
The Journal of Real-Time Systems, 2, 99-125 (1990) 
�9 1990 Kluwer Academic Publishers. Manufactured in The Netherlands. 

Architectural Foundations for Real-Time Performance 
in Intelligent Agents 

BARBARA HAYES-ROTH 
Knowledge Systems Laboratory, Computer Science Department, Stanford University, Palo Alto, CA 94304 

Abstract. Intelligent agents perform multiple concurrent tasks requiring both knowledge-based reasoning and 
interaction with dynamic entities in the environment, under real-time constraints. Because an agent's opportunities 
to perceive, reason about, and act upon the environment typically exceed its computational resources, it must 
determine which operations to perform and when to perform them so as to achieve its most important objectives 
in a timely manner. Accordingly, we view the problem of real-time performance as a problem in intelligent real- 
time control. We propose and define several important control requirements and present an agent architecture 
that is designed to address those requirements. The proposed architecture is a blackboard architecture, whose 
key features include: distribution of perception, action, and cognition among parallel processes, limited-capacity 
I/O buffers with best-first retrieval and worst-first overflow, dynamic control planning, dynamic focus of attention, 
and a satisficing execution cycle. Together, these features allow an intelligent agent to trade quality for speed 
of response under dynamic goals, resource limitations, and performance constraints. We illustrate application 
of the proposed architecture in the Guardian system for surgical intensive care monitoring and contrast it with 
alternative agent architectures. 

1. Real-Time Performance in Intelligent Agents 

Imagine an errand robot driving an automobile on its way to some destination. Noticing 
a yellow traffic light at the next intersection in its path, the robot infers from its current 
speed, distance to the light, and conservative traffic-light policy that it should stop. The 
robot immediately releases the accelerator and, after a few seconds, applies the brake to 
bring its vehicle to a gradual stop just before entering the intersection. The robot's behavior 
is staisfactory not simply because it produces the correct result, but because it does so 
at the right time. If the robot stopped very much before or after reaching the intersection, 
its behavior would be unsatisfactory and potentially catastrophic. 

The errand robot illustrates a class of computer systems, which we call intelligent agents, 
whose tasks require both knowledge-based reasoning and interaction with dynamic entities 
in the environment, such as human beings, physical processes, other computer systems, 
or complex configurations of such entities. Tasks requiring an intelligent agent occur in 
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diverse domains, such as power plant monitoring (Touchton, 1988), process control 
(d'Ambrosio et al. 1987; Pardee, Shaft and Hayes-Roth 1989), experiment monitoring 
(O'Neill and Mullarkey 1989), student tutoring (Murray 1989), aircraft pilot advising (Smith 
and Broadwell 1988), and intensive care patient monitoring (Fagan 1980; Hayes-Roth et 
al. 1989). 

To perform such tasks, an agent must possess capabilities for: perception--acquiring and 
interpreting sensed data to obtain knowledge of external entities; cognition--knowledge- 
based reasoning to assess situations, solve problems, and determine actions; and action-- 
actuating effectors to execute intended actions and influence external entities. For example, 
the errand robot perceives signals from which it infers that the traffic light is yellow. It 
reasons with this perception, its traffic light policies, and other perceptions and knowledge 
to determine that gradually coming to a stop at the intersection is the desired result and 
that releasing the accelerator and applying the brake are the appropriate actions. It performs 
those actions in the appropriate temporal organization, thereby achieving the intended result. 

Because external entities have their own temporal dynamics, interacting with them imposes 
aperiodic hard and soft real-time constraints on the agent's behavior. Following (Baker and 
Shaw 1989) we use the term aperiodic to describe tasks having irregular arrival times. Fol- 
lowing (Faulk and Parnas 1988; Stankovic and Zhao 1988) we use the terms hard and sofi 
to distinguish between constraints whose violation precludes a successful result versus those 
whose violation merely degrades the utility of the result. For example, a vehicle that happens 
to stop in front of the errand robot is an aperiodic event with a hard deadline. The robot 
must stop in time to avoid colliding with the other vehicle. When that is not possible, the 
robot should consider alternative actions, such as maneuvering around the stopped vehicle. 

In a complex environment, an agent's opportunities for perception, action, and cognition 
typically exceed its computational resources. For example, in the scenario above, the errand 
robot has opportunities to perceive the physical features and occupants of other automobiles 
on the road and the buildings and landscape along the sides of the road. It might reason 
about any of these perceptions or other facts in its knowledge-base. It might perform a 
variety of actions more or less related to driving its automobile. Fortunately, the robot largely 
ignores most of these opportunities to focus on matters related to the traffic light. Otherwise, 
it might fail to perform the necessary perception, reasoning, and actions in time to stop 
its automobile at the right time. On the other hand, the errand robot cannot totally ignore 
incidental information without risking the consequences of rare catastrophic events. For 
example, the robot should notice a child running into its path. In some cases, the robot 
might benefit from noticing information that is not immediately useful. For example, it 
might notice a sign posting business hours on a shop window and use that information 
when planning a subsequent day's errands. 

Because an intelligent agent is almost always in a state of perceptual, cognitive, and action 
overload, it generally cannot perform all potential operations in a timely fashion. While 
faster hardware or software optimization may solve this problem for selected application 
systems, they will not solve the general problem of limited resources or obviate its con- 
comitant resource-allocation task (Stankovic 1988). For an agent of any speed, we can define 
tasks whose computational requirements exceed its resources. Moreover, we seek more 
from an intelligent agent than satisfactory performance of a predetermined task for which 
it has been optimized. Rather, we seek satisfactory performance of a range of tasks varying 
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in required functionality and available knowledge as well as real-time constraints. And we 
seek adaptation to unanticipated conditions and requirements. For example, the errand robot 
should be able to respond appropriately to traffic signals and other usual and unusual events 
in a broad range of driving situations. It should drive competently on freeways as well 
as on surface streets. If it unexpectedly finds itself on surface streets where others are driving 
at freeway speeds (or, more likely, vice versa), it should adapt its own behavior accordingly. 
The agent might have other sorts of skills, such as planning its own errands under high- 
level goals and constraints or learning new routes from experience taking necessary detours. 
Other things being equal, the broader the range of tasks an agent can handle and the wider 
the range of circumstances to which it can adapt, the more intelligent it is. 

For these reasons, we view real-time performance as a problem in intelligent control. 
An agent must use knowledge of its goals, constraints, resources, and environment to deter- 
mine which of its many potential operations to perform at each opportunity. For example, 
the errand robot might decide to give high-priority to perceiving and reasoning about traffic 
lights so that it can always stop in time for yellow or red lights. When the operations required 
to achieve an agent's current goals under its specified constraints exceed its computational 
resources, it may have to modify them as well. For example, if the errand robot finds itself 
unexpectedly late to an important destination, it might decide to relax its conservative traffic- 
light policy and drive through selected yellow lights. Because it is situated in a dynamic 
environment and faces a continuing stream of events, an agent must make a continuing 
series of control decisions so as to meet demands and exploit opportunities for action as 
they occur. For example, if the errand robot is making a planned gradual stop at a traffic 
light and a child runs into its path, the robot should perceive the child and stop immediately. 
In general, an agent should use intelligent control to produce the best results it can under 
real-time constraints and other resource (for example, information, knowledge) constraints. 

Our conception of real-time performance in intelligent agents is qualitatively different 
from conceptions embodied in other sorts of computer systems (Baker and Shaw 1989; 
Brinkley, Sha and Lehoczky 1989; Faulk and Parnas 1988). In particular, we do not view 
real-time performance as a provable, guaranteed, universal property of the agent. Nor do 
we seek real-time performance through effective engineering of the agent for narrowly 
specified task environments. We feel that these constructs are surely premature and probably 
unrealistic for the versatile and highly adaptive agents we envision. Rather, we view real- 
time performance as one of an agent's several objectives, which it will achieve to a greater 
or lesser degree as the result of interactions between the environment it encounters, the 
resources available to it, and the decisions it makes. In many cases, the agent will produce 
timely results for a task only at the expense of quality of result or by compromising the 
quality or timeliness of its performance of other tasks. Ironically, as the agent's competence 
expands, so will its need to make such compromises. 

From this perspective, real-time performance in intelligent agents depends on an underly- 
ing architecture that enables agents to make and apply effective control decisions. Sections 
2, 3, and 4 def'me requirements for real-time control and the architecture we have designed 
to address the requirements. Section 5 illustrates application of the architecture in the 
Guardian system for intensive care monitoring. Section 6 discusses alternative approaches 
to real-time performance in intelligent agents. Section 7 discusses the architectnre's emphasis 
on satisficing methods--dynamically balancing quality and speed of performance. 
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2. Requirements for real-time control in intelligent agents 

In section 2.1, we introduce a neutral framework in which to discuss agents and their envi- 
ronments. In sections 2.2 and 2.3, we operationalize environmental characteristics and agent 
requirements in the terms of the framework and show how the former motivate the latter 
(see also Dodhiawala et al. 1989; Hayes-Roth 1989; Hayes-Roth 1987; Laffey et al. 1988; 
Rosenschein, Hayes-Roth and Erman 1989; Shoham and Hayes-Roth 1989; Stankovic 1988). 

2.1. A framework 

Following (Rosenschein, Hayes-Roth and Erman 1989), we model an intelligent agent as 
a dynamic embedded system. The overall system is modeled as a time series of states in 
which instants of time are mapped to a state space of values representing the variables of 
interest. A change in the value of a state variable is an event, e. The system's behavior 
is described with measurements defined as functions on state values. Because the system 
is dynamic, we describe properties of both individual states and time series of states. 
Descriptive measurements represent objective properties, for example, the importance of 
an event el or the latency of event e2 following the occurrence of el. Utility measurements 
represent valuational properties, for example, the satisfaction of particular constraints on 
the latency of e2. 

We partition the overall system into components representing the intelligent agent, I, and 
the environment, E. Each component has its own dynamic state, which varies as a function 
of information passed among its internal components, as well as information received from 
the other component. We further partition the agent, L into components for perception, 
P, cognition, C, and action, A, which similarly manifest events generated internally or by 
other components. To describe interactions between components, we refer to pairs of trigger 
and response events, where both events occur in one component but presumably are mediated 
by interaction with another component. For example, a trigger-response pair in E may be 
mediated by events in L In some cases, we refer simply to a mediated event, for example 
an/-mediated event in E. 

2.2. The environment of  an intelligent agent 

In the terms of our framework, intrinsic characteristics of an agent's environment may be 
defined as measurements on events in E, while characteristics of the relationship between 
an agent and its environment may be defined as measurements on events in E and L Where 
definitions of environmental characteristics require domain-specific assumptions, we simply 
indicate the forms such definitions would take. 

Data Glut. It is not feasible for the agent to process all potentially interesting events in 
the environment. That is, the average rate of events in E very much exceeds the maximum 
rate of E-mediated events in L 

Data Distribution. Important environmental conditions may correspond to configurations 
of events on different state variables and over variable time intervals. This can be described 
as particular kinds of many-to-one mappings of events in E to events in I. 
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Diversity of Events. Environmental conditions vary in importance. This can be expressed 
as the variability of values on an importance attribute of events in E. 

Real-Time Constraints. The values of events vary, in part, as a function of when they 
occur. This can be expressed in terms of utility measurements that incorporate the absolute 
or relative times of occurrence of events in E. 

Multiplicity of Conditions. It is not feasible to enumerate all interesting conditions the 
agent will encounter, that is, the set of E-mediated events in I that produce criterial values 
on some measurement. 

Predictability. The environment is orderly enough to permit probabilistic prediction of 
some future events. This can be expressed as descriptive measurements on particular patterns 
of events in E. 

Potential Interactions. Globally coordinated courses of action are sometimes superior 
to sequences of locally determined actions. This can be expressed as utility measurements 
on particular patterns of/-mediated events in E. 

Underlying Model. Some knowledge of the environment is available. This can be expressed 
as descriptive measurements on the correspondence between patterns of state values or 
events in E and L 

Diverse Demands. Multiple interacting demands for interaction with the environment 
include: interpretation, diagnosis, prediction, reaction, planning, and explanation. These 
can be expressed as utility measurements on particular types of/-mediated events in E. 

Variable Stress. The environment varies in its stressfulness over time. This can be opera- 
tionalized as descriptive measures involving particular environmental variables, for example, 
the rate of important events or the number and types of different demands for interaction. 

2.3. Agent requirements 

We define the primary objective of an intelligent agent very generally: 

To maintain the value of its own behavior within an acceptable range over time. 

For a given agent in a given environment, we could formalize this requirement in terms 
of some utility measurement on/-mediated events in E and also on events in I if we wish 
to constrain the agent's management of its own resources. Although we could use this utility 
measurement to evaluate the agent's behavior in the given context, it would provide little 
guidance toward the design of effective agents. 

We need a more specific set of requirements to constrain the space of possible agent 
architectures. Below, we define several requirements that we hypothesize will allow an agent 
to meet its primary objective in the kinds of environments characterized above. (This is 
a sufficiency hypothesis, not a necessity hypothesis. There may well be other requirements 
whose satisfaction would enable an agent to meet its primary objective.) In the terms of 
our framework, these requirements refer primarily to events in E and to interactions between 
land  E. In some cases, we extrapolate requirements to interactions among/ 's  components, 
P, C, and A, in an effort to support satisfaction of the higher-level requirement. Again, 
where requirements involve domain-specific assumptions, we simply indicate the forms 
their definitions would take. 
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Communications. Given the need for I to interact with E, there must be appropriate com- 
munications involving/'s components, with information passing at least: from E to P, from 
P to C, from C to A, and from A to E. 

Asynchrony. Given data glut and real-time constraints, the agent must function asynchro- 
nously with respect to the environment. That is, the rates of events in I and E must be 
independent and the rates of events in P, C, and A must be independent. 

Selectivity. Given data glut and the diversity of events in the environment, the agent must 
determine whether and how to perceive, reason about, and act upon different environmental 
events. Other things being equal, the conditional probability of an/-mediated response event 
in E, given its trigger event, should be an increasing function of the trigger event's impor- 
tance. The same holds for events in P, C, and A. 

Recency. An agent's sensory information is perishable, the utility of its reasoning degrades 
with time, and the efficacy of its actions depends upon synchronization with fleeting external 
events. Therefore, recency is one important selectivity criterion. This can be expressed 
as a sharply decreasing conditional probability of an/-mediated response event in E, given 
its trigger event, over time. The same holds for events in P, C, and A. 

Coherence. The agent should produce a globally coordinated course of action when that is 
preferable to a sequence of locally determined actions. That is, we impose utility 
measurements on certain patterns of/-mediated response events in E, as well as on mediated 
response events in P, C, and A. Other things being equal, we require a low conditional 
probability of mediated response events, given associated trigger events, when those response 
events would not fit an ongoing pattern. 

Flexibility. Conversely, the agent must react to important unexpected events in a dynamic 
environment. Other things being equal, we require a high-conditional probability for an 
/-mediated response event in E, even if it does not fit an ongoing pattern, given a very 
important trigger event. The same holds for anomalous response events in P, C, and A. 

Responsiveness. Other things being equal, the more urgent a situation is, the more quickly 
the agent should perceive relevant information, perform necessary reasoning, and execute 
appropriate actions. That is, the latency of an/-mediated response event in E, following 
its trigger event, should decrease as the urgency of the trigger event increases. Similar 
constraints apply to response events in P, C, and A. 

Timeliness. Given its dynamic environment, the agent must meet various hard and soft 
real-time constraints on the utility of its behavior. These may be expressed as utility measure- 
ments involving latencies within/-mediated pairs of trigger and response events in E. Similar 
measurements could be applied to events in P, C, and A. 

Robustness. An agent must adapt to resource-stressing situations by gracefully degrading 
the utility of its behavior. As environmental stress increases (for example, as event rates 
increase or required latencies (deadlines) for trigger-response pairs decrease), the global 
utility of the agent's behavior (for example, the rate of/-mediated response events in E, 
weighted by importance) should decrease gradually, rather than precipitously. The same 
holds for interactions among P, C, and A. 

Scalability. In the terms of our framework, the agent's satisfaction of the requirements 
above (but perhaps not its absolute level of performance on any one task) should be invariant 
over increases in problem size. 
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Development. An agent must exploit new knowledge to improve the utility of its behavior, 
As the amount of relevant knowledge in I increases, we should observe improvement in 
the agent's satisfaction of some of the above requirements and, therefore, in the global utility 
of its behavior. 

3. Proposed agent architecture 

The proposed agent architecture is designed to address the above requirements. Except 
where noted, the architecture is implemented as described. 

3.1. Top-level organization 

Following the terminology of Section 2, we propose an architecture for the agent,/, com- 
prising subsystems for perception, cognition, and action--P, C, and A. The architecture 
(see Figure 1) partitions each subsystem into smaller components and permits multiple 
subsystems for different application-specific perception/action modalities. A communications 
interface (CI) routes data among the I/O buffers of different subsystems. Subsystems function 
and interact as follows. Signals from the environment enter sensory buffers in perception 
subsystems, which selectively interpret and filter the signals under attentional parameters 
determined by the cognitive subsystem and place the resulting perceptions in their output 
buffers. The CI relays these perceptions to input buffers in action subsystems, where they 
directly drive action execution, or to input buffers in the cognitive subsystem, where they 
compete with other perceptions and internally generated events for cognitive processing. 
The cognitive subsystem retrieves perceptions from its input buffers for incorporation in 
its knowledge-base, performs all knowledge-based reasoning, and places decisions regarding 
attentional parameters or intended actions in its output buffers. The CI relays these decisions 
to the input buffers of appropriate perception/action subsystems. Each action subsystem 
retrieves action descriptions from its input buffers and controls their execution on particular 
effectors under performance parameters determined by the cognitive subsystem. Executed 
actions affect entities in the environment. 

Subsystems operate in parallel. They do not communicate directly or otherwise interfere 
with one another. They influence one another only indirectly, by placing information in 
their own output buffers, from which it is transferred to the input buffers of appropriate 
other subsystems by the CL Thus, the architecture limits potential interference to simul- 
taneous efforts to access a subsystem's I/O buffers by the CI and the subsystem itself. Our 
experiments (Hewett and Hayes-Roth 1989) suggest that, in practice, the architecture provides 
constant communication latencies among perception, cognition, and action subsystems (the 
absolute latency being determined by processor speed, network speed, and program optimi- 
zation) over a wide range of activity levels within each subsystem. Conversely, it provides 
constant operation latencies within subsystems over a range of levels of communication 
activities. 

The architecture is designed to support graduated reactions. Very fast peripheral reactions 
occur within a perception or action subsystem, producing input-driven attentional shifts 
or feedback control of action execution. Fast reflex reactions occur across perception-action 
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Environment 

Figure I. Overview of the proposed agent architectme. Curved boxes represent data structures. Rectangular boxes 
represent parallel processes. Arrows show information flow among data structures and processes. The diagram 
is hierarchical. Thus, cognition is a process comprising several component pnx~sses, data structures, and information 
flows among them. Arrows that involve compound data structures (for example, the circle representing the cognitive 
system's global memory) signify information flow involving all component data structures (for example, knowledge, 
reasomng results, control plan. 

arcs, with information from perception subsystems directly driving the behavior of  action 
subsystems. Slower cognitive reactions involve all three kinds of subsystems, with cognition 
mediating the performance of actions in response to perceived information. Absolute 
response latencies at each level depend on the architecure's implementation and its instan- 
tiation in a particular agent. In our current work, cognitive reactions fall along a latency 
spectrum, ranging from immediate reactions, with latencies under one minute, to delayed 
reactions, with latencies on the order of several minutes or longer. As discussed below, 
the agent can control the latencies of  its cognitive operations in several ways. Although 
we have not implemented peripheral or reflex reactions, oui  current implementation could 
provide latencies on the order of  a few seconds. 
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As mentioned above, P, C, and A subsystems communicate via I /0  buffers, with the CI, 
running on a separate process, routing information among them. All I/O buffers have limited 
capacity, with best-first retrieval and worst-first overflo~. Capacity is an architectural param- 
eter that can be defined differently for different agents or for different buffers within an 
agent. In our current implementation, it is defined in terms of number of items. Best-first 
and worst-first criteria are defined in terms of four orthogonal attributes of each buffer 
item: the item's relevance to the agent's current reasoning activities; the item's importance 
with respect to the agent's objectives; the recency of the item's appearance in the buffer; 
and the urgency of processing the item in order to have the intended effect. Other things 
equal, buffer items that score higher against these criteria are retrieved earlier, while those 
that score lower overflow earlier. These attributes are determined and dynamically modified 
by the agent's reasoning, as discussed below. 

3.2. Perception subsystems 

Perception subsystems (Boureau and Hayes-Roth 1989; Washington and Hayes-Roth 1989), 
comprising sensors and preprocessors, acquire information about the dynamic environment 
as a basis for cognition and action. Each sensor acquires signals of a characteristic type, 
transduces them into an appropriate internal representation, and holds the results in a limited- 
capacity buffer for retrieval by its associated preprocessor. Each preprocessor abstracts, 
annotates, and filters sensed information and places the results in its output buffer for relay 
by the CI to the input buffer of the cognitive subsystem or an action subsystem. Abstraction 
involves interpreting and often compressing sensed data according to current abstraction 
forms. These forms might specify transformations on individual data values (for example, 
assignment to a value category), on sequences of values (for example, running averages, 
trends, modal values), or on patterns of values across multiple variables (for example, co- 
occurence or temporal succession of related values on different variables). Filtering involves 
restricting the communication of abstraction results to values that meet current filtering 
criteria. These criteria may be specified, for example, as criterial values on particular vari- 
ables, criterial value changes on particular variables, or deadlines. In our current work, 
we use a combination of criterial value changes (send a new value when it differs from 
the last value sent by at leastp%) and deadlines (send a new value when at least m seconds 
have passed since the last value was sent). This allows the agent to bound the variability 
on data sensed between sent values in the context of some minimum rate. Annotation involves 
marking and prioritizing abstraction results according to current standards of relevance, 
importance, and urgency (defined above). 

All preprocessing parameters--abstraction forms, filtering criteria, and annotation 
standards--are dynamic. They can change in two ways. The preprocessor can have peripheral 
reactions, redirecting its own focus of attention in response to sensed data values. For exam- 
ple, a preprocessor might react to a sudden increase in the variability of any sensed data 
variable by changing its abstraction forms to a finer granularity and weakening its filtering 
criteria for that variable. The preprocessor also can change its parameters in response to 
focus of attention instructions from the cognitive subsystem. For example, the cognitive 
subsystem might instruct the preprocessor to use parameters appropriate for the current 
reasoning task. Focus of attention is discussed in more detail below. 
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3.3. Action subsystems 

Action subsystems, comprising drivers and effectors, retrieve action descriptions from their 
input buffers, control action execution on effectors, and return feedback to the cognitive 
subsystem. Each driver monitors its input buffer, retrieves intended actions, translates them 
into executable programs of effector commands, and monitors the execution of those pro- 
grams by sending successive commands to the appropriate effector at the appropriate times. 
Each driver also should take into account importance, urgency, and other constraints on 
performance, but we have not yet implemented these capabilities. For example, a driver 
might give priority to important and urgent actions over competitors, translate intended 
actions into different executable forms given their urgency and resource constraints, and 
if necessary accelerate execution of urgent actions. The driver also should send feedback 
to the cognitive system regarding the success or failure of action execution. Each effector 
immediately executes commands in its input buffer. 

3. 4. Cognition subsystem 

The cognition subsystem holds all of an agent's knowledge and performs all of its reasoning. 
It asynchronously incorporates perceived information, retrieved from its input buffers, into 
its knowledge-base. It performs a variety of knowledge-based reasoning tasks, which vary 
across different task environments, but typically would include: interpretation of perceived 
information; detection and diagnosis of exceptional events; reaction to important events; 
prediction of future events; modeling dynamic external systems; planning longer-term courses 
of action; explaining its observations, inferences, and plans; explaining its reasoning; learning 
to improve its behavior based on experience and to adapt its behavior to changing environ- 
mental conditions. In addition, it reasons about global control of multiple tasks both to 
coordinate their interactions and to insure timely achievement of the most important objec- 
tives given the available resources. The cognitive subsystem initiates actions by placing 
descriptions of them in its output buffers. 

As shown in Figure 1, the cognition subsystem extends the dynamic control architecture 
(Hayes-Roth 1985), previously implemented as the BB1 system. All reasoning operations 
occur in the context of a global memory, which represents all information--knowledge and 
reasoning results--known to the agent, in a conceptual graph formalism (Sowa 1984). 

One important kind of knowledge is a repertoire of reasoning operations and associated 
strategies, which can be instantiated to perform particular tasks (for example, diagnosis, 
prediction, explanation, or planning) by particular methods. For example, an agent might 
have knowledge of the operations involved in associative diagnosis, along with strategies 
for selecting and applying those operations. It might have similar knowledge of model- 
based diagnosis. It might also have the meta-knowledge that model-based diagnosis requires 
less data, but more knowledge and computation time, and produces more comprehensive 
and more explanatory results than associative diagnosis. 

As discussed above, the global memory contains input buffers for perceptions sent by 
perceptual subsystems and output buffers for intended actions to be sent to action drivers 
and control parameters to be sent to perceptual preprocessors or action drivers. I/O buffers 
have limited capacity, with best-first retrieval and worst-first overflow. 
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The global memory also contains information regarding the agent's cognitive behavior 
(discussed below). A cognitive buffer holds~cognitive events produced by reasoning opera- 
tions. An agenda holds executable reasoning operations suggested by perceptual or cognitive 
events. A control plan represents the agent's intended course of behavior as determined 
by reasoning operations. The next operation is the reasoning operation that the agent will 
execute next. Like I/O buffers, the cognitive buffer and the agenda have limited capacity, 
with best-first retrieval and worst-first overflow. Although our current implementation does 
not limit the size of the control plan, we intend to impose some sort of limitation. 

Finally, the global memory contains the results of reasoning operations: observations, infer- 
ences, predictions, and plans. These results are organized in an interval-based time-line 
representation, with conceptual links to one another and to other knowledge. For example, 
an agent might record that a diagnosis believed during interval i2 explains an observation 
that persisted during interval//and that the explanatory relationship between the observation 
and its diagnosis instantiates a known causal relationship within systems of the type under 
observation. 

The cognitive subsystem performs reasoning operations that are suggested by and produce 
changes to information in the global memory. Its satisficing cycle comprises three component 
processes: 

1. The agenda manager uses recent perceptual or cognitive events to identify and rate execut- 
able reasoning operations, which it records on the agenda. Identification of an executable 
reasoning operation involves determining that a perceptual or cognitive event satisfies the 
trigger requirements of a particular type of operation and that other contextual information 
satisfies its preconditions. On a given cycle, the agenda manager may identify several 
executable reasoning operations relevant to each of several tasks. Rating an executable 
operation involves evaluating its importance and urgency against the current control plan, 
which may include strategic decisions related to different tasks. 

2. The scheduler determines which of the identified executable operations to execute and 
when to execute them, based on their ratings, and records each successive one as the 
next operation. 

3. The executor executes each next operation as it is recorded. It instantiates the program 
defined for the chosen operation type, binding program variables to triggering events 
and other contextual information. It then executes the instantiated program, producing 
associated changes in the global memory. These changes might represent a new inference 
or conclusion for a new or ongoing reasoning task. They might record new perceptual 
filters or intended actions in output buffers. They might change the control plan itself 
by initiating or terminating new tasks or by extending or modifying control decisions 
for an ongoing task. As discussed below, changes to the control plan change the criteria 
used to trigger, rate, and schedule operations for execution, from that time forward. 

Because control in the cognitive system determines the utility--quality and timeliness--of 
the agent's perception, reasoning, and action, it is fundamental to the proposed agent archi- 
tecture, especially to its support for real-time performance. The following sections exam- 
ine three aspects of control more closely, dyrmmic control planning, by which the agent 
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determines and guides its own reasoning behavior; focus of attention, by which the agent 
parameterizes the behavior of its perception/action subsystems; and the satisficing cycle 
by which the agent controls the time spent on each reasoning cycle. 

3.5. Dynamic control planning 

A controlplan is a temporally organized pattern of control decisions, each of which describes 
a class of operations the agent intends to perform during some period of time. Control 
decisions may vary widely in content and specificity, ranging from specific primitive opera- 
tions intended to be executed at particular moments in time to broad classes of operations 
intended to be executed during extended time intervals. Control decisions may stand alone, 
specifying an independently desirable class of actions. Alternatively, sets or sequences of 
control decisions may be coordinated to achieve a common objective. Multiple competing, 
complementary, or independent control decisions regarding a particular time interval may 
coexist in the control plan. Multiple constituent plans for performing concurrent tasks may 
coexist in the control plan. 

For example, Figure 2 illustrates an abstract control plan comprising three constituent 
plans. Plan A is a single, independent, long-term control decision governing behavior prior 
to, during, and beyond the time period shown. Plan B is another single, independent, long- 
term control decision governing behavior during a period that begins during the time period 
shown and continues into the future. Plan C is a local plan, governing behavior during 

Contro l  Plan 
A 

C 

m m i m  

Agenda  

BAc 
ADE Etc. 
AAC 

Schedu le  
AAccAcCAcACCAbccCcBCACCBcCBBABA# 

v 

T i m e  Now 

Figure 2. An abstract view of dynamic control planning. The top panel shows a comrol plan with constituem 
plans for tasks A, B, and C, governing the agent's behavior during overlapping time intervals. The middle panel 
shows the dynamic agenda of executable control (lower ease) and task (upper case) operations relevant to tasks 
A, B, C, D, and E. The bottom panel shows the schedule of comrol and task operations chosen for execution 
in accordance with active comrol plans and agendas during corresponding time intervals. 
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a sub-interval of the time period shown. In addition, Plan C is elaborated in terms of more 
detailed subordinate decisions at two lower levels of abstraction, which govern behavior 
during a hierarchically organized sequence of component time intervals. 

Control plans can represent not only what task to perform, but also how to perform it 
given particular policies or resource constraints. In particular, control plans can indicate 
preferences for reasoning operations that meet time constraints. For example, in Figure 2, 
Plan C may have been constructed as shown because it will produce a satisfactory outcome 
within the designated period of time. Alternative control plans may have produced better 
outcomes, but taken longer to do so. 

The cognitive system constructs control plans incrementally by means of control operations 
that generate or modify constituent control decisions. As illustrated in Figure 2, the cognitive 
system trots control operations (lower case) like other reasoning operations. Control opera- 
tions are suggested by perceptual or cognitive events, rated and placed on the agenda, and 
scheduled for execution. Thus, they compete for execution with one another and with all 
other executable operations. 

Different control operations embody different reasoning methods (Johnson and Hayes-Roth 
1987). Some operations generate control decisions bottom up, for example when a perceptual 
event triggers a decision to respond to the perceived situation. In Figure 2, Plans A and 
B and the top-most decision of Plan C presumably were generated bottom-up in response 
to perceived demands or opportunities. Other operations generate decisions top-down, for 
example, when an abstract control decision triggers a sequence of more specific control 
decisions. In Figure 2, the subordinate decisions in Plan C presumably were generated 
top-down to elaborate the more general decisions. Other operations generate decisions in 
a goal-directed fashion, for example when a lack of operations satisfying a prior control 
decision triggers a decision to perform operations that would trigger such operations. In 
Figure 2, if no operations on the agenda satisfy Plan A, goal-directed reasoning would 
generate a decision to perform operations whose results would trigger operations compatible 
with Plan A. 

Control decisions may be generated at any time prior to the time at which they are intended 
to influence the agent's behavior. Some control decisions are generated and take effect imme- 
diately, while others are generated in advance and do not take effect until much later. For 
example, in Figure 2, Plan C might have been generated in response to a perceived event 
immediately prior to its initiation point. Alternatively, the agent might have decided much 
earlier that at that point in time it would follow Plan C. Similarly, the agent has decided 
that both Plans A and B will persist into the future, governing behavior well beyond the 
Now point. 

Regardless of the content or specificity of control decisions, the reasoning methods used 
to generate them, and the times at which they are generated, all control decisions appear 
in a single control plan. The agenda manager rates executable operations against all active 
control decisions whose time intervals include the current time. For example, early in the 
time interval shown in Figure 2, the agent uses Plan A to rate and schedule reasoning opera- 
tions. Later, it uses Plans A and C--actually, the current lowest-level decisions of Plan C. 
Still later, it uses all three Plans, A, B, and C. Following the completion of Plan C, the agent 
uses Plans A and B to rate and schedule operations for the remainder of the time interval 
shown and into the future. As mentioned above, we intend to limit the size or complexity 
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of an agent's active control plan during a given time period, but we have not yet implemented 
such limitations. 

In general, the agent can perform operations that change its control plan on any cycle, 
thereby changing the rating criteria subsequently used by its agenda manager and, as a 
consequence, the operations subsequently chosen by its scheduler for execution. Dynamic 
control planning allows the agent to construct strategic plans that are appropriate to an 
evolving task environment and to follow strategic plans to which it has committed, but 
also to change those plans as appropriate. 

3.6 Focus of attention 

The cognitive subsystem determines the agent's global focus of attention by sending per- 
ception/action subsystems control parameters determined by its dynamic control plan and 
other state information. As discussed above, perceptual control parameters are of three 
types. Abstraction forms specify desired transformations on data values. Filtering criteria 
specify conditions under which abstracted data should be sent to the cognitive system. 
Annotation standards specify criteria for determining the relevance, importance, and urgency 
of perceived data. 

The architecture provides three kinds of perceptual focus operations, all of which, when 
executed, place control parameters in output buffers for relay to perceptual preprocessors 
(Boureau and Hayes-Roth 1989; Washington and Hayes-Roth 1989). Information-focusing 
operations, which are triggered by changes in the agent's control plan, send focus instructions 
to discriminate among different kinds of input data. For example, if a control decision initiates 
a new reasoning task, an information-focusing operation will send a perceptual control 
parameter to increase the relevance, importance, or urgency of the associated data types. 
Thus, the agent will focus its interpretation of sensed information on those data that are 
useful to its reasoning. Resource-focusing operations, which also are triggered by changes 
in the control plan, modulate the overall input data rate in anticipation of changing resource 
demands. For example, if a new task is computationally intensive, a resource-focusing 
operation will send a parameter that tightens the faltering criteria on all data types in propor- 
tion to their relevance and importance. Thus, the agent will focus its perceptual resources on 
types of data anticipated to be most useful. Load-balancing operations, which are triggered 
by overflow or underflow conditions in the cognitive input buffers, also modulate the overall 
input data rate, but they do so in response to unanticipated changes in resource demands. 
For example, if input data arrive faster than the cognitive system can process them, producing 
repeated input buffer overflows, a load-balancing operation will send a perceptual parameter 
that tightens filtering criteria. Conversely, if the cognitive system has the capacity to process 
more frequent input data, a load-balancing operation will send a parameter to loosen the 
filtering criteria. Thus, the agent will coordinate its input data rates with its dynamic cognitive 
capacity to incorporate new input data. 

With these operations, the agent focuses its perception of a complex, dynamic environ- 
ment top-down, in accordance with its current control plans and available resources. Thus, 
it protects its cognitive system from being swamped by non-critical inputs. However, the 
agent remains sensitive to exceptional events outside of its current focus of attention. One 
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way is by instructing perceptual subsystems to relay all data values that fall in critical ranges. 
In our current work, we hard-wire very general forms of these criteria so that the agent 
is guaranteed to notice extreme events. In addition, preprocessors can potentially redirect 
their own attention in response to particular patterns of sensed data. Although 
we have not yet implemented such peripheral responses, we anticipate that they will play 
an important role in maintaining an agent's sensitivity to important unanticipated events 
in a dynamic environment. 

As mentioned above, we are studying corresponding sorts of focus operations to set action 
control parameters related to performance criteria, resource consumption, and side effects. 

3. 7. The satisficing cycle 

Let us examine the cognitive system's satisficing cycle (Hayes-Roth 1989a). Because this 
cycle is the unit-process underlying all reasoning, bounding and, in fact, controlling its 
computation time is a prerequisite to controlling computation times for reasoning tasks 
under real-time constraints. Recall that the cycle comprises three processes: the agenda 
manager, the scheduler, and the executor. The scheduler's computation time is easily bounded 
and insignificant. The executor's computation time depends upon the operation it is execut- 
ing. We currently rely upon programming guidelines to bound operation execution time 
within acceptable ranges (but see Section 6.) Therefore, our efforts to bound and control 
cycle time have focused on the agenda manager. 

As discussed above, the agenda manager identifies and rates executable operations based 
on cognitive and perceptual events. The time consumed by agenda management is an increas- 
ing function of the number of known operations, the number of perceptual and cognitive 
events, and the number of rating criteria in the control plan. Given the continuous flow 
of events in the environment and the many tasks and operations an intelligent agent can 
perform, identification of all executable operations can take a very long time. Given real- 
time constraints on the agent's behavior, the agenda manager ordinarily cannot identify 
all currently executable reasoning operations before the agent must execute one of them. 
Conversely, there is no need to identify the many possible operations that the agent will 
never execute. 

Therefore, the agenda manager is designed to operate in an incremental, non-exhaustive 
fashion, identifying and rating a subset of the executable operations one at a time and termi- 
nating according to current cycle parameters. These parameters are of three types. Criterial 
operations describe executable operations that, when identified by the agenda manager, 
would be good enough to execute. Criterial events and deadlines describe perceptual or 
cognitive events or specific times whose occurrence requires immediate execution of the 
"best available" operation. (Criterial events may be viewed as uncertain deadlines.) 

Cycle parameters are determined and modified dynamically by the agent's own reasoning 
in the context of its dynamic control plan. For example, if the current control plan simply 
specifies operations of a particular type, any executable operation of that type would be 
good enough. Other things being equal, a task deadline in the control plan would be translated 
heuristically into component deadlines for individual reasoning operations. 

The occurrence of any condition specified in the current cycle parameters causes the 
agenda manager to terminate. The scheduler then chooses the highest priority operation 
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on the current, usually incomplete agenda and the executor executes it. In the case of a 
criterial operation, the highest priority operation will be, by definition, one that is good 
enough. In the case of a criterial event or deadline, the highest priority operation will be 
the best available one at that time. We have experimented with cycle parameters that specify 
criterial operations and deadlines, but not yet with criterial events. 

Because the agenda manager is non-exhaustive, the order in which it identifies executable 
operations is critical. To maximize the speed with which it identifies good enough operations 
and to maximize the priorities of the best available operations at those times when it is 
interrupted by criterial events or deadlines, the agenda manager applies a heuristic best- 
first algorithm. Using whatever criteria appear in the current control plan, it attempts to 
instantiate the highest priority operation type for the highest priority event on each iteration. 
Viewing agenda management as a generate-and-test problem, this algorithm effectively moves 
some of the test criteria into the generator. 

For a given control plan and set of events, the heuristic best-first algorithm identifies 
executable operations in roughly descending order of priority. How closely it approximates 
the actual descending order depends on the details of the control plan and the order in 
which rating criteria are applied. However, because perception and cognition are asynchro- 
nous, the agenda manager works with a dynamic set of perceptual events and control deci- 
sions, incorporating new ones into its computations as they occur. Thus, it often happens 
that newly identified executable operations have significantly higher priorities than those 
already on the agenda. 

The agenda manager places each newly identified executable operation on the agenda, 
ordered by priority. As mentioned above, the agenda has limited capacity, with best-first 
(highest priority) retrieval by the scheduler and worst-first overflow. Thus, at any point 
in time, the agenda constitutes a short, ordered list of high-priority reasoning operations 
suggested by recent high-priority events and control decisions. 

The satisficing cycle can produce a spectrum of agent behavior, depending on the agent's 
dynamic control plan and cycle parameters. Control plans are discriminating to the degree 
that they restrict the assignment of high-priorities to a smaller set of events and operations. 
Other things being equal, more discriminating control plans facilitate rapid identification 
of high-priority executable operations. Cycle parameters are stressful to the degree that 
they reduce the time available for agenda management (lower thresholds for criterial events 
and operations, short deadlines). Other things being equal, more stressful cycle parameters 
lead to rapid execution of a large number of operations. 

These two factors interact to determine the agent's style of behavior. For example, given 
a very discriminating control plan and non-stressful cycle parameters, an agent would appear 
to behave methodically, executing a small number of very high-priority operations per unit 
time. With more stressful cycle parameters, the agent would appear to behave purposefully, 
performing more operations per unit time and perhaps compromising quality by performing 
some lower-priority operations. With very stressful cycle parameters, the agent could still 
behave purposefully if, for example, its control plan restricted its triggering of executable 
operations to a very small set of very important operations, categorically excluding less 
important operations. At the other extreme, given an undiscriminating control plan and 
very stressful cycle parameters, an agent would appear to thrash, executing a large number 
of arbitrary operations per unit time. In fact, given an undiscriminating control plan, the 
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agent's behavior would appear arbitrary regardless of cycle parameters, varying primarily 
in rate of executed operations. 

Ideally, it seems that intelligent agents should perform near the methodical end of the 
spectrum when time and other resources permit and move cautiously along the spectrum 
when required to do so by time and other resource constraints. In practice, we anticipate 
that many agents will not often have the luxury of behaving methodically. However, we 
are more optimistic about agents' ability to behave purposefully by constructing effective 
control plans. We are exploring these issues. 

4. Satisfaction of real-time control requirements 

Let us briefly summarize how the proposed agent architecture is hypothesized to address 
the requirements introduced in Section 2. 

Communications. Information passes from the environment to perception subsystems, 
from perception subsystems to cognition and action subsystems, and from the cognition 
subsystem to perception and action subsystems. 

Asynchrony. Parallel subsystems, with buffered communications, provide asynchronous 
perception, cognition, and action. 

Selectivity. Limited-capacity event buffers selectively favor high-priority inputs--those 
that are recent, relevant, important, and urgent. Perception/action subsystems selectively 
process high-priority sensed data and intended actions. The agenda manager selectively 
triggers and schedules high-priority operations. Dynamic control plans selectively favor 
high-priority reasoning tasks and establish associated focus of attention parameters. 

Recency. Limited-capacity buffers with best-first retrieval and worst-first overflow favor 
recent items, as does the heuristic best-first agenda manager. 

Coherence. Dynamic control plans provide a global focus of attention to coordinate percep- 
tion, cognition, and action over time. They also strategically organize reasoning operations 
within a task and among concurrent reasoning tasks. 

Flexibility. Exceptional events can override global focus of attention in perceptual 
preprocessors or the cognitive system. 

Responsivity. Graduated reactive responses, peripheral, reflex, and cognitive responses, 
span a range of latencies. Within cognitive responses, additional gradations are supported. 
The agenda manager can control cycle time. Dynamic control planning can establish dead- 
lines and discriminate among alternative reasoning methods and strategies. 

lirneliness. Satisfying each of the requirements discussed above contributes to an agent's 
timely response to the most important events. In addition, dynamic control planning allows 
an agent to reason explicitly about the time requirements of alternative operations and the 
time constraints on its behavior. 

Robustness. Satisfying many of the requirements discussed above entails trading amount 
of computation, and therefore, expected quality of response, against latency of response, 
in a gradual manner. 

Scalability. Several aspects of the architecture are designed to accommodate changes in 
scale. For example, perceptual preprocessing and focus of attention will protect the agent 
against increasing perceptual overload. Given a discriminating control plan, the satisficing 
cycle will produce stable cycle times regardless of increases in problem size. 
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Development. Increases or improvements in knowledge should improve the agent's ability 
to meet several of these requirements. For example, improvements in its control knowledge 
should enable it to focus perceptual attention more effectively, improve the strategic control 
of its reasoning, and execute higher-priority operations more rapidly. 

5. The Guardian application 

Because our long-term research goal is to develop a general architecture for intelligent agents, 
experimental development of agents that operate in diverse domains is a major part of our 
research. Each new domain tests the sufficiency and generality of the current architecture 
and presents new requirements for subsequent versions of the architecture. To illustrate 
how agents are implemented within the proposed architecture, we briefly discuss the Guard- 
ian system for intensive care monitoring (Hayes-Roth et al. 1989). 

5.1. Guardian's task environment and requirements 

The sickest surgical patients in the hospital are cared for in the surgical intensive care unit 
(SICU). Most of these patients have temporary failure of one or more organ systems--usually 
the lung or the heart--which is treated with life-support devices that assume the fundamental 
functions of the ailing system until it heals. For example, the ventilator is an artificial 
breathing machine that augments the patient's own breathing. Life-support devices are 
adjusted based upon frequent patient observations. Some observations are made continually 
and automatically, for example, measurements of air pressures and air flows in the patient- 
ventilator system. Other observations are made intermittently. Blood gases, for example, 
are measured once every hour or so, while chest x-rays are usually taken once or twice 
a day. Based on patient observations, device settings are adjusted to vary the amount of 
assistance the device provides. For example, ventilator settings determine the number of 
breaths delivered to the patient per minute, the volume of air blown into the patient's lungs 
on each breath, and the amount of oxygen in the air. Other therapeutic actions might include 
adjusting a ventilator tube, clearing the patient's air passages, administering drugs, etc. 
The short-term goal of SICU monitoring is to keep the patient as comfortable and healthy 
as possible, while progressing toward therapeutic objectives. The long-term goal is to with- 
draw life-support devices gradually so that the patient eventually can function autonomously. 

Although we do not anticipate using Guardian in closed-loop mode in a hospital setting, 
our objectives for it include all of the perception, reasoning, and action necessary for closed- 
loop control. Thus, Guardian's task instantiates all of the requirements for real-time control 
discussed earlier in this paper. Because Guardian has access to over one hundred automati- 
cally acquired patient data variables, each of them sensed several times per second, and 
because it can reason about and act upon these observations in many different ways, Guardian 
must selectively perceive important patient data and perform key reasoning operations that 
contribute to its performance of the most important actions. Because the patient embodies 
a dynamic physical process with its own temporal dynamics, Guardian must asynchronously 
perceive patient data, reason about the patient's condition, and perform therapeutic actions. 
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To insure that its behavior is current, Guardian must forget unrealized past opportunities 
for perception, reasoning, and action in favor of present opportunities. To achieve longer- 
term therapeutic goals, Guardian must enact a coherent pattern of perception, reasoning, 
and action over a period of time. On the other hand, uncertain changes in the patient's 
physiological condition require flexibility and adaptation. Guardian must be responsive 
to patient conditions of varying urgency; other things being equal, the more urgent the 
patient's condition is, the more quickly Guardian must perceive the relevant information, 
perform the necessary reasoning, and execute the appropriate actions. Guardian must satisfy 
a variety of hard and soft real-time constrainis on the utility of its behavior. Because Guardian 
inevitably will encounter situations that strain or exceed its capacity--too many important 
new signs and symptoms, too many important interpretation, diagnosis, prediction, and 
planning tasks, too many important therapeutic actions--its performance must degrade grace- 
fully and not precipitously. Guardian must maintain the quality of its behaviors we scale 
up to more realistic problems. Ideally, it should improve the utility of its behavior as it 
acquires more knowledge. 

5.2. Guardian's current implementation and performance 

Figure 3 illustrates how Guardian instantiates the proposed agent architecture and how it 
interacts with a simulation of the patient-ventilator system and hospital laboratories. 

A single perceptual preprocessor currently manages Guardian's perception of twenty auto- 
matically sensed patient data variables, with an average overall sensed data rate of one data 
value per second. In addition, Guardian perceives irregularly reported lab results and mes- 
sages from human users. Each sensed data value, if passed to the cognitive system, would 
trigger a number of cognitive operations, whose execution would produce a number of 
cognitive events and trigger new operations. Thus, although this is not a high-data rate 
in absolute terms, it is considerably beyond Guardian's current cognitive capacity, which 
is one cognitive operation every two to fifteen seconds with an exhaustive agenda manager 
and controllable to within a couple of seconds with the heuristic agenda manager. Moreover, 
we anticipate that, during the next twelve months, Guardian's sensory activity will increase 
from twenty to one hundred automatically sensed variables, with each of them sensed at 
least once per second. There will be about twenty irregularly sensed data variables. Finally, 
as SICU technology advances, Guardian will have access to new data. Thus, Guardian faces 
significant and growing perceptual overload. 

To avoid falling behind real time, Guardian's perceptual preprocessor applies dynamic 
abstraction, filtering, and annotation parameters sent by the cognitive system. It abstracts 
numerical data values into value classes and trends. It assigns data values to three levels 
of importance: life-threatening, abnormal, and other. It distinguishes data that are relevant 
to ongoing reasoning activities from those that are not relevant. It distinguishes three levels 
of urgency: events that permit an effective response within four minutes, one hour, or longer. 
It filters data based on criterial value changes within deadlines. Thus, the cognitive system 
can bound the variability of unsent intervening values. Using these mechanisms, the pre- 
processor typically reduces sensed data rates by over 90%, maintaining an average overall 
perception rate of approximately one perceptual input every twenty-two seconds, without 
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Figure 3. Guardian's currem design and implementation. 

reducing solution quality (Washington and Hayes-Roth 1989). Additional selectivity is pro- 
vided by the cognitive system itself. Our preliminary experiments suggest that the proposed 
approach to perceptual preprocessing will scale up to protect Guardian from overload under 
the amieipated increase ha sensed data rates (Boureau and Hayes-Roth 1989). 

Guardian has a wide range of medical knowledge including: knowledge of meaningful 
classifications and trends of the twenty-five currently sensed patient data variables; knowledge 
of a twenty-node hierarchy of respiratory disease conditions, patient data that probabilistically 
implicate those diseases, and therapeutic actions that correctthem; knowledge of the normal 
structure and function of the respiratory, circulatory, pulmonary exchange, tissue exchange, 
and tissue metabolism systems; knowledge of the normal structure and function of the ven- 
tilator; knowledge of the normal and abnormal structure and function of abstract flow, dif- 
fusion, and metabolic systems; knowledge of prototypical therapeutic protocols for managing 
a small number of evolving disease conditions; knowledge of the importance and urgency 
of particular observations and diagnoses; knowledge of the precondition, results, and time 
required to perform a number of therapeutic actions. 
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Guardian also has knowledge about performing several reasoning tasks, including: inter- 
pretation of time-varying data, diagnosis of observed signs and symptoms, determination 
of corrective actions for diagnosed conditions, prediction of future physiological conditions, 
explanation of observations, diagnoses, and predictions, and dynamic therapy planning. More- 
over, for most of these tasks, it has both associative and model-based reasoning methods. 
Associative methods capture clinical knowledge and permit quick responses to familiar situa- 
tions. Model-based methods capture more fundamental biological and physical knowledge 
and permit more thorough (and time-consuming) responses to both familiar and unfamiliar 
cases. Each reasoning method is implemented as a set of abstract reasoning operations that 
are triggered by particular kinds of perceptual or cognitive events, along with control opera- 
tions that construct resource-bounded control plans in particular contexts. The results of 
all reasoning activities are recorded in temporally organized episodes in the global memory. 

Depending upon the circumstances, Guardian may be logically capable of pursuing many 
different reasoning tasks with both associative and model-based methods. Given the real-time 
constraints on its behavior, however, Guardian typically must be quite selective about which 
tasks it pursues and how it allocates reasoning resources among them. Accordingly, it uses 
strategic knowledge to construct a dynamic global control plan that differentially favors 
the triggering and scheduling of executable operations involved in competing reasoning tasks. 

For example, in one scenario, Guardian observes that a post-operative patient has low 
body temperature. It makes a global control decision to perform a sequence of reasoning 
tasks: diagnosing the low temperature; predicting a spontaneous rise in temperature to normal 
over a period of hours; predicting the undesirable physiological consequences of low tem- 
perature; and planning a course of action to be executed over a period of hours to avoid 
those consequences. Within each of these tasks, Guardian makes local control decisions 
about whether to apply associative or model-based reasoning methods and how to organize 
its reasoning within the chosen method. At the same time, Guardian's global control plan 
also allows it to incorporate new perceptions, but not to reason about most of those percep- 
tions since they are less important than ongoing activities. 

As the scenario continues, Guardian deviates from this purposeful behavior only when 
a new perception, very high peak inspiratory pressure, indicates a life-threatening patient 
condition with a four-minute deadline. Guardian makes a new global control decision 
to direct all of its resources to correcting this critical condition as quickly as possible, 
This decision impacts three aspects of Guardian's behavior. Its perceptual preprocessor 
refocuses to favor patient data relevant to the high peak pressure and to minimize distrac- 
tion by less important data. Its agenda manager adopts a shorter deadline to insure a quick 
sequence of responses under a short deadline. And, given the content of the new control 
decision, its agenda manager and scheduler favor associative reasoning operations (because 
they have shorter latencies) that diagnose and act to correct the high-pressure problem. 
Given these adaptations, Guardian very quickly (within a minute) performs a sequence 
of operations to deal with the high-peak pressure: diagnoses the immediate problem, inade- 
quate ventilation; increases the breathing rate so the patient will get enough oxygen; 
diagnoses the underlying problem, a pneumothorax (hole in the lung); performs (on the 
simulated patient) the appropriate action, inserting a chest tube to relieve the pressure of 
accumulated air in the chest cavity; reduces the breathing rate now that the pressure is 
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relieved; confirms that the pressure is normal; and confirms that the blood gases are normal. 
Once the problem is solved, Guardian makes a new global control decision to resume its 
previous interrupted activities. 

Several display drivers manage Guardian's communications with human users. These 
communications include dynamic graphical displays of: the patient's SICU history; ongoing 
reasoning and results related to diagnosis, prediction, and therapy planning; structure/func- 
tion explanations of the patient's condition, diagnosis, prognosis, and therapy; and Guardian's 
current global control plan. Each of these displays is interactive, permitting the user to 
pose particular kinds of questions, as well as review previous observations and conclusions. 

Guardian can run either closed-loop, executing recommended actions directly on the 
simulation, or open-loop, simply recommending actions, which human users decide whether 
or not to execute. 

We have developed Guardian's architecture and component capabilities for a small number 
of characteristic SICU scenarios. Although this knowledge base is far from complete, it 
allows Guardian to handle a wider set of SICU scenarios than we have actually tested so 
far. In addition to extending and refining Guardian's component capabilities, our current 
work involves collecting a library of new SICU scenarios to identify the limits of Guard- 
ian's current knowledge base and to drive extension of the knowledge base. Although our 
patient simulator provides realistic SICU data, we are interested in evaluating Guardian 
on real patient data. We have begun collecting patient histories for reenactment studies. 
We are investigating establishing a direct link between Guardian and computers in the SICU 
at the Palo Alto Veterans Administration Medical Center. 

6. Other approaches to intelligent agents 

61. Variations on the proposed architecture 

Designing an agent architecture involves making design decisions in a large space of design 
features. To put our proposed architecture in perspective, we mention a few of the features 
we have considered and rejected and a few that we are planning to explore further. 

We designed the satisficing cycle and heuristic agenda manager as a replacement for the 
optimizing cycle and exhaustive agenda manager that we and others have used in the past 
(Corkill, Lesser and Hudlicka 1982; Erman et al. 1980; Hayes-Roth 1985). This appears 
essential for real-time performance and probably for efficient performance in large non- 
real-time systems that have much knowledge and run for many cycles. The present satisficing 
cycle preserves the sequential nature of the optimizing cycle. However, we are exploring 
the possibility of allowing agenda management to run continuously, with paraUel scheduling 
and execution of criterial or best available operations. So far, we have finessed the problem 
of unbounded operation execution times by imposing programming constraints. However, 
we are studying more flexible approaches that would allow variable computation times for 
executed operations, with the possibility of interruption by identification of newer, higher- 
priority next-operations. Depending upon the specification of the operation currently being 
executed, the executor would either abort execution of the current operation or suspend 
it and place a rated resumable form of the operation in an appropriate position on the agenda. 
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Regarding limited-capacity buffers, we have given some thought to introducing spontaneous 
temporal decay of items in buffers. In a dynamic environment, even very important events 
are perishable and may not warrant processing after a period of time. Although it has been 
suggested to us that an agent's buffer capacities might be variable in different contexts, 
we continue to assume that they are static. However, we are investigating the concept of 
limited-capacity back-up buffers which catch and preserve very important overflow items. 

We considered modeling perception and action processes as operations in the cognitive 
system, but that approach did not provide the desired asynchrony and interfered with 
timeliness (Hewer and Hayes-Roth 1989). 

Finally, we have distributed perception, cognition, and action among parallel processes 
because they represent minimally interacting, coarse-grained chunks of knowledge and com- 
putation. Therefore, we hypothesize that they can be distributed among parallel processes 
without incurring excessive communications demands or knowledge redundancy. So far, 
that hypothesis seems to be correct. Although we have considered distributing cognitive 
tasks among parallel processes (Hayes-Roth et al. 1989), our experience with Guardian 
suggests that cognitive tasks have many important interactions, including sequential con- 
straints, and associated needs for communication. Operating on a single processor in the 
context of a single global data structure supports these interactions, so we would favor 
distribution of cognitive tasks only in a shared-memory architecture. 

62. Alternative architectures 

A considerable body of research has focused on classical planners (Fikes and Nilsson 1971; 
Sacerdoti 1975). Under this model, an agent perceives information from the environment 
and then constructs a goal-oriented sequence of actions, a plan, which it subsequently exe- 
cutes. Classical planning architectures are not intended to provide comprehensive capabilities 
for intelligent agents, so it is not surprising that they do not satisfy all of the requirements 
for real-time control put forth in this paper. Global coherence is the most prominent advan- 
tage of classical planners. However, the computational cost of formulating a complete plan 
by reasoning backward from goals can be excessive (Chapman 1987). Classical planners 
do not meet the other requirements. 

Relaxing this perceive-plan-act sequence, some researchers allow the agent to interleave 
planning and execution, either to build the plan incrementally or to modify the plan in 
response to unanticipated conditions (Corkill, Lesser and Hudlicka 1982; Georgeff and 
Lansky 1987; Hayes-Roth 1985; Hayes-Roth 1987; Lesser, Pavlin and Durfee 1988). Other 
researchers introduced more knowledge-intensive and computationally tractable methods 
for generating partial plans, including: instantiating goal-oriented action schemas (Friedland 
1979; Hayes-Roth et al. 1986); integrating top-down and bottom-up planning methods (Hayes- 
Roth et al. 1979; Johnson and Hayes-Roth, 1987), transferring successful plans to new situa- 
tions (Daube and Hayes-Roth 1989; Hammond 1986); or successively applying constraints 
among potential actions (Stefik 1971). Interleaving planning and execution permits an agent 
to meet several real-time requirements. However, their success is limited by unbounded 
computation times for component processes, especially the match processes that trigger 
reasoning operations. Although researchers have made progress in developing efficient match 
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algorithms (Forgy 1982), these approaches only speed up the match process. They do not 
reduce the computational complexity of the process and, more importantly, they do not 
permit an agent to directly control the amount of time spent on the match process. 

By contrast, in an effort to avoid the computational cost of control reasoning and thereby 
create real-time responsivity, some researchers have turned their attention to the theory, 
design, and implementation of reactive agents (Agre 1987; Andersson 1988; Murray 1989; 
Rosenschein and Kaelbling 1986; Schoppers 1987). Basically, reactive agents store large 
numbers of perception-action rules in a computationally efficient form and execute actions 
invoked by environmental conditions on each iteration of a perceive-act cycle. Thus, they 
are similar to control theoretic methods (Bollinger and Duffle 1988), where traversal of 
symbolic networks replaces computation of numerical models. Reactive models often assume 
synchronization of reactive cycles with the occurrence of events in the environment. Selec- 
tivity is achieved to the degree that the system builder has encoded it in the network and 
flexibility is a natural consequence of the perceive-act cycle. On the other hand, coherence 
occurs only fortuitously, presumably emerging from the agent's characteristic reactions 
to events in an orderly task environment. Reactive agents provide responsiveness and robust- 
ness only when perception-action networks include context-specific alternative subnetworks. 
In general, we view the reactive agent model as a good framework for engineering solutions 
to particular, narrowly defined feedback control tasks for which control-theoretic models 
are inapplicable--those for which numerical models are either non-existent or intractable. 
It also might be an appropriate mechanism for low-level perception-action programs that 
by-pass the cognitive subsystem within the proposed architecture. For example, the proposed 
architecture might incorporate reactive peripheral programs for focusing perceptual attention 
or feedback control of actions. However, we suspect that the reactive model is not an appro- 
priate general model for tasks that present challenging requirements for selectivity, global 
coherence, responsivity, or robustness. And it is not appropriate for complex tasks or for 
the multiple task behavior expected of generally intelligent agents where enumerating all 
possible perception-action contingencies and encoding them in a computationally tractable 
form may be infeasible. 

Finally, robotics researchers aim to build task-level robot systems (Ernst 1961; Lozano- 
Perez 1989). Unlike robots programmed to perform specific mechanical tasks, task-level 
robots are intended to accept high-level goals and then determine and perform whatever 
behaviors are necessary to achieve the goals. They are intended to operate under a variety 
of incidental contextual conditions, including low-frequency exceptional conditions related 
to hardware, software, or environmental state. Significant applications of this work include 
efforts to build autonomous vehicles (Goto and Stentz 1989; McTamaney 1989). Robotics 
work is similar in spirit to the present research, integrating perception, action, and cogni- 
tion to achieve goals in a real-time task environment. However, robotics research tradition- 
ally has focused on challenging perceptual-motor tasks, only recently beginning to incor- 
porate more cognitive activities, such as goal determination, planning, exception handling, 
and learning (Bares et al. 1989). Conversely, our work grows out of earlier work emphasizing 
reasoning and problem-solving, with new emphases on perceiving and acting in a real- 
time environment. 
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7. Limitations of the proposed architecture 

Despite our interest in the proposed architecture, we must acknowledge that it makes agents 
vulnerable to errors that do not occur under conventional software architectures. By defini- 
tion, the architecture's real-time control mechanisms--its perceptual filtering, limited capacity 
I/O buffers, dynamic control planning, focus of attention, and satisficing cycle--allow an 
agent to ignore many opportunities to perceive, reason, and act and to perform sub-optimal 
operations. In general, the agent allocates limited computational resources among competing 
activities in proportion to their urgency and importance. In many cases, this will not affect 
the global utility of the agent's performance. In others, it will produce acceptable degration 
in particular aspects of performance. In extreme cases, however, an agent might decide 
prematurely to perform cosily, ineffective, or counterproductive operations: or it could 
fail to perform highly desirable operations that are well within its capabilities. Nonetheless, 
it is our hypothesis that, if we wish to build agents that function well in complex real-time 
environments, of which the natural environment is a prime example, we must forego opti- 
mality in favor of effective management of complexity (Simon 1969). Allowing the possibility 
of occasional, more or less consequential error is a necessary concession toward that end. 
Formulating control knowledge that allows an agent to meet the most important real-time 
performance requirements while minimizing the impact of incompleteness and suboptimality 
is a primary objective of our research. 
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