retrieves action descriptions from its input buffers and controls their execution on particular
effectors under performance parameters determined by the cognitive subsystem. Executed
actions affect entities in the environment.

Subsystems operate in parallel. They do not communicate directly or otherwise interfere
with one another. They influence one another only indirectly, by placing information in
their own output buffers, from which it is transferred to the input buffers of appropriate
other subsystems by the CL Thus, the architecture limits potential interference to simul-
taneous efforts to access a subsystem's I/O buffers by the CI and the subsystem itself. Our
experiments (Hewett and Hayes-Roth 1989) suggest that, in practice, the architecture provides
constant communication latencies among perception, cognition, and action subsystems (the
absolute latency being determined by processor speed, network speed, and program optimi-
zation) over a wide range of activity levels within each subsystem. Conversely, it provides
constant operation latencies within subsystems over a range of levels of communication
activities.

The architecture is designed to support graduated reactions. Very fast peripheral reactions
occur within a perception or action subsystem, producing input-driven attentional shifts
or feedback control of action execution. Fast reflex reactions occur across perception-action

106 B. HAYES-ROI3~

Environment

Figure I. Overview of the proposed agent architectme. Curved boxes represent data structures. Rectangular boxes
represent parallel processes. Arrows show information flow among data structures and processes. The diagram
is hierarchical. Thus, cognition is a process comprising several component pnx~sses, data structures, and information
flows among them. Arrows that involve compound data structures (for example, the circle representing the cognitive
system's global memory) signify information flow involving all component data structures (for example, knowledge,
reasomng results, control plan.

arcs, with information from perception subsystems directly driving the behavior of action
subsystems. Slower cognitive reactions involve all three kinds of subsystems, with cognition
mediating the performance of actions in response to perceived information. Absolute
response latencies at each level depend on the architecure's implementation and its instan-
tiation in a particular agent. In our current work, cognitive reactions fall along a latency
spectrum, ranging from immediate reactions, with latencies under one minute, to delayed
reactions, with latencies on the order of several minutes or longer. As discussed below,
the agent can control the latencies of its cognitive operations in several ways. Although
we have not implemented peripheral or reflex reactions, oui current implementation could
provide latencies on the order of a few seconds.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 107

As mentioned above, P, C, and A subsystems communicate via I /0 buffers, with the CI,
running on a separate process, routing information among them. All I/O buffers have limited
capacity, with best-first retrieval and worst-first overflo~. Capacity is an architectural param-
eter that can be defined differently for different agents or for different buffers within an
agent. In our current implementation, it is defined in terms of number of items. Best-first
and worst-first criteria are defined in terms of four orthogonal attributes of each buffer
item: the item's relevance to the agent's current reasoning activities; the item's importance
with respect to the agent's objectives; the recency of the item's appearance in the buffer;
and the urgency of processing the item in order to have the intended effect. Other things
equal, buffer items that score higher against these criteria are retrieved earlier, while those
that score lower overflow earlier. These attributes are determined and dynamically modified
by the agent's reasoning, as discussed below.

3.2. Perception subsystems

Perception subsystems (Boureau and Hayes-Roth 1989; Washington and Hayes-Roth 1989),
comprising sensors and preprocessors, acquire information about the dynamic environment
as a basis for cognition and action. Each sensor acquires signals of a characteristic type,
transduces them into an appropriate internal representation, and holds the results in a limited-
capacity buffer for retrieval by its associated preprocessor. Each preprocessor abstracts,
annotates, and filters sensed information and places the results in its output buffer for relay
by the CI to the input buffer of the cognitive subsystem or an action subsystem. Abstraction
involves interpreting and often compressing sensed data according to current abstraction
forms. These forms might specify transformations on individual data values (for example,
assignment to a value category), on sequences of values (for example, running averages,
trends, modal values), or on patterns of values across multiple variables (for example, co-
occurence or temporal succession of related values on different variables). Filtering involves
restricting the communication of abstraction results to values that meet current filtering
criteria. These criteria may be specified, for example, as criterial values on particular vari-
ables, criterial value changes on particular variables, or deadlines. In our current work,
we use a combination of criterial value changes (send a new value when it differs from
the last value sent by at leastp%) and deadlines (send a new value when at least m seconds
have passed since the last value was sent). This allows the agent to bound the variability
on data sensed between sent values in the context of some minimum rate. Annotation involves
marking and prioritizing abstraction results according to current standards of relevance,
importance, and urgency (defined above).

All preprocessing parameters--abstraction forms, filtering criteria, and annotation
standards--are dynamic. They can change in two ways. The preprocessor can have peripheral
reactions, redirecting its own focus of attention in response to sensed data values. For exam-
ple, a preprocessor might react to a sudden increase in the variability of any sensed data
variable by changing its abstraction forms to a finer granularity and weakening its filtering
criteria for that variable. The preprocessor also can change its parameters in response to
focus of attention instructions from the cognitive subsystem. For example, the cognitive
subsystem might instruct the preprocessor to use parameters appropriate for the current
reasoning task. Focus of attention is discussed in more detail below.

108 B. HAYES-ROTH

3.3. Action subsystems

Action subsystems, comprising drivers and effectors, retrieve action descriptions from their
input buffers, control action execution on effectors, and return feedback to the cognitive
subsystem. Each driver monitors its input buffer, retrieves intended actions, translates them
into executable programs of effector commands, and monitors the execution of those pro-
grams by sending successive commands to the appropriate effector at the appropriate times.
Each driver also should take into account importance, urgency, and other constraints on
performance, but we have not yet implemented these capabilities. For example, a driver
might give priority to important and urgent actions over competitors, translate intended
actions into different executable forms given their urgency and resource constraints, and
if necessary accelerate execution of urgent actions. The driver also should send feedback
to the cognitive system regarding the success or failure of action execution. Each effector
immediately executes commands in its input buffer.

3. 4. Cognition subsystem

The cognition subsystem holds all of an agent's knowledge and performs all of its reasoning.
It asynchronously incorporates perceived information, retrieved from its input buffers, into
its knowledge-base. It performs a variety of knowledge-based reasoning tasks, which vary
across different task environments, but typically would include: interpretation of perceived
information; detection and diagnosis of exceptional events; reaction to important events;
prediction of future events; modeling dynamic external systems; planning longer-term courses
of action; explaining its observations, inferences, and plans; explaining its reasoning; learning
to improve its behavior based on experience and to adapt its behavior to changing environ-
mental conditions. In addition, it reasons about global control of multiple tasks both to
coordinate their interactions and to insure timely achievement of the most important objec-
tives given the available resources. The cognitive subsystem initiates actions by placing
descriptions of them in its output buffers.

As shown in Figure 1, the cognition subsystem extends the dynamic control architecture
(Hayes-Roth 1985), previously implemented as the BB1 system. All reasoning operations
occur in the context of a global memory, which represents all information--knowledge and
reasoning results--known to the agent, in a conceptual graph formalism (Sowa 1984).

One important kind of knowledge is a repertoire of reasoning operations and associated
strategies, which can be instantiated to perform particular tasks (for example, diagnosis,
prediction, explanation, or planning) by particular methods. For example, an agent might
have knowledge of the operations involved in associative diagnosis, along with strategies
for selecting and applying those operations. It might have similar knowledge of model-
based diagnosis. It might also have the meta-knowledge that model-based diagnosis requires
less data, but more knowledge and computation time, and produces more comprehensive
and more explanatory results than associative diagnosis.

As discussed above, the global memory contains input buffers for perceptions sent by
perceptual subsystems and output buffers for intended actions to be sent to action drivers
and control parameters to be sent to perceptual preprocessors or action drivers. I/O buffers
have limited capacity, with best-first retrieval and worst-first overflow.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 109

The global memory also contains information regarding the agent's cognitive behavior
(discussed below). A cognitive buffer holds~cognitive events produced by reasoning opera-
tions. An agenda holds executable reasoning operations suggested by perceptual or cognitive
events. A control plan represents the agent's intended course of behavior as determined
by reasoning operations. The next operation is the reasoning operation that the agent will
execute next. Like I/O buffers, the cognitive buffer and the agenda have limited capacity,
with best-first retrieval and worst-first overflow. Although our current implementation does
not limit the size of the control plan, we intend to impose some sort of limitation.

Finally, the global memory contains the results of reasoning operations: observations, infer-
ences, predictions, and plans. These results are organized in an interval-based time-line
representation, with conceptual links to one another and to other knowledge. For example,
an agent might record that a diagnosis believed during interval i2 explains an observation
that persisted during interval//and that the explanatory relationship between the observation
and its diagnosis instantiates a known causal relationship within systems of the type under
observation.

The cognitive subsystem performs reasoning operations that are suggested by and produce
changes to information in the global memory. Its satisficing cycle comprises three component
processes:

1. The agenda manager uses recent perceptual or cognitive events to identify and rate execut-
able reasoning operations, which it records on the agenda. Identification of an executable
reasoning operation involves determining that a perceptual or cognitive event satisfies the
trigger requirements of a particular type of operation and that other contextual information
satisfies its preconditions. On a given cycle, the agenda manager may identify several
executable reasoning operations relevant to each of several tasks. Rating an executable
operation involves evaluating its importance and urgency against the current control plan,
which may include strategic decisions related to different tasks.

2. The scheduler determines which of the identified executable operations to execute and
when to execute them, based on their ratings, and records each successive one as the
next operation.

3. The executor executes each next operation as it is recorded. It instantiates the program
defined for the chosen operation type, binding program variables to triggering events
and other contextual information. It then executes the instantiated program, producing
associated changes in the global memory. These changes might represent a new inference
or conclusion for a new or ongoing reasoning task. They might record new perceptual
filters or intended actions in output buffers. They might change the control plan itself
by initiating or terminating new tasks or by extending or modifying control decisions
for an ongoing task. As discussed below, changes to the control plan change the criteria
used to trigger, rate, and schedule operations for execution, from that time forward.

Because control in the cognitive system determines the utility--quality and timeliness--of
the agent's perception, reasoning, and action, it is fundamental to the proposed agent archi-
tecture, especially to its support for real-time performance. The following sections exam-
ine three aspects of control more closely, dyrmmic control planning, by which the agent

110 B. HAYES-ROTH

determines and guides its own reasoning behavior; focus of attention, by which the agent
parameterizes the behavior of its perception/action subsystems; and the satisficing cycle
by which the agent controls the time spent on each reasoning cycle.

3.5. Dynamic control planning

A controlplan is a temporally organized pattern of control decisions, each of which describes
a class of operations the agent intends to perform during some period of time. Control
decisions may vary widely in content and specificity, ranging from specific primitive opera-
tions intended to be executed at particular moments in time to broad classes of operations
intended to be executed during extended time intervals. Control decisions may stand alone,
specifying an independently desirable class of actions. Alternatively, sets or sequences of
control decisions may be coordinated to achieve a common objective. Multiple competing,
complementary, or independent control decisions regarding a particular time interval may
coexist in the control plan. Multiple constituent plans for performing concurrent tasks may
coexist in the control plan.

For example, Figure 2 illustrates an abstract control plan comprising three constituent
plans. Plan A is a single, independent, long-term control decision governing behavior prior
to, during, and beyond the time period shown. Plan B is another single, independent, long-
term control decision governing behavior during a period that begins during the time period
shown and continues into the future. Plan C is a local plan, governing behavior during

Contro l Plan
A

C

m m i m

Agenda

BAc
ADE Etc.
AAC

Schedu le
AAccAcCAcACCAbccCcBCACCBcCBBABA#

v

T i m e Now

Figure 2. An abstract view of dynamic control planning. The top panel shows a comrol plan with constituem
plans for tasks A, B, and C, governing the agent's behavior during overlapping time intervals. The middle panel
shows the dynamic agenda of executable control (lower ease) and task (upper case) operations relevant to tasks
A, B, C, D, and E. The bottom panel shows the schedule of comrol and task operations chosen for execution
in accordance with active comrol plans and agendas during corresponding time intervals.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 111

a sub-interval of the time period shown. In addition, Plan C is elaborated in terms of more
detailed subordinate decisions at two lower levels of abstraction, which govern behavior
during a hierarchically organized sequence of component time intervals.

Control plans can represent not only what task to perform, but also how to perform it
given particular policies or resource constraints. In particular, control plans can indicate
preferences for reasoning operations that meet time constraints. For example, in Figure 2,
Plan C may have been constructed as shown because it will produce a satisfactory outcome
within the designated period of time. Alternative control plans may have produced better
outcomes, but taken longer to do so.

The cognitive system constructs control plans incrementally by means of control operations
that generate or modify constituent control decisions. As illustrated in Figure 2, the cognitive
system trots control operations (lower case) like other reasoning operations. Control opera-
tions are suggested by perceptual or cognitive events, rated and placed on the agenda, and
scheduled for execution. Thus, they compete for execution with one another and with all
other executable operations.

Different control operations embody different reasoning methods (Johnson and Hayes-Roth
1987). Some operations generate control decisions bottom up, for example when a perceptual
event triggers a decision to respond to the perceived situation. In Figure 2, Plans A and
B and the top-most decision of Plan C presumably were generated bottom-up in response
to perceived demands or opportunities. Other operations generate decisions top-down, for
example, when an abstract control decision triggers a sequence of more specific control
decisions. In Figure 2, the subordinate decisions in Plan C presumably were generated
top-down to elaborate the more general decisions. Other operations generate decisions in
a goal-directed fashion, for example when a lack of operations satisfying a prior control
decision triggers a decision to perform operations that would trigger such operations. In
Figure 2, if no operations on the agenda satisfy Plan A, goal-directed reasoning would
generate a decision to perform operations whose results would trigger operations compatible
with Plan A.

Control decisions may be generated at any time prior to the time at which they are intended
to influence the agent's behavior. Some control decisions are generated and take effect imme-
diately, while others are generated in advance and do not take effect until much later. For
example, in Figure 2, Plan C might have been generated in response to a perceived event
immediately prior to its initiation point. Alternatively, the agent might have decided much
earlier that at that point in time it would follow Plan C. Similarly, the agent has decided
that both Plans A and B will persist into the future, governing behavior well beyond the
Now point.

Regardless of the content or specificity of control decisions, the reasoning methods used
to generate them, and the times at which they are generated, all control decisions appear
in a single control plan. The agenda manager rates executable operations against all active
control decisions whose time intervals include the current time. For example, early in the
time interval shown in Figure 2, the agent uses Plan A to rate and schedule reasoning opera-
tions. Later, it uses Plans A and C--actually, the current lowest-level decisions of Plan C.
Still later, it uses all three Plans, A, B, and C. Following the completion of Plan C, the agent
uses Plans A and B to rate and schedule operations for the remainder of the time interval
shown and into the future. As mentioned above, we intend to limit the size or complexity

112 B. HAYES-ROTH

of an agent's active control plan during a given time period, but we have not yet implemented
such limitations.

In general, the agent can perform operations that change its control plan on any cycle,
thereby changing the rating criteria subsequently used by its agenda manager and, as a
consequence, the operations subsequently chosen by its scheduler for execution. Dynamic
control planning allows the agent to construct strategic plans that are appropriate to an
evolving task environment and to follow strategic plans to which it has committed, but
also to change those plans as appropriate.

3.6 Focus of attention

The cognitive subsystem determines the agent's global focus of attention by sending per-
ception/action subsystems control parameters determined by its dynamic control plan and
other state information. As discussed above, perceptual control parameters are of three
types. Abstraction forms specify desired transformations on data values. Filtering criteria
specify conditions under which abstracted data should be sent to the cognitive system.
Annotation standards specify criteria for determining the relevance, importance, and urgency
of perceived data.

The architecture provides three kinds of perceptual focus operations, all of which, when
executed, place control parameters in output buffers for relay to perceptual preprocessors
(Boureau and Hayes-Roth 1989; Washington and Hayes-Roth 1989). Information-focusing
operations, which are triggered by changes in the agent's control plan, send focus instructions
to discriminate among different kinds of input data. For example, if a control decision initiates
a new reasoning task, an information-focusing operation will send a perceptual control
parameter to increase the relevance, importance, or urgency of the associated data types.
Thus, the agent will focus its interpretation of sensed information on those data that are
useful to its reasoning. Resource-focusing operations, which also are triggered by changes
in the control plan, modulate the overall input data rate in anticipation of changing resource
demands. For example, if a new task is computationally intensive, a resource-focusing
operation will send a parameter that tightens the faltering criteria on all data types in propor-
tion to their relevance and importance. Thus, the agent will focus its perceptual resources on
types of data anticipated to be most useful. Load-balancing operations, which are triggered
by overflow or underflow conditions in the cognitive input buffers, also modulate the overall
input data rate, but they do so in response to unanticipated changes in resource demands.
For example, if input data arrive faster than the cognitive system can process them, producing
repeated input buffer overflows, a load-balancing operation will send a perceptual parameter
that tightens filtering criteria. Conversely, if the cognitive system has the capacity to process
more frequent input data, a load-balancing operation will send a parameter to loosen the
filtering criteria. Thus, the agent will coordinate its input data rates with its dynamic cognitive
capacity to incorporate new input data.

With these operations, the agent focuses its perception of a complex, dynamic environ-
ment top-down, in accordance with its current control plans and available resources. Thus,
it protects its cognitive system from being swamped by non-critical inputs. However, the
agent remains sensitive to exceptional events outside of its current focus of attention. One

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 113

way is by instructing perceptual subsystems to relay all data values that fall in critical ranges.
In our current work, we hard-wire very general forms of these criteria so that the agent
is guaranteed to notice extreme events. In addition, preprocessors can potentially redirect
their own attention in response to particular patterns of sensed data. Although
we have not yet implemented such peripheral responses, we anticipate that they will play
an important role in maintaining an agent's sensitivity to important unanticipated events
in a dynamic environment.

As mentioned above, we are studying corresponding sorts of focus operations to set action
control parameters related to performance criteria, resource consumption, and side effects.

3. 7. The satisficing cycle

Let us examine the cognitive system's satisficing cycle (Hayes-Roth 1989a). Because this
cycle is the unit-process underlying all reasoning, bounding and, in fact, controlling its
computation time is a prerequisite to controlling computation times for reasoning tasks
under real-time constraints. Recall that the cycle comprises three processes: the agenda
manager, the scheduler, and the executor. The scheduler's computation time is easily bounded
and insignificant. The executor's computation time depends upon the operation it is execut-
ing. We currently rely upon programming guidelines to bound operation execution time
within acceptable ranges (but see Section 6.) Therefore, our efforts to bound and control
cycle time have focused on the agenda manager.

As discussed above, the agenda manager identifies and rates executable operations based
on cognitive and perceptual events. The time consumed by agenda management is an increas-
ing function of the number of known operations, the number of perceptual and cognitive
events, and the number of rating criteria in the control plan. Given the continuous flow
of events in the environment and the many tasks and operations an intelligent agent can
perform, identification of all executable operations can take a very long time. Given real-
time constraints on the agent's behavior, the agenda manager ordinarily cannot identify
all currently executable reasoning operations before the agent must execute one of them.
Conversely, there is no need to identify the many possible operations that the agent will
never execute.

Therefore, the agenda manager is designed to operate in an incremental, non-exhaustive
fashion, identifying and rating a subset of the executable operations one at a time and termi-
nating according to current cycle parameters. These parameters are of three types. Criterial
operations describe executable operations that, when identified by the agenda manager,
would be good enough to execute. Criterial events and deadlines describe perceptual or
cognitive events or specific times whose occurrence requires immediate execution of the
"best available" operation. (Criterial events may be viewed as uncertain deadlines.)

Cycle parameters are determined and modified dynamically by the agent's own reasoning
in the context of its dynamic control plan. For example, if the current control plan simply
specifies operations of a particular type, any executable operation of that type would be
good enough. Other things being equal, a task deadline in the control plan would be translated
heuristically into component deadlines for individual reasoning operations.

The occurrence of any condition specified in the current cycle parameters causes the
agenda manager to terminate. The scheduler then chooses the highest priority operation

114 B. HAYES-ROTH

on the current, usually incomplete agenda and the executor executes it. In the case of a
criterial operation, the highest priority operation will be, by definition, one that is good
enough. In the case of a criterial event or deadline, the highest priority operation will be
the best available one at that time. We have experimented with cycle parameters that specify
criterial operations and deadlines, but not yet with criterial events.

Because the agenda manager is non-exhaustive, the order in which it identifies executable
operations is critical. To maximize the speed with which it identifies good enough operations
and to maximize the priorities of the best available operations at those times when it is
interrupted by criterial events or deadlines, the agenda manager applies a heuristic best-
first algorithm. Using whatever criteria appear in the current control plan, it attempts to
instantiate the highest priority operation type for the highest priority event on each iteration.
Viewing agenda management as a generate-and-test problem, this algorithm effectively moves
some of the test criteria into the generator.

For a given control plan and set of events, the heuristic best-first algorithm identifies
executable operations in roughly descending order of priority. How closely it approximates
the actual descending order depends on the details of the control plan and the order in
which rating criteria are applied. However, because perception and cognition are asynchro-
nous, the agenda manager works with a dynamic set of perceptual events and control deci-
sions, incorporating new ones into its computations as they occur. Thus, it often happens
that newly identified executable operations have significantly higher priorities than those
already on the agenda.

The agenda manager places each newly identified executable operation on the agenda,
ordered by priority. As mentioned above, the agenda has limited capacity, with best-first
(highest priority) retrieval by the scheduler and worst-first overflow. Thus, at any point
in time, the agenda constitutes a short, ordered list of high-priority reasoning operations
suggested by recent high-priority events and control decisions.

The satisficing cycle can produce a spectrum of agent behavior, depending on the agent's
dynamic control plan and cycle parameters. Control plans are discriminating to the degree
that they restrict the assignment of high-priorities to a smaller set of events and operations.
Other things being equal, more discriminating control plans facilitate rapid identification
of high-priority executable operations. Cycle parameters are stressful to the degree that
they reduce the time available for agenda management (lower thresholds for criterial events
and operations, short deadlines). Other things being equal, more stressful cycle parameters
lead to rapid execution of a large number of operations.

These two factors interact to determine the agent's style of behavior. For example, given
a very discriminating control plan and non-stressful cycle parameters, an agent would appear
to behave methodically, executing a small number of very high-priority operations per unit
time. With more stressful cycle parameters, the agent would appear to behave purposefully,
performing more operations per unit time and perhaps compromising quality by performing
some lower-priority operations. With very stressful cycle parameters, the agent could still
behave purposefully if, for example, its control plan restricted its triggering of executable
operations to a very small set of very important operations, categorically excluding less
important operations. At the other extreme, given an undiscriminating control plan and
very stressful cycle parameters, an agent would appear to thrash, executing a large number
of arbitrary operations per unit time. In fact, given an undiscriminating control plan, the

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 115

agent's behavior would appear arbitrary regardless of cycle parameters, varying primarily
in rate of executed operations.

Ideally, it seems that intelligent agents should perform near the methodical end of the
spectrum when time and other resources permit and move cautiously along the spectrum
when required to do so by time and other resource constraints. In practice, we anticipate
that many agents will not often have the luxury of behaving methodically. However, we
are more optimistic about agents' ability to behave purposefully by constructing effective
control plans. We are exploring these issues.

4. Satisfaction of real-time control requirements

Let us briefly summarize how the proposed agent architecture is hypothesized to address
the requirements introduced in Section 2.

Communications. Information passes from the environment to perception subsystems,
from perception subsystems to cognition and action subsystems, and from the cognition
subsystem to perception and action subsystems.

Asynchrony. Parallel subsystems, with buffered communications, provide asynchronous
perception, cognition, and action.

Selectivity. Limited-capacity event buffers selectively favor high-priority inputs--those
that are recent, relevant, important, and urgent. Perception/action subsystems selectively
process high-priority sensed data and intended actions. The agenda manager selectively
triggers and schedules high-priority operations. Dynamic control plans selectively favor
high-priority reasoning tasks and establish associated focus of attention parameters.

Recency. Limited-capacity buffers with best-first retrieval and worst-first overflow favor
recent items, as does the heuristic best-first agenda manager.

Coherence. Dynamic control plans provide a global focus of attention to coordinate percep-
tion, cognition, and action over time. They also strategically organize reasoning operations
within a task and among concurrent reasoning tasks.

Flexibility. Exceptional events can override global focus of attention in perceptual
preprocessors or the cognitive system.

Responsivity. Graduated reactive responses, peripheral, reflex, and cognitive responses,
span a range of latencies. Within cognitive responses, additional gradations are supported.
The agenda manager can control cycle time. Dynamic control planning can establish dead-
lines and discriminate among alternative reasoning methods and strategies.

lirneliness. Satisfying each of the requirements discussed above contributes to an agent's
timely response to the most important events. In addition, dynamic control planning allows
an agent to reason explicitly about the time requirements of alternative operations and the
time constraints on its behavior.

Robustness. Satisfying many of the requirements discussed above entails trading amount
of computation, and therefore, expected quality of response, against latency of response,
in a gradual manner.

Scalability. Several aspects of the architecture are designed to accommodate changes in
scale. For example, perceptual preprocessing and focus of attention will protect the agent
against increasing perceptual overload. Given a discriminating control plan, the satisficing
cycle will produce stable cycle times regardless of increases in problem size.

116 B. HAYES-ROTH

Development. Increases or improvements in knowledge should improve the agent's ability
to meet several of these requirements. For example, improvements in its control knowledge
should enable it to focus perceptual attention more effectively, improve the strategic control
of its reasoning, and execute higher-priority operations more rapidly.

5. The Guardian application

Because our long-term research goal is to develop a general architecture for intelligent agents,
experimental development of agents that operate in diverse domains is a major part of our
research. Each new domain tests the sufficiency and generality of the current architecture
and presents new requirements for subsequent versions of the architecture. To illustrate
how agents are implemented within the proposed architecture, we briefly discuss the Guard-
ian system for intensive care monitoring (Hayes-Roth et al. 1989).

5.1. Guardian's task environment and requirements

The sickest surgical patients in the hospital are cared for in the surgical intensive care unit
(SICU). Most of these patients have temporary failure of one or more organ systems--usually
the lung or the heart--which is treated with life-support devices that assume the fundamental
functions of the ailing system until it heals. For example, the ventilator is an artificial
breathing machine that augments the patient's own breathing. Life-support devices are
adjusted based upon frequent patient observations. Some observations are made continually
and automatically, for example, measurements of air pressures and air flows in the patient-
ventilator system. Other observations are made intermittently. Blood gases, for example,
are measured once every hour or so, while chest x-rays are usually taken once or twice
a day. Based on patient observations, device settings are adjusted to vary the amount of
assistance the device provides. For example, ventilator settings determine the number of
breaths delivered to the patient per minute, the volume of air blown into the patient's lungs
on each breath, and the amount of oxygen in the air. Other therapeutic actions might include
adjusting a ventilator tube, clearing the patient's air passages, administering drugs, etc.
The short-term goal of SICU monitoring is to keep the patient as comfortable and healthy
as possible, while progressing toward therapeutic objectives. The long-term goal is to with-
draw life-support devices gradually so that the patient eventually can function autonomously.

Although we do not anticipate using Guardian in closed-loop mode in a hospital setting,
our objectives for it include all of the perception, reasoning, and action necessary for closed-
loop control. Thus, Guardian's task instantiates all of the requirements for real-time control
discussed earlier in this paper. Because Guardian has access to over one hundred automati-
cally acquired patient data variables, each of them sensed several times per second, and
because it can reason about and act upon these observations in many different ways, Guardian
must selectively perceive important patient data and perform key reasoning operations that
contribute to its performance of the most important actions. Because the patient embodies
a dynamic physical process with its own temporal dynamics, Guardian must asynchronously
perceive patient data, reason about the patient's condition, and perform therapeutic actions.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 117

To insure that its behavior is current, Guardian must forget unrealized past opportunities
for perception, reasoning, and action in favor of present opportunities. To achieve longer-
term therapeutic goals, Guardian must enact a coherent pattern of perception, reasoning,
and action over a period of time. On the other hand, uncertain changes in the patient's
physiological condition require flexibility and adaptation. Guardian must be responsive
to patient conditions of varying urgency; other things being equal, the more urgent the
patient's condition is, the more quickly Guardian must perceive the relevant information,
perform the necessary reasoning, and execute the appropriate actions. Guardian must satisfy
a variety of hard and soft real-time constrainis on the utility of its behavior. Because Guardian
inevitably will encounter situations that strain or exceed its capacity--too many important
new signs and symptoms, too many important interpretation, diagnosis, prediction, and
planning tasks, too many important therapeutic actions--its performance must degrade grace-
fully and not precipitously. Guardian must maintain the quality of its behaviors we scale
up to more realistic problems. Ideally, it should improve the utility of its behavior as it
acquires more knowledge.

5.2. Guardian's current implementation and performance

Figure 3 illustrates how Guardian instantiates the proposed agent architecture and how it
interacts with a simulation of the patient-ventilator system and hospital laboratories.

A single perceptual preprocessor currently manages Guardian's perception of twenty auto-
matically sensed patient data variables, with an average overall sensed data rate of one data
value per second. In addition, Guardian perceives irregularly reported lab results and mes-
sages from human users. Each sensed data value, if passed to the cognitive system, would
trigger a number of cognitive operations, whose execution would produce a number of
cognitive events and trigger new operations. Thus, although this is not a high-data rate
in absolute terms, it is considerably beyond Guardian's current cognitive capacity, which
is one cognitive operation every two to fifteen seconds with an exhaustive agenda manager
and controllable to within a couple of seconds with the heuristic agenda manager. Moreover,
we anticipate that, during the next twelve months, Guardian's sensory activity will increase
from twenty to one hundred automatically sensed variables, with each of them sensed at
least once per second. There will be about twenty irregularly sensed data variables. Finally,
as SICU technology advances, Guardian will have access to new data. Thus, Guardian faces
significant and growing perceptual overload.

To avoid falling behind real time, Guardian's perceptual preprocessor applies dynamic
abstraction, filtering, and annotation parameters sent by the cognitive system. It abstracts
numerical data values into value classes and trends. It assigns data values to three levels
of importance: life-threatening, abnormal, and other. It distinguishes data that are relevant
to ongoing reasoning activities from those that are not relevant. It distinguishes three levels
of urgency: events that permit an effective response within four minutes, one hour, or longer.
It filters data based on criterial value changes within deadlines. Thus, the cognitive system
can bound the variability of unsent intervening values. Using these mechanisms, the pre-
processor typically reduces sensed data rates by over 90%, maintaining an average overall
perception rate of approximately one perceptual input every twenty-two seconds, without

ll8 B. HAYES-ROTH

Communication I
Interface

Figure 3. Guardian's currem design and implementation.

reducing solution quality (Washington and Hayes-Roth 1989). Additional selectivity is pro-
vided by the cognitive system itself. Our preliminary experiments suggest that the proposed
approach to perceptual preprocessing will scale up to protect Guardian from overload under
the amieipated increase ha sensed data rates (Boureau and Hayes-Roth 1989).

Guardian has a wide range of medical knowledge including: knowledge of meaningful
classifications and trends of the twenty-five currently sensed patient data variables; knowledge
of a twenty-node hierarchy of respiratory disease conditions, patient data that probabilistically
implicate those diseases, and therapeutic actions that correctthem; knowledge of the normal
structure and function of the respiratory, circulatory, pulmonary exchange, tissue exchange,
and tissue metabolism systems; knowledge of the normal structure and function of the ven-
tilator; knowledge of the normal and abnormal structure and function of abstract flow, dif-
fusion, and metabolic systems; knowledge of prototypical therapeutic protocols for managing
a small number of evolving disease conditions; knowledge of the importance and urgency
of particular observations and diagnoses; knowledge of the precondition, results, and time
required to perform a number of therapeutic actions.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 119

Guardian also has knowledge about performing several reasoning tasks, including: inter-
pretation of time-varying data, diagnosis of observed signs and symptoms, determination
of corrective actions for diagnosed conditions, prediction of future physiological conditions,
explanation of observations, diagnoses, and predictions, and dynamic therapy planning. More-
over, for most of these tasks, it has both associative and model-based reasoning methods.
Associative methods capture clinical knowledge and permit quick responses to familiar situa-
tions. Model-based methods capture more fundamental biological and physical knowledge
and permit more thorough (and time-consuming) responses to both familiar and unfamiliar
cases. Each reasoning method is implemented as a set of abstract reasoning operations that
are triggered by particular kinds of perceptual or cognitive events, along with control opera-
tions that construct resource-bounded control plans in particular contexts. The results of
all reasoning activities are recorded in temporally organized episodes in the global memory.

Depending upon the circumstances, Guardian may be logically capable of pursuing many
different reasoning tasks with both associative and model-based methods. Given the real-time
constraints on its behavior, however, Guardian typically must be quite selective about which
tasks it pursues and how it allocates reasoning resources among them. Accordingly, it uses
strategic knowledge to construct a dynamic global control plan that differentially favors
the triggering and scheduling of executable operations involved in competing reasoning tasks.

For example, in one scenario, Guardian observes that a post-operative patient has low
body temperature. It makes a global control decision to perform a sequence of reasoning
tasks: diagnosing the low temperature; predicting a spontaneous rise in temperature to normal
over a period of hours; predicting the undesirable physiological consequences of low tem-
perature; and planning a course of action to be executed over a period of hours to avoid
those consequences. Within each of these tasks, Guardian makes local control decisions
about whether to apply associative or model-based reasoning methods and how to organize
its reasoning within the chosen method. At the same time, Guardian's global control plan
also allows it to incorporate new perceptions, but not to reason about most of those percep-
tions since they are less important than ongoing activities.

As the scenario continues, Guardian deviates from this purposeful behavior only when
a new perception, very high peak inspiratory pressure, indicates a life-threatening patient
condition with a four-minute deadline. Guardian makes a new global control decision
to direct all of its resources to correcting this critical condition as quickly as possible,
This decision impacts three aspects of Guardian's behavior. Its perceptual preprocessor
refocuses to favor patient data relevant to the high peak pressure and to minimize distrac-
tion by less important data. Its agenda manager adopts a shorter deadline to insure a quick
sequence of responses under a short deadline. And, given the content of the new control
decision, its agenda manager and scheduler favor associative reasoning operations (because
they have shorter latencies) that diagnose and act to correct the high-pressure problem.
Given these adaptations, Guardian very quickly (within a minute) performs a sequence
of operations to deal with the high-peak pressure: diagnoses the immediate problem, inade-
quate ventilation; increases the breathing rate so the patient will get enough oxygen;
diagnoses the underlying problem, a pneumothorax (hole in the lung); performs (on the
simulated patient) the appropriate action, inserting a chest tube to relieve the pressure of
accumulated air in the chest cavity; reduces the breathing rate now that the pressure is

120 B. HAYES-ROTH

relieved; confirms that the pressure is normal; and confirms that the blood gases are normal.
Once the problem is solved, Guardian makes a new global control decision to resume its
previous interrupted activities.

Several display drivers manage Guardian's communications with human users. These
communications include dynamic graphical displays of: the patient's SICU history; ongoing
reasoning and results related to diagnosis, prediction, and therapy planning; structure/func-
tion explanations of the patient's condition, diagnosis, prognosis, and therapy; and Guardian's
current global control plan. Each of these displays is interactive, permitting the user to
pose particular kinds of questions, as well as review previous observations and conclusions.

Guardian can run either closed-loop, executing recommended actions directly on the
simulation, or open-loop, simply recommending actions, which human users decide whether
or not to execute.

We have developed Guardian's architecture and component capabilities for a small number
of characteristic SICU scenarios. Although this knowledge base is far from complete, it
allows Guardian to handle a wider set of SICU scenarios than we have actually tested so
far. In addition to extending and refining Guardian's component capabilities, our current
work involves collecting a library of new SICU scenarios to identify the limits of Guard-
ian's current knowledge base and to drive extension of the knowledge base. Although our
patient simulator provides realistic SICU data, we are interested in evaluating Guardian
on real patient data. We have begun collecting patient histories for reenactment studies.
We are investigating establishing a direct link between Guardian and computers in the SICU
at the Palo Alto Veterans Administration Medical Center.

6. Other approaches to intelligent agents

61. Variations on the proposed architecture

Designing an agent architecture involves making design decisions in a large space of design
features. To put our proposed architecture in perspective, we mention a few of the features
we have considered and rejected and a few that we are planning to explore further.

We designed the satisficing cycle and heuristic agenda manager as a replacement for the
optimizing cycle and exhaustive agenda manager that we and others have used in the past
(Corkill, Lesser and Hudlicka 1982; Erman et al. 1980; Hayes-Roth 1985). This appears
essential for real-time performance and probably for efficient performance in large non-
real-time systems that have much knowledge and run for many cycles. The present satisficing
cycle preserves the sequential nature of the optimizing cycle. However, we are exploring
the possibility of allowing agenda management to run continuously, with paraUel scheduling
and execution of criterial or best available operations. So far, we have finessed the problem
of unbounded operation execution times by imposing programming constraints. However,
we are studying more flexible approaches that would allow variable computation times for
executed operations, with the possibility of interruption by identification of newer, higher-
priority next-operations. Depending upon the specification of the operation currently being
executed, the executor would either abort execution of the current operation or suspend
it and place a rated resumable form of the operation in an appropriate position on the agenda.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 121

Regarding limited-capacity buffers, we have given some thought to introducing spontaneous
temporal decay of items in buffers. In a dynamic environment, even very important events
are perishable and may not warrant processing after a period of time. Although it has been
suggested to us that an agent's buffer capacities might be variable in different contexts,
we continue to assume that they are static. However, we are investigating the concept of
limited-capacity back-up buffers which catch and preserve very important overflow items.

We considered modeling perception and action processes as operations in the cognitive
system, but that approach did not provide the desired asynchrony and interfered with
timeliness (Hewer and Hayes-Roth 1989).

Finally, we have distributed perception, cognition, and action among parallel processes
because they represent minimally interacting, coarse-grained chunks of knowledge and com-
putation. Therefore, we hypothesize that they can be distributed among parallel processes
without incurring excessive communications demands or knowledge redundancy. So far,
that hypothesis seems to be correct. Although we have considered distributing cognitive
tasks among parallel processes (Hayes-Roth et al. 1989), our experience with Guardian
suggests that cognitive tasks have many important interactions, including sequential con-
straints, and associated needs for communication. Operating on a single processor in the
context of a single global data structure supports these interactions, so we would favor
distribution of cognitive tasks only in a shared-memory architecture.

62. Alternative architectures

A considerable body of research has focused on classical planners (Fikes and Nilsson 1971;
Sacerdoti 1975). Under this model, an agent perceives information from the environment
and then constructs a goal-oriented sequence of actions, a plan, which it subsequently exe-
cutes. Classical planning architectures are not intended to provide comprehensive capabilities
for intelligent agents, so it is not surprising that they do not satisfy all of the requirements
for real-time control put forth in this paper. Global coherence is the most prominent advan-
tage of classical planners. However, the computational cost of formulating a complete plan
by reasoning backward from goals can be excessive (Chapman 1987). Classical planners
do not meet the other requirements.

Relaxing this perceive-plan-act sequence, some researchers allow the agent to interleave
planning and execution, either to build the plan incrementally or to modify the plan in
response to unanticipated conditions (Corkill, Lesser and Hudlicka 1982; Georgeff and
Lansky 1987; Hayes-Roth 1985; Hayes-Roth 1987; Lesser, Pavlin and Durfee 1988). Other
researchers introduced more knowledge-intensive and computationally tractable methods
for generating partial plans, including: instantiating goal-oriented action schemas (Friedland
1979; Hayes-Roth et al. 1986); integrating top-down and bottom-up planning methods (Hayes-
Roth et al. 1979; Johnson and Hayes-Roth, 1987), transferring successful plans to new situa-
tions (Daube and Hayes-Roth 1989; Hammond 1986); or successively applying constraints
among potential actions (Stefik 1971). Interleaving planning and execution permits an agent
to meet several real-time requirements. However, their success is limited by unbounded
computation times for component processes, especially the match processes that trigger
reasoning operations. Although researchers have made progress in developing efficient match

122 B. HAYES-ROTH

algorithms (Forgy 1982), these approaches only speed up the match process. They do not
reduce the computational complexity of the process and, more importantly, they do not
permit an agent to directly control the amount of time spent on the match process.

By contrast, in an effort to avoid the computational cost of control reasoning and thereby
create real-time responsivity, some researchers have turned their attention to the theory,
design, and implementation of reactive agents (Agre 1987; Andersson 1988; Murray 1989;
Rosenschein and Kaelbling 1986; Schoppers 1987). Basically, reactive agents store large
numbers of perception-action rules in a computationally efficient form and execute actions
invoked by environmental conditions on each iteration of a perceive-act cycle. Thus, they
are similar to control theoretic methods (Bollinger and Duffle 1988), where traversal of
symbolic networks replaces computation of numerical models. Reactive models often assume
synchronization of reactive cycles with the occurrence of events in the environment. Selec-
tivity is achieved to the degree that the system builder has encoded it in the network and
flexibility is a natural consequence of the perceive-act cycle. On the other hand, coherence
occurs only fortuitously, presumably emerging from the agent's characteristic reactions
to events in an orderly task environment. Reactive agents provide responsiveness and robust-
ness only when perception-action networks include context-specific alternative subnetworks.
In general, we view the reactive agent model as a good framework for engineering solutions
to particular, narrowly defined feedback control tasks for which control-theoretic models
are inapplicable--those for which numerical models are either non-existent or intractable.
It also might be an appropriate mechanism for low-level perception-action programs that
by-pass the cognitive subsystem within the proposed architecture. For example, the proposed
architecture might incorporate reactive peripheral programs for focusing perceptual attention
or feedback control of actions. However, we suspect that the reactive model is not an appro-
priate general model for tasks that present challenging requirements for selectivity, global
coherence, responsivity, or robustness. And it is not appropriate for complex tasks or for
the multiple task behavior expected of generally intelligent agents where enumerating all
possible perception-action contingencies and encoding them in a computationally tractable
form may be infeasible.

Finally, robotics researchers aim to build task-level robot systems (Ernst 1961; Lozano-
Perez 1989). Unlike robots programmed to perform specific mechanical tasks, task-level
robots are intended to accept high-level goals and then determine and perform whatever
behaviors are necessary to achieve the goals. They are intended to operate under a variety
of incidental contextual conditions, including low-frequency exceptional conditions related
to hardware, software, or environmental state. Significant applications of this work include
efforts to build autonomous vehicles (Goto and Stentz 1989; McTamaney 1989). Robotics
work is similar in spirit to the present research, integrating perception, action, and cogni-
tion to achieve goals in a real-time task environment. However, robotics research tradition-
ally has focused on challenging perceptual-motor tasks, only recently beginning to incor-
porate more cognitive activities, such as goal determination, planning, exception handling,
and learning (Bares et al. 1989). Conversely, our work grows out of earlier work emphasizing
reasoning and problem-solving, with new emphases on perceiving and acting in a real-
time environment.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 123

7. Limitations of the proposed architecture

Despite our interest in the proposed architecture, we must acknowledge that it makes agents
vulnerable to errors that do not occur under conventional software architectures. By defini-
tion, the architecture's real-time control mechanisms--its perceptual filtering, limited capacity
I/O buffers, dynamic control planning, focus of attention, and satisficing cycle--allow an
agent to ignore many opportunities to perceive, reason, and act and to perform sub-optimal
operations. In general, the agent allocates limited computational resources among competing
activities in proportion to their urgency and importance. In many cases, this will not affect
the global utility of the agent's performance. In others, it will produce acceptable degration
in particular aspects of performance. In extreme cases, however, an agent might decide
prematurely to perform cosily, ineffective, or counterproductive operations: or it could
fail to perform highly desirable operations that are well within its capabilities. Nonetheless,
it is our hypothesis that, if we wish to build agents that function well in complex real-time
environments, of which the natural environment is a prime example, we must forego opti-
mality in favor of effective management of complexity (Simon 1969). Allowing the possibility
of occasional, more or less consequential error is a necessary concession toward that end.
Formulating control knowledge that allows an agent to meet the most important real-time
performance requirements while minimizing the impact of incompleteness and suboptimality
is a primary objective of our research.

References

Agre, EE., and Chapman, D. Pengi. 1987. An implementation of a theory of activity. Proceedings of the National
Conference on Artificial Intelligence.

Andersson, R.L. 1988. A Robot Ping-Pong Player: Experiment in Real-l~me Control. Cambridge: MIT Press.
Baker, T.P, and Shaw, A. 1989. The cyclic executive model and Ada. Real-llme Systems. 1:1, 17-26.
Bares, J., Herbert, M., Kanade, T., Krotkov, E., Mitchell, T., Simmons, R., and Whittaker, W. Ambler. 1989.

An autonomous rover for planetary exploration. Computer, 22:6, 18-28.
Bollinger, J., and Duffle, N. 1988. Computer Control of Machines and Processes.
Borueau, L., and Hayes-Roth, B. 1989. Deriving priorities and deadlines in real-time knowledge-based systems.

Proceedings of the IJCAI89 Workshop on Real-llme Systems.
Brinkley, S., Sha, L., and Lehoczky, J. 1989. Aperiodic task scheduling for hard-real-time systems. Real-lime

Systems, 1:1, 27-60.
Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence, 32:3, 333-378.
Corkill, D.D., Lesser, V.R., and Hudlicka, E. 1982. Unifying data-directed and goal-directed control: An example

and experiments. Proceedings of the National Conference on Artificial Intelligence, 143-147.
d~tmbrosio, B., Fehling, M.R., Forrest, S., Raulefs, E, and Wilbur, M. 1987. Real-time process managmenet

for materials composition in chemical manufacturing. IEEE Expert.
Daube, E, and Hayes-Roth, B. 1989. A case-based mechanical redesign system. Proceedings of the International

Conference on Artificial Intelligence.
Dodhiawala, R., Sridharan, N.S., Ranlefs, P., and Picketing, C. 1989. Real-time AI Systems: A definition and

an architecture. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence.
Errnan, L.D., Hayes-Roth, E, Lesser, V.R., and Reddy, D.R. 1980. The Hearsay-II speech-understanding system:

Integrating knowledge to resolve uncertainty. Computing Surveys 12:213-253.
Ernst, H.A. 1961. A computer-controlled mechanical hand. Phi) Thesis, MIT, Cambridge, MA.
Fagan, L.M. VM. 1980. Representing time-dependent relations in a medical setting. PhD Dissertation, Stanford

University.

124 B. HAYES-ROTH

Faulk, S.R., and Parnas, D.L. 1988. On synchronization in hard-real-time systems. Communications of the ACM,
31:3, 274-287.

Fikes, R.E., and Nilsson, N.J. STRIPS. 1971. A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2, 198-208.

Forgy, C.L. 1982. RETE: A fast algorithm for the many pattern/many object pattern matching problem. Artificial
Intelligence, 19, 17-32.

Friedland, EE. 1979. Knowledge-based experiment design in molecular genetics. Technical Report CS-79-71, Stanford
University Computer Science Department.

Georgeff, M.E, and Lansky, A.L. 1987. Reactive reasoning and planning. Proceedings ofthe National Conference
on Artificial Intelligence.

Goto, Y., and Stentz, A. 1989. Mobile robot navigation: The CMU system. IEEE Expert, Volume 2, 4, 44-54.
Gupta, A., Forgy, C., and Newell, A. 1987. High-speed implementations of role-based systems. Technical Report,

Carnegie-Mellon University.
Hammond, K. 1986. CHEF: A model of case-based reasoning. Proceedings of the National Conference on Arti-

ficial Intelligence.
Hayes-Roth, B., Hayes-Roth, E, Rosenschein, S., and Cammarata, S. 1979. Modeling planning as an incremental,

opportunistic process. Proceedings of the Sixth International Joint Conference on Artificial Intelligence, 6:375-383.
Hayes-Roth, B. 1985. A blackboard architecture for control. Artificial Intelligence, 26:251-321.
Hayes-Roth, B., Buchanan, B.G. Lichtarge, O., Hewett, M., Altman, R., Brinkley, J., Cornelius, C., Duncan,

B., and Jardetzky, O. 1986. Protean: Deriving protein structure from constraints. Proceedings of the National
Conference on Artificial Intelligence.

Hayes-Roth, B., Washington, R., Hewett, R., Hewett, M., and Seiver, A. 1989. Intelligent real-time monitoring
and control. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence.

Hayes-Roth, B. 1989a. A multi-processor interrnpt-driven architecttLrr for adaptive intelligent systems. Proceedings
of the IJCAI89 Workshop on Real-~me Systems.

Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., and Seiver, A. 1989. Distributing intelligence within
a single individual. In L. Gasser and M.N. Huhns (Eds.) Distributed Artificial Intelligence, Volume 2. San
Mateo, CA: Morgan Kaufmann.

Hayes-Roth, B. 1989b. Making intelligent systems adaptive. In K. VanLehn (Ed.), Architectures for Intelligence.
Hillsdale, N.J.: Lawrence Erlbaum.

Hayes-Roth, B. 1987. Dynamic control planning in adaptive intelligent systems. Proceedings of the DARPA
Knowledge-Based Planning Workshop, Austin, Texas.

Hewett, M., and Hayes-Roth, B. 1989. Real-Time I/O in Knowledge-Based Systems. In V. Jagannathan, R.T.
Dodhiawala, and L. Baum (Eds.), Current Trends in Blackboard Systems. San Mateo, CA: Morgan Kaufmann.

Johnson, M.V., and Hayes-Roth, B. 1987. Integrating diverse reasoning methods in the BB1 blackboard control
architecture. Proceedings of the National Conference on Artificial Intelligence.

Laffey, T., Cox, EA., Schmidt, J.L., Kao, S.M., and Read, J.Y. 1988. Real-time knowledge-based systems. A/
Magazine, 9:1.

Lesser, V.R., Pavlin, J., and Durfee, E. 1988. Approximate processing in real-time problem solving. A1Magazine,
9:1, 49-62.

Lozano-Perez, T., Jones, J.L., Mazer, E., and O'DonneU, EA. 1989. Task-level planning of pick-and-place robot
motions. Computer, 22:3, 21-31.

McTamaney, L.S. 1989. Mobile robots: Real-time intelligent control. IEEE Expert, 2:4, 55-70.
Murray, W. 1989. Dynamic instructional planning in the BB1 blackboard control architecture. In V. Jagannathan,

R. Dodhia~ala, and L. Baum (Eds.), Current Trends in Blackboard Systems, San Mateo, CA: Morgan Kaufmann.
Nilsson, N. 1989. Action Networks. Working Paper, Stanford University Department of Computer Science.
O'Neill, D.M., and Mullarkey, P.W. 1989. A knowledge-based approach to real time signal monitoring. Proceedings

of the Sixth National Conference on Artificial Intelligence Applications.
Pardee, W.J., Shaft, M.A., and Hayes-Roth, B. 1989. Intelligent control of complex materials processes. Pro-

ceedings of the Workshop on Blackboard Systems.
Rosenschein, S.J., Hayes-Roth, B., and Erman, L. 1989. Notes on methodologies for evaluating IRTPS systems.

Proceedings of the AFOSR Workshop on Intelligent Real ~me Problem Solving Systems. Santa Cruz.

ARCHITECTURAL FOUNDATIONS FOR REAL-TIME PERFORMANCE 125

Rosenschein, S.J., and Kaelbling, L.E 1986 The synthesis of digital machines with provable epistemic properties.
In J. Halpern (eds.), Proceedings of the Conference on Theoretical Aspects of Reasoning about Knowledge,
Morgan Kauffman.

Sacerdoti, E.D. 1975. The non-linear nature of plans. Proceedings of the International Joint Conference on Arti-
ficial Intelligence.

Schoppers, M. 1987. Universal plans for reactive robots in unpredictable environments. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence.

Shoham, Y., and Hayes-Roth, B. 1989. Report on issues, testbed, and methodology for the IRTPS research program.
Proceedings of the AFOSR Workshop on Intelligent Real llme Problem Solving Systems. Santa Cruz.

Simon, H.A. 1969. The Sciences of the Artificial. Cambridge: MIT Press.
Smith, D.M., and Broadwell, M.M. 1988. The pilot's associate--An overview. Proceedings of the Eighth Inter-

naitonal Workshop on Expert Systems and their Applications.
Sowa, J. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley.
Stankovic, J.A. 1988. Misconceptions about real-time computing: A serious problem for next-generation systems.

Computer, 21:10, 10-19.
Stankovic, J.A., and Zhao, W. 1988. On real-time transactions. SIGMOD Record, 17, 4-18.
Steflk, M. 1971. Planning with constraints. Artificial Intelligence, 16:2, 111-140.
Touchton, R.A. 1988. Reactor emergency action level monitor. Technical Report NP-5719, Electric Power Research

Institute.
Washington, R., and Hayes-Roth, B. 1989. Managing input data in real-time AI systems. Procee&'ngs of the Eleventh

International Joint Conference in Artificial Intelligence.

