
Distributed Computing (1988) 2:226-241

Appraising fairness in languages
for distributed programming*

Krzysztof R. Apt1, Nissim Francez 2 and Shmuel Katz 2

© Springer-Verlag 1988

1 Center for Mathematics and Computer Science, Kruislaan 413, NL-1098SJ Amsterdam,
The Netherlands and Department of Computer Science, University of Texas at Austin, Austin TX 78712-1188, USA
2 Department of Computer Science, The Technion, Haifa, Israel

Krzysztof R. Apt was born
in 1949 in Poland. Received his
Ph.D. in 1974 from Polish Aca­
demy of Sciences in Warsaw in
mathematical logic. From 1974
until 1981 worked at various
scientific institutions in the
Netherlands and from 1981 un­
til 1987 at C.N.R.S. in Paris,
France. Spent 1985 as a visiting
scientist at IBM Research
Centre in Yorktown Heights,
U.S.A. Currently holding an
Endowed Professorship at the
Department of Computer Sci-
ences at the University of Texas

at Austin; also a senior research scientist at the Centre for
Mathematics and Computer Science in Amsterdam, the Nether­
lands. His research interests include program correctness and
semantics, methodology of distributed computing, use of logic
as a programming language and non-standard forms of reason­
ing. He has served on editorial boards of a number of journals
and program committees of numerous conferences in computer
science. Lectured in a dozen countries on four continents. Also,
he has run two marathons and crossed Sumatra on a bicycle.

Shmuel Katz received his
B.A. in Mathematics and Eng­
lish Literature from U.C.L.A.,
and his M.Sc. and Ph.D. in
Computer Science (1976) from
the Weizmann Institute in Re­
hovot, Israel. From 1976 to
1981 he was a researcher at the
IBM Israel Scientific Center.
Presently, he is a Senior Lec­
turer in the Computer Science
Department at the Technion in
Haifa, Israel. In 1977 78 he
visited for a year at the Univer­
sity of California, Berkeley, and
in 1984 85 was at the U niversi-

ty of Texas at Austin. He has also been a consultant for the
MCC Software Technology Program. His research interests in-

0.ffprint requests to: K.R. Apt

*A preliminary version of this work appeared in [AFK]

elude the methodology of programming, specification methods,
program verification and semantics, distributed programming,
data structures, and programming languages.

Nissim Francez received his
B.A. in Mathematics and Phi­
losophy from the Hebrew Uni­
versity in Jerusalem, and his
M.Sc. and Ph.D. in computer
science (1976) from the Weiz­
mann Institute of Science, Re­
hovot, Israel. In 1976-77 he
spent a postdoctoral year at
Queen's university, Belfast,
where he was introduced by
C.A.R. Hoare to CSP. In 1977
78 he was an assistant professor
at USC, Los Angeles. From
1978 he is with the Computer
Science Department at the

Technion. In 1982-83 he was on a sabbatical leave at IBM
T.J. Watson Research Center. He has been a consultant for
MCC's software technology program, working on multiparty
activities in distributed systems. He had summer appointments
in Harvard University, IBM T.J. Watson Research Center,
Utrecht University, CWI (Amsterdam) and at MCC. He also
served in several program committees. His research interests
include program verification and the semantics of programming
languages, mainly for concurrent and distributed programming.
Is also interested in logic programming and recursive query
evaluation and in compiler constraction. He is the author of
the first book on Fairness. Unfortunately, he is incapable of
Marathon running

Abstract. The relations among various languages
and models for distributed computation and var­
ious possible definitions of fairness are considered.
Natural semantic criteria are presented which an
acceptable notion of fairness should satisfy. These
are then used to demonstrate differences among
the basic models, the added power of the fairness
notion, and the sensitivity of the fairness notion
to irrelevant semantic interleavings of independent
operations. These results are used to show that

K.R. Apt et al.: Fairness for distributed programming

from the considerable variety of commonly used
possibilities, only strong process fairness is appro­
priate for CSP if these criteria are adopted. We
also show that under these criteria, none of the
commonly used notions of fairness are fully accept­
able for a model with an n-way synchronization
mechanism. The notion of fairness most often men­
tioned for Ada is shown to be fully acceptable.
For a model with nonblocking send operations,
some variants of common fairness definitions are
appraised, and two are shown to satisfy the sug­
gested criteria.

Key words: Fairness Distributed computing -
Communication - Partial order semantics - Se­
mantic criteria

1 Introduction

Fairness is an important concept which naturally
arises in the study of nondeterministic systems, in
particular when dealing with concurrent systems.
A very general formulation is a statement of the
form: if a certain choice is possible sufficiently of­
ten, then it is sufficiently often taken. Depending
on the definitions of a "choice", "possible", and
"sufficiently often", different notions of fairness ar­
ise. A variety of these fairness notions have been
introduced in the literature and studied both from
a proof theoretic and a semantic point of view.
Semantics is usually introduced by means of a com­
putational model which defines legal computa­
tions. A two-leveled approach is most often taken
in which first the legal computations are described,
and then a fairness notion is used to exclude some
additional computations which otherwise would be
legal. An overview, examples, and further refer­
ences may be found in [Fr].

For nondeterministic programs some of the
fairness notions include weak fairness (also called
justice), strong fairness, equifairness, and extreme
fairness. For CSP [HJ and other models for distrib­
uted computing, at least six reasonable variants
have been defined and investigated. This wide vari­
ety of possibilities leads to a confusing situation:
selection of a particular definition of fairness for
any particular model or language relies almost ex­
clusively on subjective, implicit criteria.

In this paper, we suggest three simple semantic
criteria which can aid in determining which notions
are appropriate for which computational model.
The criteria we propose are termed feasibility,
equivalence robustness, and livenes!! enhancement.
Below we informally explain the criteria and the

227

results linking the criteria and the models. In subse­
quent sections the formal definitions are given, and
the theorems and proofs which lead to these results
are presented.

Feasibility. As noted above, any definition of fair­
ness excludes some of the executions (the "unfair"
ones) which otherwise would be legal executions
of a program according to a semantics of the com­
putational model. A necessary requirement of any
definition of fairness for a computational model
is to have some legal computation remain after
this exclusion, for every possible program and ini­
tial state. That is, for every legal program and ini­
tial state some (finite or infinite) fair computation
does exist. This restriction is closely related to the
idea of implementing fairness by means of sche­
dulers. Without it, no scheduler - which must pro­
duce one of the fair computations - could correctly
treat the fairness. Moreover, since any reasonable
scheduler cannot 'predict' the possible continua­
tions at each point of the computation, it should
be possible to extend every partial computation
to a fair one. This is the proposed feasibility criteri­
on, and it subsumes the above necessary require­
ment.

As a simple example of an unfeasible definition
of fairness for guarded commands (GC) [DJ, consid­
er the following fairness definition: all choices (re­
ferred to as directions) which are infinitely often
possible must eventually be chosen equally often.

In Figure 1 a nonterminating program P is
shown, for which there is no computation sequence
satisfying the above definition, even though both
directions are infinitely often possible. Thus no
scheduler can be devised, and the fairness notion
is not feasible for that model. (In fact, feasible defi­
nitions of such a fairness notion must incorporate
the set of choices which are jointly possible at each
stage, as in [GFK !].)

Equivalence robustness. For concurrent programs,
the computational model used induces a depen­
dency relation among actions. For example, an in­
put action of a receiving process depends on a cor­
responding output action of a sending process. The
computations of asynchronous, distributed systems
are often modeled by interleaving the (atomic) ac­
tions of their component processes. However, it
is clear that the order of execution of independent
actions in such an interleaving is arbitrary. Thus
two execution sequences which are identical up to
the order of two independent actions should be
equivalent. This leads to the second criterion: a
definition of fairness is equivalence robust for a
computational model if it respects the equivalence

228

P: :x,=1; *[true-> x'=x+ 1

0 x mod 3=0---+ x:=x+ !].

Fig. I

induced by that model. That is, for two infinite
sequences which differ by a possibly infinite
number of interchanges of independent actions (i.e.,
equivalent sequences), either both are fair accord­
ing to the given definition, or both are unfair. If
this criterion is not satisfied, then fairness depends
on the particular ratio of processor speeds or on
the location of the observer, which is undesirable.

Liveness enhancement. All distributed models as­
sume a fundamental liveness property that an action
will eventually be executed in some process if the
system is not deadlocked. Any additional fairness
requirement complicates the scheduling and may
cause difficulties in defining a precise semantics or
proving correctness. Thus adding an additional li­
veness requirement of some sort of fairness is only
justified if some benefit will accrue. That is, there
must be some program which has some liveness
property which it would not have without the addi­
tional requirement. This criterion is termed liveness
enhancement in order to emphasize that additional
liveness properties will hold for some programs.
As shown in the sequel, this also depends on the
particular model being considered, and is sensitive
to fine details of the model. Some fairness assump­
tions cannot force a communication to occur in
a model if it did not have to occur under the basic
liveness property. These assumptions are not live­
ness enhancing for that model.

It is sufficient to consider here the impact of
fairness assumptions on termination only. This is
true because such assumptions are known not to
affect partial correctness or, more generally, safety
properties, and other liveness properties can be re­
duced to termination for derived programs (see
[GFMdR]).

Plan of the paper

In the sequel, we appraise several fairness defini­
tions and computational models under the criteria
suggested above. These are only examples of the
application of our approach. Readers are invited
to apply these criteria, or any variants and addi­
tions they prefer, to their favorite fairness defini­
tions and computational models.

In the next section we introduce the formal defi­
nitions of the semantics and of the fairness criteria.
Then in section 3 the properties of six fairness no­
tions for CSP are analyzed in detail. We conclude
that only one of these common notions - Strong

K.R. Apt et al.: Fairness for distributed programming

Process Fairness - satisfies all three criteria. The
joint action of CSP involves synchronous commu­
nication between a pair of processes. In section 4,
we study the case of N-way communication (for
arbitrary N > 2), i.e., a joint action with synchro­
nous communication among N processes. We show
that none of the six common fairness definitions
we consider satisfy all of the criteria. The difference
between the 2-way and N-way cases lies in a
greater possibility of "conspiracies" when N > 2.
That is, one group of processes may ensure that
particular actions involving other processes are in­
sufficiently often possible.

In section 5 fairness for an abstraction of Ada
is considered, while section 6 defines and appraises
fairness notions for a message-passing model with
a nonblocking send operation. The Ada and the
nonblocking send models have in common that the
fairness notions relate to the receipt of a message
or activation of a rendezvous within a single pro­
cess. As is shown, for this reason all of the fairness
notions considered will be equivalence robust for
these models. In the Conclusions, some implica­
tions of our results are considered regarding proof
rules for termination under a fairness assumption.

2 Formal definitions

2.1 Computational models

The models of computation considered here are
assumed to have some common structural proper­
ties. By a distributed program we mean a fixed col­
lection of processes. These processes have disjoint
states and perform atomic actions. The model attri­
butes each action either to one process, in which
case we refer to it as a local action (of that process),
or to two or more processes, in which case we
refer to it as a joint action (of those processes).
A configuration is a pair consisting of a global state
and an atomic action to be taken.

Definition. A computation is a maximal sequence
of configurations, where the action in a configura­
tion transforms the state of that configuration to
the state of the immediately following configura­
tion.

We also assume that the state determines a
predicate enabled over the possible actions which
may appear in a configuration, as defined below.

Definition

i) An action is enabled in a configuration if it can
serve as the next action executed (where the exact
definition is model dependent).

K.R. Apt et al.: Fairness for distributed programming

ii) A process is enabled in a configuration if some
(possibly joint) action attributed to it is enabled
in the configuration.
iii) A process is ready for an action in a configura­
tion if its local state is the projection of a state
in which the action is enabled and the action is
attributed to that process. The second component
of a configuration is always one of the actions en­
abled in that configuration and represents the one
chosen to be executed at that point in the computa­
tion.

Similar approaches to defining semantics may
be seen in [P] for CSP, and in [HLP] for a frag­
ment of Ada. However, it is also reasonable, and
even attractive to consider a partial order semantics
(see for example [L 1], [R], or [OM]) expressing
only the essential causal relationships among the
atomic actions (both local and joint). In this paper
we will assume that the underlying partial orders
are total over the local atomic actions of each indi­
vidual process, so that two local actions of the same
process are ordered. Clearly, every such partial
order induces a dependency relation among ac­
tions, and a uniquely defined equivalence over in­
terleaved computations of those satisfying the same
partial order with the same actions.

Definition. Two atomic actions are independent if
they are not related by the partial order.
Definition. If TC and p are interleaved computations,
then TC= p iff TC can be obtained from p by (possibly
infinitely many) simultaneous transpositions of two
independent atomic actions.

Thus we assume a combined semantics where
both the collection of interleaved computations
and the equivalence relations defined by the under­
lying partial order are available. A temporal logic
assuming this kind of semantics is defined and in­
vestigated in [KP].

In this paper, three additional assumptions are
made about the syntax of the programs studied
and the computational models considered:

(J) Noninstantaneous readiness. Every joint action
is immediately followed by a configuration with
a state in which each participant process is not
ready for any joint action. This means that once
a process executes a joint action it enters a local
state in which none of the joint actions in which
it can participate is enabled. The next local action
could, of course, be a (possibly implicit) skip whose
only effect is to make some joint action become
a possible later choice.

229

This affects the definition of when a joint action
is continuously enabled. The justification for the
noninstantaneous readiness assumption is that
joint (and other) actions take time at the implemen­
tation level, even though they are considered atom­
ic on the program level. Thus if we wish to equate
"continuously" with "uninterruptedly" (as we do),
even the interruption caused by executing one ac­
tion can be enough to make other ijoint) actions
temporarily disabled. As will be indicated in the
proofs, this assumption influences the results we
obtain regarding liveness enhancement. A more de­
tailed examination of issues involved in deciding
when a joint action should be considered enabled
may be found in [FK]. Some other work in this
area ([KdR]) assumes that only states where joint
actions are possible choices need be considered as
significant. In that case, it would be possible for
a process which participates in a joint action A
to nevertheless be "continuously" ready to partici­
pate in some other joint action B.

The noninstantaneous readiness assumption
may be enforced either by assuming that local ac­
tions actually appear in the text after every joint
action, or by positing a hidden local state and local
skip action after every joint action.

(2) Uniform choice. A choice between a local and
a joint action is never possible. This assumption
is motivated by our desire to emphasize the influ­
ence of fairness assumptions on the execution of
joint actions, and the fact that many fairness defini­
tions do not relate at all to local actions. This and
the previous assumption together guarantee that
the definitions of fairness considered here are im­
mune to additions of local actions, like skip, in
processes. In the terminology of [L2] we might
say that these definitions are immune to stuttering,
i.e., to repetitions of a configuration in a computa­
tion. Again, this assumption is crucial to some of
the results seen in later sections.

(3) Minimal progress [OL]. Every process in a state
with enabled local actions will eventually execute
some action. This minimal progress assumption is
somewhat stronger than the fundamental liveness
property mentioned in the introduction. According
to this stronger assumption, a process will not sim­
ply "stop executing" when it has local actions
which may be chosen. In the sequel, all computa­
tions are assumed to satisfy the minimal progress
property.

Note that this property could be itself consid­
ered to be a fairness assumption, and indeed has
been in the literature. However, in [FdR] it is
shown not to allow proving the termination of ad­
ditional programs beyond those which terminated

230

under the fundamental liveness assumption (that
some atomic action is executed somewhere). In our
terminology this means that minimal progress is
not liveness enhancing in relation to the fundamen­
tal liveness property. We have chosen to "build-in"
this assumption so that the focus of additional fair­
ness definitions is on joint actions (e.g., interprocess
communication). This assumption is significant for
results on liveness enhancement, since the enhance­
ment is relative to this minimal progress property.

2.2 Fairness and appraisal criteria
Now the possible definitions of fairness and the
criteria for their appraisal may be expressed in
terms of the computational models.

Dejinition

i) Given a (distributed) program P, comp(P) is the
set of interleaved computations generated by P
under the semantics of the model, assuming only
the minimal progress property.
ii) A fairness notion (or fairness definition) F is a
rule for selecting, for any given program P, a subset
of computations F(P)s;comp (P) such that F(P)
contains all finite computations in comp(P).

Note the indirect dependence of F on the model
of computation, since comp(P) itself depends on
the model. Actually, an arbitrary selection function
would generally not be considered a fairness notion
at all since the uniform predicate for deciding
whether a computation is fair or not involves the
choices made during the computation. A fairness
definition would be expressed in terms of the predi­
cates enabled, ready, and other predicates such as
executed (true of an action if it has been executed
in the previous configuration). However, such re­
strictions will not be imposed here formally, since
in any case we do not intend to precisely character­
ize all possible fairness definitions, but rather to
provide criteria for appraising specific examples of
such definitions. Now we may state these criteria
precisely.

A necessary condition for feasibility of F is that
for all programs P, if comp{P)r' 0, then F(P)# 0.
As already explained, feasibility should also pre­
vent a scheduler from "painting itself into a
corner" with no possible continuation. Thus the
definition is expanded to cover this difficulty.

Dejinition. F is feasible iff for every program P
every finite initial segment of an interleaved com­
putation in comp(P) can be extended to a computa­
tion in F (P).

K.R. Apt et al.: Fairness for distributed programming

Definition. F is equivalence robust iff for every pro­
gram P and every two computations n and p in
comp(P), (nEF(P) A n=p)~pEF(P).

Dejinition. F is liveness enhancing iff there is a pro­
gram P such that comp(P) contains an infinite com­
putation, but all computations in F(P) are finite.

This definition means that P terminates under
the assumption of F. Because of the possible reduc­
tion of liveness properties to termination of a de­
rived program, this is sufficient to express general
liveness enhancement.

By a projection of a computation n on a process
p, denoted by [n:]P, we mean the result of deleting
from n all actions in which p is not involved and
restricting the states to variables used only in p.
Note that in general [n]P need not be a computa­
tion.

The following simple lemma will be useful in
the sequel. It is a direct consequence of our as­
sumption about the totality of the local dependence
relation within a process.

Lemma (Projection equality). If n = p, then for each
process p, [n]p=[p]P.

Note. The converse of this lemma was proved by
L. Bouge {private communication) for CSP pro­
grams. We do not need this stronger version here.

3 Results for CSP
In this section the results concerning the CSP mod­
el are stated. We consider the language as defined
in [HJ except that

(i) nested parallelism is disallowed,
(ii) the distributed termination convention 1s

not adopted,
(iii) output commands may appear in guards,
(iv) the three additional assumptions given in

the previous section are also imposed.
The semantics we consider is that of interleaved

computation sequences as defined in [P]. Accord­
ing to this semantics the control of a process is
identified with the part of the process text still to
be executed. A configuration is then a vector of
control points of the processes and a usual global
state. This view can easily be converted into the
configuration defined in section 2.1 because the ac­
tion taken can be extracted from the information
available in successive control vectors, as may the
predicate enabled.

In order to satisfy the noninstantaneous readi­
ness assumption, we assume that each i/o com­
mand or i/o guard is immediately followed by a

K.R. Apt et al.: Fairness for distributed programming

local action (which as mentioned might be skip).
To ensure the uniform choice assumption we pos­
tulate that in alternative and repetitive commands
either all guards are boolean or all guards contain
an i/o command. Finally, only computations sat­
isfying the minimal progress assumption are con­
sidered. In the continuation, when the CSP model
is referred to, all of the assumptions above are in­
cluded.

In the context of CSP, it is reasonable to define
fairness so as to guarantee that an action will be
taken by each process which satisfies some condi­
tion, or that each communication satisfying a con­
dition will occur, or that one communication will
occur from each group of communications between
two processes which satisfy a condition. That is,
the "choices" for fairness could be among the pro­
cesses, the pairs of processes which could commu­
nicate (i.e., the channels), or the individual commu­
nications.

Once it has been settled what is to be fair, the
precise interpretation of "sufficiently often" must
be determined. Two well-known possibilities for
CSP are weak fairness, in which the choice is possi­
ble continuously from some point on, or strong fair­
ness, in which the choice is possible infinitely often.
Taking all of the combinations, six notions are ob­
tained.

Strong process (SP) fairness. An infinite computa­
tion is fair iff each process infinitely often ready
to execute some joint atomic actions will infinitely
often do so.

Strong channel (SCh)fairness. An infinite computa­
tion is fair iff each pair of processes infinitely often
capable of communication with each other do in­
finitely often communicate with each other (so that
one of the possible communications between them
is executed, possibly a different one every time).

Strong communication (SCo) fairness. An infinite
computation is fair iff each pair of i/o commands
(i.e., each specific possibility of communication)
which is infinitely often jointly enabled is executed
infinitely often.

The weak versions, WP, WCh, WCo, respective­
ly, are obtained by substituting" continuously from
some point on" for the first occurrence of "infinite­
ly often". Furthermore, it is stipulated that all finite
computations are fair w.r.t. all fairness definitions.

The consequences of the following propositions
are that although all six possibilities are feasible,
only strong process fairness is both equivalence ro­
bust and liveness enhancing for CSP: under our

231

Table 1. Summary of appraisal for CSP

Feasible Equivalence Liveness
robust enhancing

SP + + +
SCh + +
SC + +
WP +
WCh + +
we + +

assumptions, no type of Weak fairness is liveness
enhancing, and strong communication or channel
fairness are not equivalence robust. These results
are summarized in Table 1.

Proposition 1. The six notions of fairness defined
above are all feasible for the CSP model.

Proof idea. For each fairness definition an explicit
scheduler is exhibited and it is shown that any pre­
fix of a legal computation can be generated by the
scheduler. Moreover, if a prefix of a computation
was generated by the scheduler, then the scheduler
will generate a continuation which satisfies the con­
dition for being in D, i.e., a computation satisfying
the fairness notion under consideration. This idea
has been used implicitly in [AO] and explicitly
in [OA].

As an illustration of this technique, consider
strong communication fairness. Given a CSP pro­
gram P, associate with each of the atomic actions
of P a distinct variable, called a priority variable.
The scheduler can be viewed as a program executed
in parallel to P, having access to all variables in
P for inspection. It can also determine the control
locations of all processes in P. The scheduler inter­
acts with P by executing the program section SE­
LECT seen in Fig. 2, which determines the next
action in the computation of P. After the execution
of the selected action by P, the scheduler regains
control, unless P has terminated or entered a dead­
locked configuration. All priority variables are ini­
tialized to arbitrary nonnegative integer values.

Versions of these schedulers could also be com­
posed so that the conditions apply to superimpose
(in the sense seen in [BF] and [K]) the scheduler
on the program P, and so that the result would
be a legal CSP program. Rather than using the
shared variables in the schedulers described above,
each process in P and the scheduler would be mod­
ified so that the values of the control locations and
of the priority variables are sent as messages to
the scheduler instead of being read directly.

232

for each atomic action do
if it is enabled then decrement its priority

variable by 1;
select for execution an enabled action with a minimal

value for its priority variable;
reset the priority variable of the selected action to

an arbitrary nonnegative integer

Fig. 2. SELECT

Because of the use of random assignments and
possible nonuniqueness of the minimal priority
variable, the scheduler itself is nondeterministic.
The following faithfulness theorem holds, whose
proof is a variant on abstract results in [OA].

Theorem (Faithfulness)

1. Every computation of P generated by the sche­
duler is SCo fair.
2. Every SCo fair computation of P or any finite
prefix of a computation can be generated by the sche­
duler.

Proof idea

1. Consider a computation of P which is generated
by the scheduler, and a pair of i/o commands which
form a joint action. Each time this joint action
is enabled in the sequence considered, its priority
variable is decremented by 1. One can prove (see
[OA]) that given n actions each priority variable
is invariantly at least - n + 1. This guarantees that
every joint action infinitely often enabled is execut­
ed infinitely often.

Moreover, by the same argument, since local
atomic actions also have associated priority vari­
ables which are decremented, every process with
enabled local actions will eventually be activated
so the minimal progress assumption will be met.
The sequence generated by the scheduler is thus
strong communication fair.
2. Consider a SCa fair computation of Pora prefix
of a computation. To show that it can be generated
by the scheduler, it is sufficient to define the appro­
priate values of the priority variables at the point
where they are reset. We simply assign to each
priority variable the number of times the associated
action is enabled before it is taken (if at all). It
is straightforward to see that this choice of values
is consistent with the choices made by the sche­
duler. In fact, each action when taken will have
its priority variable equal to zero. D

The above theorem immediately implies that
strong communication fairness is feasible. For any
finite prefix of a computation, by part 2 of the theo­
rem it can be generated by the scheduler. The sche­
duler will then continue to choose events for execu-

K.R. Apt et al.: Fairness for distributed programming

tion. If it reaches a point at which no event can
be chosen, this can only be because no event was
enabled, and the same sequence of events define
an execution which terminates from comp(P), and
thus is fair. Otherwise the scheduler will generate
an infinite computation, which is also fair due to
part 1 of the theorem. Thus every prefix of a com­
putation has a fair extension, as required. Sche­
dulers and faithfulness theorems may be obtained
for the other fairness definitions merely by modify­
ing the conditions for enabledness and for resetting
the appropriate priority variables.

Proposition 2. Weak communication, weak channel,
and strong process fairness are equivalence robust
for the CSP model.

Proof idea. It is easiest to show that SP fairness
is equivalence robust for CSP by considering the
unfair computations of an arbitrary program P.
If n is strong process unfair, then from some point
on there is a process P; which is infinitely often
enabled for at least one joint action but no joint
action involving .P; is ever executed. Thus .P; is con­
tinuously ready for the communication, since there
are no alternative local actions which it could exe­
cute. Here the Uniform Choice condition, i.e., the
restriction to a model where local actions are not
nondeterministic alternatives to communications,
is essential. Now consider any equivalent computa­
tion p. By the Projection Equality lemma, starting
from some point in p, the process .P; is here also
continuously ready for a joint action. Again, by
the same lemma, there are infinitely many states
in which the possible partner of .P; could have com­
municated with ~. so the communication is en­
abled. Thus in this case also, p is SP unfair.

For the weak communication case, the assump­
tion of being continuously enabled means that in
an unfair computation neither participant process
in a continuously enabled joint communication can
do anything else. As before, this is also true in
any equivalent computation sequence. This it too
will be unfair, establishing the equivalence robust­
ness. The WCh fairness is treated similarly.

Proposition 3. Strong communication, strong chan­
nel, and weak process fairness are not equivalence
robust for the CSP model.

Proof We show that weak process fairness is not
equivalence robust by exhibiting two equivalent in­
terleaving computations for a program (Fig. 3), a
variant of the dining philosophers, with five cycli­
cally arranged processes, each able to communicate

K.R. Apt et al.: Fairness for distributed programming

P: :[Poll··· 11.P.iJ
where

P;: :l;•=true; r;•=false;

*[P;_ 1? I;->

[I;" r; ->eat 01 (I; "r;) ->skip]

OP;+1? r;->

[I;" r; ->eat 01 (I; "r;) ->skip]

O I;; P;- 1 ! true --+ I;•= false

Or;; P;+t! true-+r1•=false

].

Fig. 3. A conspiring program

with its immediate neighbors. Even though the two
computations are equivalent, one is weak process
fair while the other is not. This occurs because in
one computation the middle process (i.e., P2) could
communicate in every state with at least one of
its neighbors, but does not, leading to an unfair
computation, while in the other, there are infinitely
many states in which the middle process cannot
communicate or otherwise advance at all, because
both partners are communicating elsewhere. Thus
in the second computation the middle process'
noncommunication does not violate the weak fair­
ness condition.

The first computation consists of an indefinite
repetition of the following finite segment:

1) Po and Pi communicate.
2) Po executes its local action.
3) Pi executes its local action.
4) P:i and £i_ communicate.
5) P:i executes its local action.
6) ~ executes its local action.

This computation is clearly unfair to process
P2 • The second computation consists of the indefi­
nite repetition of the finite segment in which the
same events take place in the order 1), 4), 2), 3),
5), 6). Here, P2 is not enabled after step 4), where
all its partners "passed the arrow" and are unavail­
able for communication. This computation is thus
rendered weak process fair.

Similar examples may be constructed for SCh
and SCo fairness. D

We have just shown that the weak process fair­
ness condition can be satisfied vacuously in some
computations by preventing the enabledness of the
process involved, by having other processes (the
possible partners for joint actions) execute other
actions. However there exist equivalent computa­
tions in which some joint action is always possible
for the process, rendering that computation unfair.

233

For weak communication fairness this cannot oc­
cur because the only way to have a communication
be continuously enabled is if both of the partici­
pants do not execute any other actions. If the com­
munication is not continuously enabled because
a participant did some other action, that action
will also be performed in any equivalent computa­
tion.

In order to prove assertions about liveness en­
hancement, in a similar way to the approach in
[FdR] and [KdR], we first compare the fairness
notions in terms of" strength" in causing termina­
tion. However, the notions of fairness given there
differ in that the channel level is replaced by a
level dealing with a mixture of joint and local ac­
tions, the assumptions introduced in Section 2.1
are not considered, and weak fairness is defined
differently. Nevertheless, using arguments similar
to theirs, similar relations can be shown to hold.
Below, A--+ B means that every CSP program
which terminates under the fairness assumption A
also terminates under the assumption B.

Theorem (CSP-hierarchy). The relations below are
the only ones which hold among the notions of fair­
ness considered:

WP ----+ SP

l l
WCh ----+ SCh

l l
WCo ----+ SCo

Proof (fragment). We show that WP--+SP holds.
Consider a CSP program P such that all of its
weak process fair computations are finite. Then all
strong process fair computations of the same pro­
gram are also finite, since every strong process fair
computation is also weak process fair. Other impli­
cations are equally straightforward to establish.

In order to see that SP--+ WP does not hold,
consider the program shown in Fig. 4. In every
strong process fair computation of the program,
P1 eventually communicates with Pi, and then ter­
mination is inevitable. However, the infinite com­
putation in which P1 never communicates is weak
process fair since the communication with Pi is (in­
finitely often) disabled whenever Pz communicates
with P:i. Note that again the noninstantaneous
readiness assumption is crucial, and in particular
the fact that the skip on the right of the arrow
is preceded by a local state in which no joint action
involving Pz is enabled.

Other cases of "non-implications" are left to
the reader. D

234

P: :[P,, II.Pill~],
where:

Pi: :bi•=true;

*[bi; Pi! 0--> bi :•=false]

Pi: :b2 •=true;

*[b2 ; Pi? x-+b2 •=falseOb2 ; P3 ? x-+skip];

P3 ! 0

P3 : : b3 •= true;

* [b 3 ; Pi.! 0--> skip Ob3 ; P2 ? y---> b3•=false]

Fig. 4. A program which terminates for strong process fairness

Proposition 4. Strong communication, strong chan­
nel, and strong process fairness are liveness enhanc­
ing for the CSP model.

Proof To show that strong process fairness en­
hances liveness for CSP, we refer again to the pro­
gram in Fig. 4. In that program, two processes are
engaged in an indefinite "chattering", terminated
only by the intervention of a third process, which
is necessarily activated if SP fairness is assumed.
The program does not terminate without a fairness
assumption. SCh and SCo are then also liveness
enhancing for CSP due to the hierarchy theo­
rem. D

Proposition 5. Weak communication, weak channel,
and weak process fairness are not liveness enhancing
for the CSP model.

Proof We show that weak process fairness does
not enhance liveness for CSP. For this task we
need to demonstrate that for every program P, if
comp(P) contains any infinite interleaved computa­
tion n, then comp(P) also contains an infinite WP
fair computation. Thus the WP fairness assumption
does not cause termination of additional programs.
Obviously, if n is WP fair, we are done. Otherwise,
let A be the set of processes which are activated
in TC only finitely often.

Now a new computation p will be constructed
from TC. The idea is to construct p so that the pro­
cesses which were previously the cause of the un­
fairness will execute fairly, without affecting the
processes which actively executed operations from
some point on in the original infinite computation
n. The construction will succeed because this can
be done without forcing those active processes in
n to participate in any new joint actions. The com­
putation p will be identical to TC up to the point
where all the processes in A have executed all of
their actions. Then, starting at that point, for each
configuration of TC, a maximal subset of A with

K.R. Apt et al.: Fairness for distributed programming

enabled actions not involving a process from out­
side A is identified. Configurations resulting from
executing an action by each of those processes are
then inserted, followed by the configuration result­
ing from executing the next action from n. Note
that the part of the state involving the next action
executed in TC is not affected by the additions, so
that the (modified) configurations can still include
the original sequence of actions from n. The result­
ing computation can still be WP unfair as some
process P and A can, from some point onwards,
continuously be ready to communicate only with
processes not in A. To handle this situation we
first introduce a number of notions.

Given a computation and a collection B of pro­
cesses, call a process P B-enabled if, from some
point onward, it can continuously communicate
with a process in B. By a chunk of a computation
we mean a fragment consisting of an execution of
a sequence of local actions belonging to a pair of
processes, together with a communication between
these two processes. A process is mute in a configu­
ration c in a computation if it does not participate
in any communication after c. A state is good (in
some computation) if it either is an initial state
of a chunk, or it results from an action in a mute
process.

Lemma (Disabling). Consider a computation p in
which all processes in a collection B are infinitely
often activated. There exists an equivalent computa­
tion a, in which no process is B-enabled.

Proof For each process in turn defer its local ac­
tions in p maximally. In such a way, an equivalent
computation a is obtained, which consists of a se­
quence of chunks, possibly interleaved with actions
from mute processes. This computation has infini­
tely many good states. Consider any good state
in which each process from B was activated at least
once. In such a state, the control in each process
in B is either just after the communication belong­
ing to its most recently executed chunk, or just
after a local action in case it is mute. In both cases
(by the noninstantaneous readiness condition and
by the definition of a mute process) none of the
processes in B can communicate in the considered
state. This establishes the claim. D

The above lemma concludes the proof that
weak process fairness is not liveness enhancing,
since B can be chosen to be the processes not in
A. Similar but simpler reasoning shows that weak
channel fairness and weak communication fairness
are also not liveness enhancing. D

K.R. Apt et al.: Fairness for distributed programming

As a consequence of propositions 4 and 5, the
classes of terminating programs for all three weak
levels coincide, in contrast to the proper inclusion
shown in [KdR]. The difference seems to be due
to the fact that their notion of "weak" still involves
an element of "infinitely often" enabled. Ours
stresses that "continuously" enabled really means
that nothing else is done by the process involved.

4 Results for N-way communication

An N-way communication (considered in [BK­
S 1], [RS] or [Po]) is a joint action executed simul­
taneously by a number of processes (possibly more
than two), each of which must be ready in order
for the action to be enabled. An attempt to partici­
pate in a joint action delays a process until all
other parties are ready for that action. After the
communication, a local action takes place in each
participating process, guaranteeing the noninstan­
taneous readiness assumption. The uniform choice
and minimal progress properties are again as­
sumed.

Thus, we consider a language with a structure
similar to CSP. Within each process, the guards
constitute a reference to a joint action, possibly
preceded with a local boolean condition. The
guarded statement is a multiple assignment, speci­
fying the local change of state in each participating
process.

The definitions of fairness we consider are over
the individual processes, over the N-way communi­
cations, and additionally (as a generalization of
channel fairness from CSP) over the collection of
joint actions possible among a group of participat­
ing processes. The definitions are:

Strong group (SC) fairness. An infinite computation
is fair iff each set of processes infinitely often capa­
ble of communication will infinitely often commu­
nicate.

Weak group (WG) fairness is defined analogously.
A group of processes is called enabled if there is
some joint action which is enabled with exactly
that group of processes as participants.

The results for N-way communication which
are implied by the propositions given below, are
summarized in Table 2. Note that the results are
similar to the CSP case except for the equivalence
robustness of strong process fairness.

The following theorem has been (essentially) es­
tablished in [BK-S 2].

235

Table 2. Summary of appraisal for N-way communication

Feasible Equivalence Liveness
robust enhancing

SP + +
SG + +
SC + +
WP +
WG + +
we + +

Theorem (N-way hierarchy). The implications of the
CSP hierarchy theorem hold for the N-way synchro­
nization model, when SG and WG are substituted
for SCh and WCh, respectively.

Proposition 6. The six fairness definitions are feasi­
ble for the N-way communication model.

Proof idea. Analogous to the proof of proposi­
tion 1. As an example, we consider a scheduler for
WG fairness. Given a distributed program P in this
model, associate with each group of processes that
(syntactically) can all participate in some joint ac­
tion (referred to as an action group) a distinct prior­
ity variable. In particular, for local actions the ac­
tion group will consist of the single process to
which the action is local. The program section SE­
LECTWG seen in Fig. 5 differs from the strong
case given in Fig. 2 for CSP in that the priority
variable is reset whenever the associated action
group is not enabled. The priority variables asso­
ciated with single processes, which were defined
because of local actions, ensure that the scheduler
generates computations satisfying the minimal pro­
gress condition.

Also, a similar faithfulness theorem is provable,
expressing the fact that all and only WG fair com­
putations are generated by this scheduler.

Proposition 7. Weak communication and weak group
fairness are equivalence robust for an N-way com­
munication model.

Proof Using arguments similar to those in the pro­
of of proposition 2 we will show that WG is equiva­
lence robust. The proof for WCo is analogous. Con­
sider a computation n which is WG unfair. Then,
from some point on an action group can contin­
uously execute a joint action. Thus, from some
point on all processes in that group are never acti­
vated. If p is an equivalent computation, then by
the projection equality lemma the same holds for
p. By the same lemma, all processes in the above-

236

for each action group do
if it is enabled then decrement its priority variable by 1

else reset the priority variable to an arbitrary
nonnegative integer;

select an enabled action group with a minimal value
for its priority variable;

reset the priority variable of the selected action group
to an arbitrary nonnegative integer;

if a local action was selected then execute it
else select and execute one of the enabled joint

actions of the action group

Fig. 5. SELECTWG

mentioned action group can continuously partici­
pate in that same joint action. So, p is WG unfair
as well. O

Proposition 8. Strong process, strong group, strong
communication, and weak process fairness are not
equivalence robust for the N-way communication
model.

Proof idea. In particular, unlike in the CSP model,
strong process fairness is not equivalence robust.
To see this, consider the following program (Fig. 6).
Here joint actions (a, b, c) are described by the set
of participating processes and uninterpreted as­
signments (A, B, C), since the example depends only
on multiple synchronization and is independent of
the content of the communications. Subscripted oc­
currences of L denote local actions. Again, the ex­
ample is independent of the details of all these ac­
tions.

Consider the infinite computation of P which
repeats the following cycle:
1) The action b is jointly executed by processes
Pi and .f1.
2) P3 locally executes L3 , 1 •

3) Pi locally executes L2 , 2 .

4) The action c is jointly executed by processes
11 and&.
5) .f1 locally executes L3 , 2 .

6) & locally executes L4 , 2 .

In this computation, P1 is infinitely often en­
abled to participate in the joint action a (after
steps 3 and 6), but never does so. Thus, this compu­
tation is not strong process fair.

On the other hand, an equivalent computation
in which the above steps are executed in the order
1), followed by the cycle on 2), 4), 3), 5), 1), 6) is
strong process fair, because action a (and thus Pi.)
is never enabled in it. Specifically, in order to exe­
cute the joint action a, the processes Pi, P2 and
& must all be jointly available. However, in no
state in this computation are both P2 and & avail­
able.

K.R. Apt et al.: Fairness for distributed programming

P:: [Ji llP2 II~ II~]
where

a:: (Ji,.Pi,P.i.): A

b:: (Pz,~): B

c:: (~,ei_): c
and

Pi:: *[a-+LiJ

P2: :*[a-->L2,1

Ob-+Lz.zJ

~:: * [b-+L3,1

Oc-->L3,z]

ei_: :*[a-->L4,1

Oc-+L4,2J

Fig. 6. A program with N-way communication

The desired effect is obtained here by delaying
local actions, preventing process availability and
thereby disabling joint actions. Note that at least
three participants in a joint action are necessary
to generate such an example, and thus the reason­
ing does not apply to the CSP model with binary
joint actions.

Proposition 9. Strong communication, strong group,
and strong process fairness are liveness enhancing
for an N-way communication model.

Proof. Since CSP programs are special cases of pro­
grams with N-way communications, by proposi­
tion 4, the three methods above are liveness en­
hancing. D

Proposition 10. Weak communication, weak group,
and weak process fairness are not liveness enhancing
for the N-way communication model.

Proof idea. The argument is similar to the one in
proposition 5. In fact, it is enough to redefine the
notions of chunk and B-enabled for the N-way
model, and the proof goes through. We omit the
details. O

From the above results, it follows that none
of the six definitions of fairness satisfy all three
of the criteria for this model. However, it should
be realized that with other assumptions about the
model of computation, and other definitions of fair­
ness, it is possible to satisfy all three criteria. In
fact, in [AF] a new notion of fairness called hyper­
fairness is proposed for an N-way model, and this
notion was specifically designed to be feasible,
equivalence robust, and liveness enhancing for the
model.

K.R. Apt et al.: Fairness for distributed programming

5 Results for an Ada-like communication
fragment

In this section we consider a generalization of the
process queues from the Ada definition to a fair­
ness notion suggested in [PdR]. They show that
the generalization has equivalent power to the
queueing strategy, but is less restrictive. We dem­
onstrate that it is an acceptable notion of fairness
for the Ada model, according to all three criteria.
The propositions and proofs have a general struc­
ture analogous to the previous sections.

The sublanguage considered, ACF (Ada com­
munication fragment), contains the essentials of the
tasking together with a minimal sequential struc­
ture within tasks. An ACF program contains a
fixed number of disjoint processes without any
sharing of variables. Each process has a number
of declared entries. A process may execute assign­
ment and use usual branching and repetition con­
structs such as while or if-then. In addition, it may
call an entry in another process, using the syntax
(process - name). (entry - name) ((actual - param­
eter - list)). This suspends execution of the calling
process until a corresponding accept statement in
the called process has completed executing due to
that call. The accept statement has the form accept
(entry - name) ((formal - parameter - list))
--+ <statement>. It can execute (by passing pa­
rameters, executing the statement, and passing
back the out parameters) when it is reached in the
process containing it and a call from another pro­
cess has been made with that entry - name. There
also is a select statement which has accept state­
ments as nondeterministic alternatives.

According to the operational semantics of ACF
presented in [PdR], the joint actions are the en­
gagement in a rendezvous and the termination of
a rendezvous, both involving parameter copying.
A computation is once again an interleaving of
atomic actions. The local actions are assumed to
satisfy the minimal progress property mentioned
before.

The fairness notion suggested in [PdR] for
A CF is the following: a computation TC is fair if
no process may wait forever on an entry-call to
an entry e while infinitely many entry-calls for e
are accepted in TC. This notion does not exactly
fall into any of the categories of fairness previously
mentioned. We refer to it as entry fairness.

The main theorem in [PdR] states, that for pro­
grams which do not refer to attributes of the explic­
it entry queues (present in the original Ada), the
class of fair computations coincides with the class

237

of admissible computations by the original queue­
ing requirements of Ada.

The usage of the entry queues can serve as a
scheduler for the entry-calls, where the queues play
a role analogous to the priority variables of the
other schedulers. We immediately obtain

Proposition 11. Entry fairness is feasible for the
ACF model.

In order to show the equivalence robustness,
note that the above definition of fairness relates
only to processes which are waiting continuously
on an entry-call. That is, the continuous availabili­
ty of the calling process p for a rendezvous is built
into the definition. Thus the uniform choice as­
sumption that local actions cannot be alternatives
to communication actions (used in proposition 2
to establish the continuous availability of one side
of a CSP communication) is not needed here.

Proposition 12. Entry fairness is equivalence robust
for the ACF model.

The proof uses the same argument as that for
SP fairness in proposition 2, since the persistence
of entry-calls is now given.

Proposition 13. Entry fairness is liveness enhancing
for the ACF model.

Proof Consider the program given in Fig. 7. With­
out fairness, the rendezvous between P1 and P2 need
never occur, and the program will not terminate.
With entry fairness, termination is guaranteed (z
and then x will become false, and the second accept
will only be possible with P3 , causing w to also
become false).

In passing, we note (as mentioned in [GdR])
that ACF already has unbounded nondeterminism
without additional fairness assumptions. Thus,
merely exhibiting a program that implements ran­
dom assignments using fairness does not suffice to
prove proposition 13.

P:: [P1 llP2 ilP3]

where

P1 : : Pi. e(fa/se, y).

P2 :: X•=true;

whilexdo

accept e (in z, out v)-> begin x•=Z; v•=Z end;

accept e (in z, out v) v•=false.

P3 : : W•=true;

while w do P2 • e (true, w).

Fig. 7. A fairly terminating Ada program

238

6 Results for models with nonblocking send
In traditional message-passing models on a net­
work, there are send and receive operations for
communication, but, unlike CSP, the send opera­
tion terminates independently of message arrival.
That is, it cannot be blocked and is a purely local
action. A receive operation can then be executed
only if a "corresponding" send operation has been
previously executed on the other end of the appro­
priate channel, and in some sense (which needs to
be precisely defined) the message has "arrived" at
the process containing the receive. Again, we wish
to abstract away from an operational considera­
tion of explicit queues of messages, and to consider
fairness in terms of the receive operations which
must occur. For this reason, we will consider a
message to be available at a receiving process as
soon as it has been sent. Since a process can
"pause" arbitrarily long before executing a local
operation, this is sufficient to represent possible de­
lays in the delivery of a message. Note that here
a receive operation is treated as a joint action even
though only one process (directly) participates
in it.

As an example, in the sequel we consider a lan­
guage syntactically identical to CSP, but with the
send operation (P! e) interpreted as nonblocking.
In such a context, since send is a local operation,
it will not be used in guards as an alternative to
receive operations (P? v) in order to maintain the
uniform choice assumption. A receive action is en­
abled if the process containing it is at a control
point where the action can be chosen for execution
and moreover some matching send operation has
been executed and the message sent has not yet
been received. As previously, a process is enabled
in a state if it contains enabled receive operations
in that state. Three versions of fairness will be con­
sidered, analogous to the process, channel, or com­
munication fairness seen for other models, each in
a weak and a strong version.

Process fairness is defined as in the other mod­
els we have considered: if the process is sufficiently
often enabled, then one of the receive actions in
it (which are the only "joint" actions) will be exe­
cuted. On the other hand, it is reasonable to define
a version of channel fairness in terms of the receive
operations, to be called receive fairness:

Each receive operation which is sufficiently often
enabled, is infinitely often executed. This is analo­
gous to the channel case because the enabledness
condition means that a matching send operation
was executed earlier in the process identified by

K.R. Apt et al.: Fairness for distributed programming

Table 3. Summary of appraisal for nonblocking send CSP

Feasible Equivalence Liveness
robust enhancing

SP + +
SR + + +
SM + + +
WP + +
WR + +
WM + +

the receive, and that two processes must therefore
communicate.

Finally, a fairness called message fairness is de­
fined by: each message which is sufficiently often
capable of being received, is indeed received. That
is, if a receive operation is enabled sufficiently often
after a message has been sent by a matching send,
that particular message will eventually be the one
received. This is analogous to communication fair­
ness because an individual communication is con­
sidered.

Since once it is sent, a message will not be re­
tracted (and we are not considering faulty message
links), the only difference between the weak and
the strong versions is the control location of the
receiving process. For weak fairness, the desired
action (executing a receive operation or receiving
a particular message) must occur if the enabling
condition is continuously true from some point on
and this is equivalent to being at a control point
where a receive operation is enabled, from some
point on. For the strong versions, it is sufficient
for the enabling condition to be true repeatedly
(infinitely often).

In Table 3 the results of the appraisal for this
model are summarized. As previously, the justifica­
tions are found in the propositions below.

The locality of send as seen here is similar to
the local nature of the call of the version of Ada
seen in the previous section, even though the call
is blocking. In fact, a standard implementation of
the message channels using queues can be used
here also to show the feasibility of all six of these
definitions of fairness, just as was done for the ab­
straction of the Ada queues.

Proposition 14. The six notions of fairness defined
above are feasible for the nonblocking send model.

Proposition 15. All six notions of fairness defined
above are equivalence robust for the nonblocking
send model.

K.R. Apt et al.: Fairness for distributed programming

Proof We show that strong message fairness is
equivalence robust. In order to do this, consider
a SM unfair computation n and any equivalent
computation p. By definition, n includes a send ac­
tion of some message, but not the corresponding
receive action for that message, even though corre­
sponding receive actions are infinitely often en­
abled. By the projection equality lemma, the send
action will also eventually occur in p and from
that moment on the enabledness in p of all corre­
sponding receive actions is only dependent on the
control location of the process containing them.

Again by the projection equality lemma, these
receive actions will be infinitely often enabled but
none of them will be executed with this message.
Thus p is also SM unfair.

An analogous argument holds for other fairness
notions. All of them depend on the fact that a send
action will occur in all equivalent computations
if it occurs in one and that the enabledness of the
corresponding receive action is only dependent on
the control location of the process containing the
receive. Thus, there is no possibility of conspiracies.
That is, we cannot produce a computation equiva­
lent to an unfair one, but which is made fair by
preventing eventual enabledness of actions which
were enabled in the unfair computation. O

This result shows a connection between equiva­
lence robustness and the degree of synchronization
in joint actions. At least for these definitions of
fairness, when there is no synchronization all are
equivalence robust, when there is handshaking be­
tween two, three of six notions are equivalence ro­
bust, and when there are N-way communications
only two out of six are still equivalence robust.

Proposition 16. Strong receive and strong message
fairness are liveness enhancing for the nonblocking
send model.

Proof As in the programs of Figs. 4 and 7, it is
easy to design a program in this model in which
two processes exchange messages, while a single
message sent to one of them from a third process
causes all three to terminate if it is ever received.
The nonterminating computations, in which the
message causing termination is simply ignored in
favor of messages from another process, are ruled
out by either strong receive or strong message fair­
ness. Since only one message is sent from the third
process, there is no difference between the two fair­
ness notions for this example. Under either type
of fairness the program always terminates, and by
definition this shows liveness enhancement. O

239

Proposition 17. Strong process, weak process, weak
receive, and weak message fairness are not liveness
enhancing for the nonblocking send model.

Proof As in previous proofs, it is most natural
to consider an infinite unfair computation, and to
show that there must also be an infinite fair one.
For the types of fairness given above, there is no
way to force the processes which are infinitely often
activated in the unfair infinite computation to re­
ceive a message, even if other processes intermit­
tently are made to receive or send messages. For
all of the weak forms, it is clear that the fairness
notion only influences the selection of a receive op­
eration for processes which from some point on
do no other operation. Strong process fairness also
cannot affect the operation of the processes which
are participating in the infinite computation, be­
cause they are indeed executing receive operations,
and any changes in the other processes are irrele­
vant. Unlike the CSP model, here strong process
fairness is also not liveness enhancing because in
the nonblocking send model the sending of a mes­
sage is a local action not related to fairness, and
a process with a matching receive (which might
be participating in an infinite computation) need
not receive the message. For CSP, the demand that
a process participate in a joint action (for example,
by sending a message) forced particular messages
to be received by another process (the one with
the matching receive). O

7 Conclusions

Specific instances of results similar to the ones here
have been pointed out elsewhere, as disturbing
anomalies. The fact that weak process fairness is
not equivalence robust for the CCS model was in­
dicated to us by Gerardo Costa. In [BK-S2] the
lack of equivalence robustness for a notion of fair­
ness in the N-way communication model is noted
(of course using different terminology).

As seen in the consideration of liveness en­
hancement, one way to express the difference be­
tween a model with a fairness assumption and one
without is to consider the implications for termina­
tion of programs. In [BK-S2] and in [GFK2] the
termination properties of various models and fair­
ness definitions are considered. Those works must
deal with the problem that equivalence robustness
is not maintained by many of the models and fair­
ness definitions. As a solution, they suggest semant­
ic assertions about the computations which are suf-

240

ficient to guarantee equivalence robustness for the
sublass of programs which satisfy the assertions.
For example, in [GFK2] an incomplete two-level
proof system is suggested for the CSP model with
strong communication fairness. Rules are given
which allow showing that for a particular program
the fairness definition does respect the equivalence
classes of computations generated for that pro­
gram. Then, separately, it is shown that the pro­
gram terminates for all the so-called serialized com­
putations. Unfortunately, the rules for the first part
are complex, not easy to apply, and only treat some
obvious cases.

We have shown that for a variety of models
and notions of fairness an alternative approach is
viable: to evaluate the fairness notions more care­
fully to find those which are feasible, inherently
equivalence robust, and yet liveness enhancing. By
establishing once and for all that a fairness defini­
tion is equivalence robust for a model, and further­
more is feasible and liveness enhancing, it becomes
possible to state simple proof rules for termination
of programs. In other words, we need not worry
about possible "conspiracies" of some processes
against others as was seen in the program of Fig. 6.

In general, the idea of defining criteria, and then
systematically evaluating the potential definitions
of fairness for the computational model according
to those criteria, clarifies the advantages and draw­
backs of the alternatives, and should be useful in
language design.

While working on these results, we have noted
that yet another natural equivalence relation
among CSP-like programs, underlying the trans­
formation to normal form of such programs [ABC],
is not respected by fairness. The original program
and its normal form differ, for example, w.r.t. the
restriction of a local action immediately following
every communication. One cannot employ some
of the techniques we have used here, if communica­
tion need to be confined to (top level) guard posi­
tions. It would be interesting to obtain character­
ization theorems, that for each notion of fairness
characterize the equivalences respecting that fair­
ness, and vice versa, for each equivalence relation,
characterize the fairness notions respecting it.

Acknowledgements. We thank Luc Bouge for valuable com­
ments and discussions on the subject of this paper, and in partic­
ular for pointing out the importance of the noninstantaneous
readiness assumption. The work reported was carried out dur­
ing a visit of the first author in the Computer Science Depart­
ment of the Technion. The work of the first author was partially

K.R. Apt et al.: Fairness for distributed programming

supported by Office of Naval Research grant N00014-86-K-
0763. The work of the second author was partially supported
by the Fund for the Promotion of Research at the Technion.

References

[ABC] Apt KR, Bouge L, Clermont P (1987 /88) Two nor­
mal form theorems for CSP programs. Inf Proc Lett 26:
165-171

[AFK] Apt KR, Francez N, Katz S (1987) Appraising fairness
in languages for distributed programming. Proc of 14th
ACM-POPL Symp, Munich, West Germany (January 1987)

[AO] Apt KR, Olderog ER (1983) Proof rules and transforma­
tions dealing with fairness. Sci Comp Prog 3: 65-100

[AF] Attie P, Francez N (1988) Fairness and hyperfairness in
multiparty interactions. MCC-STP Tech Rep (July 1987)

[BK-S 1] Back RJ, Kurki-Suonio K (1983) Decentralization of
process nets with centralized control. Pree of 2nd ACM­
PODC Symp, Montreal (August 1983)

[BK-S2] Back RJ, Kurki-Suonio K (1985) Serializability in dis­
tributed systems with handshaking. CMU Tech Rep, pp 85-
109

[BF] Bouge L, Francez N (1988) A compositional approach
to superimposition. Proc of 15th ACM-POPL Symp. San
Diego, California (January 1988)

[D] Dijkstra EW (1975) Guarded commands, nondeterminacy
and formal derivation of programs. Commun ACM 18:453-
467

[DM] Degano P, Montanari U (1988) Concurrent histories, a
basis for observing distributed systems (to appear in J Comp
Syst Sci)

[Fo] Forman I (1986) On the design of large distributed sys­
tems. Pree of Int Conf on Comp Lang, Miami Beach, Flori­
da (October 1986)

[Fr] Francez N (1986) Fairness. In: Gries D (ed) Texts and
monographs in computer science series. Springer New York

[FdR] Francez N, de Roever WP (1980) Fairness in communi­
cating processes (unpublished memo) Computer Science De­
partment, Utrecht University (July 1980)

[FK] Francez N, Katz S (1988) Fairness and the axioms of
control predicates. To appear in Int J Parallel Programming

[GdR] Gerth RT, de Roever WP (1984) A proof system for
concurrent Ada programs. Science of Computer Program­
ming, vol 4, no 2, pp 159-204

[GFKl] Grumberg 0, Francez N, Katz S (1986) A complete
rule for equifair termination. J Comp Syst Sci 33: 313-
332

[GFK2] Grumberg 0, Francez N, Katz S (1984) Fair termina­
tion of communicating processes. Pree of 3rd ACM-PODC
Symp, Vancouver (August 1984)

[GFMdR] Grumberg 0, Francez N, Makowsky J, de Roever
WP (1985) A proof rule for fair termination of guarded com­
mands. Inf Control 66: 83-102

[HJ Hoare CAR (1978) Communicating sequential processes.
Commun ACM 21 :666-677

[HLP] Hennessey W, Wei-Li, Plotkin GD (1983) Semantics for
Ada tasks. In: Bjorner D (ed) Proceedings ofTC.2 Working
Conference on the Formal Description of Programming
Concepts, Garmisch Partenkirchen. North Holland

[K] Katz S (1987) A superimposition control construct for dis­
tributed systems. MCC-STP Tech Rep STP-268-87

K.R. Apt et al.: Fairness for distributed programming

[KP] Katz S, Peled D (1987) Interleaving set temporal logic.
Proc of 6th ACM-PODC Symp, Vancouver, Canada (Au­
gust 1987)

[KdR] Kuiper R, de Roever WP (1983) Fairness assumptions
for CSP in a temporal logic framework. ln: Bj6rner D (ed)
Proceedings of TC.2 Working Conference on the Formal
Description of Programming Concepts, Garmisch Parten­
kirchen, North Holland

[L 1] Lamport L (1978) Time, clocks, and the ordering of events.
Commun ACM 21: 558-566

[L2] Lamport L (1983) What good is temporal logic? Proc
of 9th IFIP Cong, Paris, France (September 1983)

[LPS] Lehmann D, Pnueli A, Stavi J (1981) Impartiality,justice,
and fairness: the ethics of concurrent termination. In: Kariv
0, Even S (eds)] Proc of 8th ICALP, Acco, Israel (July
1981) LNCS 115. Springer Berlin Heidelberg New York,
pp 264-277

[OA] Olderog ER, Apt KR. (1988) Fairness in parallel pro-

241

grams, the transformational approach (to appear in ACM
Toplas)

[OL] Owicki SS, Lamport L (1982) Proving liveness properties
of concurrent programs. ACM Trans Prog Lang Syst
4(3):455-495

[P] Plotkin GD (1983) An operational semantics for CSP.
In: Bjorner D (ed) Proceedings ofTC.2 Working Conference
on the Formal Description of Programming Concepts,
Garmisch Partenkirchen. North Holland

[PdR] Pnueli A, de Roever WP (1982) Rendezvous with Ada:
a proof-theoretic view. Proceedings of the AdaTec Confer­
ence, Crystal City

[R] Reisig W (1984) Partial order semantics versus interleaving
semantics and its impact on fairness. Proc 11 th ICALP, An­
twerp, 1984

[RS] Reif J, Spirakis P (1983) Probabilistic bidding gives opti­
mal distributed resource allocation. Aiken Computation
Lab Tech Rep, Harvard University (July 1983)

