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ABSTRACT 

As we have argued in previous papers, multi-level decision problems can 

often be modeled as multi-stage stbchastic programs, and hierarchical plann·­

ing systems designed for their solution, when viewed as stochastic programm-­

ing heuristics, can be subjected to analytical performance evaluation. The 

present paper gives a general formulation of such stochastic programs and 

provides a framework for the design and analysis of heuristics for their 

solution. The various ways to measure the performance of such heuristics 

are reviewed, and some relations between these measures are derived. Our 

concepts are illustrated on a s~mple two-level planning problem of a general 

nature and on a more complicated two-level scheduling problem. 
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1. INTRODUCTION 

Many practical situations in operations management planning and control 

require a series of decisions over time at an increasing level of detail and 

with an increasing amount of information being available. At least two deci­

sion stages can usually be recognized: an aggregate level, at which one has 

to decide upon the acquisition of resources, given vague information about 

what certain tasks will require of them, and a detailed level, at which one 

has to decide upon the allocation of resources to tasks, given precise in­

formation about the requirements. In job shop design and scheduling, for 

example, the resources are machines and the tasks are jobs, whose processing 

times can only be roughly estimated at the outset. In distribution system 

design and control, the resources are vehicles and the tasks are deliveries 

to clients, whereby the locations of the clients demanding service are sub­

ject to stochastic fluctuations. The challenge of such hierarchical planning 

problems is to incorporate the initially imperfect detailed information into 

the aggregate decision so as to arrive at an overall solution procedure that 

is optimal or nearly optimal. Specifically, the costs of acquiring resources 

at the aggregate level have to be weighed against the benefits of having 

them available at the detailed level. 

The traditional approach to these types of multi-level decision prob­

lems is to design a hierarchical planning system [Bitran & Hax 1977, Bradley 

et al. 1977]. In such a system, each level is modeled as a separate deter­

ministic optimization problem. The resulting series of linked mathematical 

programming models is then evaluated by means of simulation techniques. 

In [Dempster et al. 1981], it was argued that hierarchical planning 

problems can be naturally formulated as multi-stage stochastic programs. 

Corresponding to each decision level, there is a stage that incorporates 

probabilistic information about the later stages and that aims at setting 

the decision variables in such a way that the overall result is, in some 

sense, optimal. In the examples quoted above, the scheduling and routing 

problems appearing at the second level are NP-hard combinatorial optimiza­

tion problems. Apart from that, the stochastic optimization problem at the 

aggregate level generally represents an even more formidable computational 
. . 

challenge. Thus, one should design approximation alg0rithms or heuristics 
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for multi-stage stochastic progrannning, and hierarchical planning systems 

are essentially nothing but that. This observation may seem obvious, but the 

stochastic programming formulation of hierarchical planning problems provides 

a proper framework for an analytical rather than empirical evaluation of the 

performance of heuristics designed for their solution. Indeed, in [Dempster 

et al. 1983, Marchetti Spaccamela et al. 1982, Frenk et al. 1983] exact 

statements about the behavior of hierarchical scheduling and routing prob­

lems have been derived, such as asymptotic optimality in expectation, in 

probability, or with probability 1. 

Although the probabilistic analyses of th~se heuristics are different, 

the statements that have been derived are similar. Also, the hierarchical 

planning systems constructed have many features in common. The purpose of 

this paper is to outline a general approach to the design and analysis of 

hierarchical planning systems. 

In Section 2 we will formulate stochastic programming models for a 

hierarchical planning problem with two decision levels and indicate how to 

construct heuristics for its solution. We will also review the various ways 

to measure the performance of such heuristics and exhibit some relations 

between these measures. In Section 3 we will illustrate our concepts, first 

on a simple two-level planning problem of a general nature and finally on 

a more specific and more complicated two-level scheduling problem. 

2. MODELS, HEURISTICS, AND PERFORMANCE MEASURES 

2.1. Stochastic programming models 

Consider the typical two-stage decision situation outlined in the first 

paragraph of Section 1. 

At the aggregate level, one has to decide upon the acquisition of 

resources. The first stage decision will be denoted by X, the set of feas­

ible decisions by X, and the direct cost associated with X by f(X), where 

f: X + JR is a real function. Probabilistic information about future re­

source requirements is represented by a vector~; it comes from a sample 

space n and has distribution function F. (We write a tilde under a variable 
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to indicate that it is a random variable.) 

The input,to the detailed level consists of the first stage decision X 

and a realization w of the random vector~- The objective at the second 

stage is to decide upon a certain allocation of the resources acquired so as 

to minimize a cost g(X,w), where g: Xx n + JR is a real function. The optimal 

* value of g(X,w) will be denoted by g (X,w), and the total cost of the acqui-

* * sition decision X and the optimal allocation decision by z (X,w) = f(X)+g (X,w). 

To complete the formulation of the two-stage decision model, we define 

the objective at the 

* total cost Ez (X,~) 

* first stage: determine an X 

* = f(X)+Eg (X,~) is minimized: 

EX such that the expected 

According to stochastic programming terminology, the first stage decision is 

made "here and now", given imperfect information about the second stage. 

As an alternative, we formulate the so-called distribution model with 

an overall objective: determine a function X~: n + X such that for each 

w En the actual total cost is minimized: 

* 0 * z (X (w) ,w) = minXEX{z (X,w)}. 

Before the aggregate decision is taken, we "wait and see" until perfect in­

formation about the second stage is available. 

2.2. Two-stage stochastic programming heuristics 

There is little hope to develop practical optimization algorithms for the 

above stochastic programs. As to the two-stage decision model, the deter­

* mination of g (X,w) is often an NP-hard problem, so that a heuristic must 
. * be used at the second stage. Even if g (X,w) can easily be determined, it 

. * seems impossible to obtain a tractable representation of Eg (X,~), and the 

use of a heuristic at the first stage is generally unavoidable. The distri­

bution model is at least as hard to solve to optimality. We will outline 

a two-stage heuristic approach; the heuristics at the first and second 

stage will be denoted by H1 and H2 , respectively. 
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* At the first stage, we replace Eg (X,w) by an 
H ~ 

determine an X -1 EX such th4t the ~stimated total 

H . 
estimate g 1 (x) and 

H H 
cost z 1 (X) = f(X)+g 1 (x) 

is minimized: 

In some cases, even this approximate first stage problem is NP-hard and 

another heuristic device is needed to solve it (cf. Section 3.2). 

At the second stage, we allocate the resources acquired, achieving an 
H H 

approximate cost g 2(x 1,w). In some cases, the second stage problem does 

not require any approximation and H2 denotes a polynomial-time optimization 

algorithm. The total cost of the entire heuristic for a realization w En 
H H H H H 

will be denoted by z 2 (x 1 ,w) = f(X 1)+g 2 {x 1,w). 

The success of this heuristic approach evidently depends on the quality 
H1 * H2 of .g. (X) as an estimate of Eg ;(X, !e) and of g (X, w) as an approximation of 

* g (X,w). 

In [Dempster et al. 1983, Marchetti Spaccamela et al. 1982, Frenk et 

al. 1983], the first stage heuristic is typically based on a lower bound 

* on g (X,w); the second stage heuristic obviously yields an upper bound on 

* g (X,w). The purpose of the analysis is then to show that the underestimate 
H1 H1 * * * o z (X ), the optima z (X ,w) and z (X (o~l),w~) and the approximation 
H H ~ 

z 2 cx 1,~) are asymptotically equal in some probabilistic sense. In this 

context, good use can be made of probabilistic characterizations of optimal 

solution values to combinatorial problems, such as routing problems 

[Beardwood et al. 1959, Steele 1981] and locationproblems [Fisher & Hochbaum 

1980, Hochbaum & Steele 1981, Papadimitriou 1981, Zemel 1983]. 

2.3. Performance measures 

Before defining a number of ways to measure the performance of stochastic 

programming heuristics, we recall some concepts of stochastic convergence. 

A sequence of random variables x1,x2 , ••• is said to converge to a random 

variable X 
(a) in expectation if lim Ey = EX 

~ n~ ~n 
[notation: EXn + EX]; 



(b) 

(c) 

in probability if lim Pr{lv -xi ~ e} = 1 for every e > O n~ "'Il 

[notation: Xn + X (ip)]; 

with probability 1 or almost surely if Pr{limn~ Xn = x} = 1 

[notation: Xn + X (wp1)]. 

Some well-known relations between these types of convergence are given in 

Section 2.4. 

The quality of a solution provided by a two-stage heuristic (H
1

,H2) 

can be measured by comparing it with optimal solutions to the twer-stage 

decision model and to the distribution model. 

In the context of the first model, one is primarily interested in the 

asymptotic behavior of the ratio of the expected costs 

H H 
Ez 2 (X 1 w) '~ 

* * E:z (X ,~) 

If this ratio tends to 1 as the problem size tends to infinity, then we 
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say that the approximation algorithm (H1 ,H2) is asymptotically expectation­

optimal. If the heuristic depends on a given number e > 0 and has the 

property that, for each£, the ratio tends to a number less than 1+£, then 

(H1 (e),H2 (e)) is said to be an asymptotically expectation-optimal approxima­

tion scheme. 

Other obvious ideas are to investigate the asymptotic behavior of the 

ratio of the actual costs 

H H 
z 2 cx 1 w) '~ 

H H 
z 2 (X 1 w) '~ 

------and------
* * z (X ,!e} * 0 z· (X {~) ,,!e) 

If the first of both ratios tends to 1 (or, for each e > 0, to a number 

less than 1+e) in expectation, in probability or with probability 1, then 

we say that the approximation algorithm (or scheme) is asymptotically 

optimal in expectation, in probability or with probability 1. If the second 

ratio satisfies analogous properties, then the heuristic is said to be 

asymptotically clairvoyant rather than asymptotically optimal: in addition 

to the inaccuracy due to approximating the two-stage decision model, also 

the relative loss caused by imperfect information disappears in the limit. 
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Still other measures are based on a comparison of the aggreg~te deci­

sions xH1 , x* and X
0

(~). In case Xis a set of numbers, one can directly in­

vestigate the limiting behavior of the ratios 

H 
X 1 
0 

X (!e) 

(cf. Section 3.1). The first of these ratios is a deterministic variable,' 

but the second one is random and its convergence analysis results in proba­

bilistic statements. Sometimes it may even be possible to obtain good bounds 
H * H o 

on the differences X 1-x and X 1-x (!e). In case Xis a family of subsets, 

one possibility is to convert each set XE X into a number W(X) by taking 

a weighted sum over its elements and to consider the ratios of or the dif-
H1 * o ferences between W(X ), W(X) and W(X (!e)) (cf. Section 3.2). 

2.4. Relations between performance measures . 

Lemmas 1 and 2 give fundamental relations between the three types of conver­

gence of a sequence of random variables X1,x2,··· to a random variable X· 
We refer to [Serfling 1980] for proofs and for examples which show that the 

inverse implications do not hold in general. 

LEMMA 1. Xn + X (wpl) ,.. Xn + X (ip). D 

LEMMA 2. Suppose x 1,x2 , ••• is uniformly bounded (wpl), i.e., there exists a 

constant c such that for each n all realizations y of y satisfy IY I < c 
n ~n n 

except for a set of realizations with probability measure O. Then 

Xn + x; (ip) ... EXn + Ex- • 

We will now investigate relations between the performance measures 

introduced in the previous section. To simplify notation, we will write 

H H2 Hl z for z (X w) 
,-..,,J I_, I 

* * * 0 * 0 ~ for z (X ,!e), z f~r z (X (!e),!e). 

To simplify the analysis, we make the following assumptions. 
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H o 
ASSUMPTION 1. There exists a constant c 1 > 0 such that~/~ < c 1 (wp1). 

* * ASSUMPTION 2. There exists a constant c2 > 0 such that~ /E~ < c
2 

(wp1). 

* * ASSUMPTION 3. There ... exists a constant c 3 > 0 such that ~ /E~ > c
3 

(wp1) • 

0 0 
ASSUMPTION 4. There exists a constant c4 > 0 such that~ /E~ > c4 (wp1). 

these assumptions, we will use the basic properties of our 
0 * 0 0 

In addition to 

models that ~H 
H * that z ~ z 

~ ~ I ~ ~ ~ I ~ 
H * > 0 and E~ ~ E~; but it need not be true 

H * ~ /E~ 

H * for every w € Q. Note that under Assumption 1 also~/~ < c 1, 
H o o o 

< c 1 , ~ /E~ < c 1, ~ /E~ < c 1 (wp1). We will return in Section 3 

to the question to what extent our assumptions are realistic in the applica-

tions we are considering. 

Figure 1 shows which relations hold.under these assumptions, and which 

do not. We will first illustrate some of the invalid implications by means 

of three examples, and next prove the valid implications in three theorems. 

E1,... 

zH 
E~ • 1 

'!:.* 
,... / 

,...E2 
I 

E11 T1 

zH 
( i p) ~• 1 

~* ;::, 

I 
01 L1 

zH 
(wp1) ~ • 1 

'!:.* 

T3t H --------=----------12 _____ !)_ _ _ ~ • 1 ( wp1 ) 
- - - - - - - - - - - - '!:,o 

0 

Figure 1. Relations between performance measures. 

valid implication; - - - +:invalid implication; 

O: Obvious; E: Example; L: Lemma; T: Theorem; 
. H * t: if~/~ has a finite limit (wp1). 
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H * H * H * Example 1. E(! I!)+ 1 but g! /E! fr 1 and!/! fr 1 (ip). 

Let n· c n with Pr{~ En•}=½- Define ZH = 1, z* = 2 for w En• and 

H * H * 7 H 
z = 6, 

H * Z /z € 

z* = 4 for win•. We have 
1 3 {2,2} for all w En. D 

E(!·/!) = 1 but E! /E~ = 6 and 

H * H * H * Example 2. Ez /Ez + 1 but E(z /z) fr 1 and z /z />- 1 (ip). 
,,..., ,..., ,-.J ,..., ,..., ,..., 

1 H * Let n• c Q with Pr{~ En•}= 2. Define z = 1, z = 2 for w En• and 
H 

z = 2, * H * H * 5 z = 1 for w I. n•. We have E! /E! = 1 but E(! I!) = 
4 

and 
H * Z /z € 

1 {2,2} for all w En. D 

H o H * Example 3. ! /~ + 1 (wp1) but~/! fr 1 (wp1). 

Let~ be uniformly distributed over the unit interval n = [0,1] and 

let n denote problem size. For each n E JN , define 

(WE H 
H {2 In)}, z = n IH) 1 (w I. n 

where the intervals IH and 
n 

llog2nJ 
l(n) = 2 , 

n = 4,5,6,7; l(n) = 4 

7H 

0 

n 

1* 
4 ¼ I* 

5 
I* 

6 

* I 
n 

* z 
n 

are 

IH = n 

( (W E 
= 

(w I. 

defined by 

[ O 'l tn) ] ' 

I* 
7 

1 

* 
In)} 0 

* I 
z = 1 (W E n) 1 n I ) 

n 

* [n-l(n), n-l(n)+1] I = n l(n) l(n} 

Figure 2. Illustration of the intervals in Example 3. 

(cf. Figure 2). For each w En, lim zH = 1 so that lim zH/z
0 = 1 as n-+co -,n n-+<x> n n · 

* H * well; however, lim z does not exist and neither does lim z /z. In 
n-+oo n n-+<x> n n 

probabilistic terms, we therefore have that zH/z
0 

+ 1 with probability 1 but 
H * "'fl "'11 

z /z + 1 only in probability. 
"".tl "'fl 

This example is due to H.C.P. Berbee. It will be shown in Theorem 3(ii) 

H * that, :Lf z /z has a finite limit (wp1), then the implication is valid. D 
"".tl ~n 
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In the proofs of the following theorems, we adopt the common convention 

that the values assumed by a random variable on a set of probability measure 

0 yields a zero contribution to its expected value. 

Theorems 1 and 2 collect the implications between the various conver­

gence properties in the context of the two-stage decision model and the dis­

tribution model, respectively. 

THEOREM 1. 

(i) 

(ii) 

H/ * z z -+ ~ ~ 
H * 1 (ip),. E(! /!)-+ 1, under Assumption 1. 

H/ * z z -+ ~ ~ 
H * 1 (ip),. E! /E! -+ 1, under Assumptions 1 and 2. 

H * Proof. {i) By Assumption 1, we have! I! < c 1 (wp1). Hence, (i) follows 

from Lemma 2. 

(ii) For every e > 0 we define 

and bound EzH from above by ~ 

H J H E! = Q z dF(w) 

so that, under Assumptions 1 and 2, 

E~H 
1 !S: -- < * -

E! 
1 + € + J I z: -1 I 

Q'(e) z 

* z 
-;; dF(w) 
Ez 

Since !HI~*-+ 1 (ip), we have Pr{~ E Q'(e)}-+ 0 for every£> O. It follows 
H * that Ez /Ez -+ 1. 0 ~ ~ 

THEOREM 2. 

(i) 
H o 

E(! I!) -+ 1 
H o 

,. ! I! -+ 1 (ip). 

(ii) 
H o H o 

1 (ip), Assumption E~ /E~ -+ 1 .. ! /~ -+ under 4. 
H/ o (ip) (iii) z z -+ 1 ~ ~ 

H o 
.. E(~ I!} -+ 1, under Assumption 1. 

(iv) tl/ 0 (ip) 
H o 

z z -+ 1 => E,e /E~ • 1, under Assumption 1. ~ ~ 
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Proof. For every e: > 0 we define 

QI(£) = {w: 
H 

~> 
0 

z 
l+e:}. 

H o H o 
(i) Since z lz ~ 1 (w E Q) and z lz > l+e: (w E Q'(e:)), we can bound 

H o 
EC! I! ) from below by 

E !H = f ZH dF(w) ~ 1 + e:Pr{w E Q'(e:)}. 
0 0 ~ 

z n z ~ 
H o 

It follows from E(! I!)+ 1 that Pr{~ En• (e:)} + 0 for every e: > 0, i.e., 
H o 

! I! + 1 (ip). 

(ii) Under Assumption 4, we can similarly bound E!HIE!
0 

from below by 

--= 
0 

E! 
J z: zoo dF (w) ~ 1 + e: J zoo dF (w) ~ 

Q z E! Q' (e:) E! 

H o 
It again follows that! I! + 1 (ip). 

H o 
(iii) By Assumption 1, we have! I! < c 1 (wpl). Hence, (iii) follows from 

Lennna 2. 
H o 

(iv) Under Assumption 1, we can bound E! /E! by 

E!H H H 
1 ~ --

0 
= J ~ dF(w) ~ J ~ dF(w) + (l+e:) I z

0

0 
dF(w) 

E! Q E!
0 

Q' (e:) E! Q E~ 

Since ~Hl!
0 

+ 1 (ip), we have Pr{~ E Q'(e:)} + 0 for every e: > 0. It follows 
H o 

that E! /E! + 1. • 

Theorem 3 states the relations between the two-stage decision model and 

the distribution model. 

THEOREM 3. 

(i) 

(ii) 

H o 
~ I! • 1 (ip),.. ~HI!*+ 1 (ip), under Assumptions 1 and 3. 

H o 
1 ! /! • (wpl)-. !HI!*+ 1 (wpl) if !HI!* has a finite limit (wpl), 

under Assumptions 1 and 3. ,, 



Proof. (i} For every£> 0 we define 

H 
2 {w: z 

no{£) = -> 1+£ }, 
0 z 
H 2 

{w: z 
nl {£) = -> 1+£ }, 

* z 
H 2 

n2{£) = {w: 1-£ ::,;~::,; 1+£ }, 
* z 

H 

n3C£) = {w: 
z 

1-d -< 
z* 

H 
and bound E~ from above by 

E~H = Jn H z dF(w) 

;::,; f zHdF(w}+(1+£2)f z*dF{w}+(1-£)f z*dF(w), 
n1 (£) n2C£} n3(£) 

so that, under Assumptions 1 and 3, 

1 ::,; E~H ::,; I zH dF {w) 
* * E~ n

1 
(£) E~ 

+ (1+£2, - (€2+£) I 
n3t&) 

* ~ dF(ro} 
* Ez ~ 

::,; c
1
Pr{~ E n

1 
(£)} + 1 + 2 2 £ - (e +e)c3Pr{~ E n3 (e)}, 

that is, 

cl £ 
2 Pr{~ E nl (e)} + (e+1)c3 • 

(£ +e)c3 
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Since ~H/~
0 

+ 1 (ip), we have Pr{~ E n
0

(e}} + 0 for every e > 0 and, since 

n
0

(e) 2 n
1 

(£), Pr{~ E n
1 

(e)} + O for every e >Oas well. It is not diffi­

cult to see that this result together with the above upper bound on 

Pr{~ E n
3

(e)} imply that also Pr{~ E n
3

{e)} + 0 for every e > 0. It follows 

that Pr{~ E n
1 

(e) u n
3

(e)} + 0 for every e > 0, i.e., ~H/~* + 1 {ip). 
H * H 0 

{ii) There exists a constant c such that z /z + c {wpl). Since z /z + 1 
~ ~ ~ ~ 

0 * (wpl) and~ ::,; ~, we know that c::,; 1. Let n denote problem size. For every 

e > 0 we define 
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and write 

n• (e:) = -{w: lim n-+<x> 

~H 
1 = lim E - = 

n-+<x> * 
~ 

ZH 
-< 
* z 

1-e:} 

H H 

f lim ~* dF(w) + f lim · ~ dF(w). 
n-+<x> n-+<x> * 

n•<e:> ~ n\n'<e:> ~ 

Under Assumptions 1 and 3, the first equality follows from'Lemma 1, Theorem 

3(i) and Theorem 1(i) (cf. Figure 1). The second equality holds under Assump­
H * tion 1: ~ /~ is uniformly bounded (wpl), so that for each S1" ~ n the limit 

and the integral over S1" can be interchanged [Halmos 1973, p.114]. Therefore, 

1 ~ (1-e:)Pr{~ En• (e:)} + 1 - Pr{~ En• (e:)}, 

which implies that Pr{~ E S1'(e:)} = 0 for every e: > 0. It follows that 

C = 0. 0 

3. APPLICATIONS 

3.1. A general two-level planning problem 

We will consider a specific type of the distribution model formulated in 

Section 2.1: at the aggregate level, X = JN and f(X) = ex for a given con­
o 

stant c > 0, and the objective is to determine a function X: n + JN such 

that for each w En 

* 0 * z (X (w) ,w) = minXEJN {cX+g (X,w)}. 

Models of this type occur when one has to decide .upon the acquisition of a 

number of identical resources, each at a fixed cost c. Such models have been 

investigated in [Dempster et al. 1983, Marchetti Spaccamela et al. 1982, 

Frenk et al. 1983]. They share some common features that allow us to treat 

them in a general way. This general treatment concerns the design of the 

first stage heuristic as well as the analysis of the first stage and the 

overall decision. 
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First of all, there typically is a lower bound on g*(x,w} that can be 

written as the product of two factors, one depending only on X and the other 

only on w. More specifically, there exist a constant y > 0 and a function 

w: n + JR such that for each X E lN 

w(w) .,, *< } ~ g x,w. 
xY 

Secondly, there often is an estimate v of w(~) that is asymptotically 

accurate with probability 1 and that depends on the problem size and the 

probability distribution of~: 

W(!£) 
--+ 1 (wpl). 

V 

Such value estimates are available for various combinatorial optimization 

problems, as has been mentioned already in Section 2.2. 

These characteristics lead to a simple heuristic a1 for the first stage 

problem. Defining g81 (x) = v/xY, we have that asymptotically 

H 
z 1 (x} = V * * ex + - s ex+ g (X,~) = z (X,!£) (wpl). 

xY 

H 
Observing that z 1 is a unimodal function, achieving its minimum at 

1 

X = (:v)y+l, 

H1 H 
we conclude that X is determined by minimizing z 1 cx) subject to 

x E { L x J , r x ll n ]N • c L x J and r x 1 denote the integer rounddown and roundup 

of X respectively.) 

The third common feature is the existence of a second stage heuristic 
* 0 H2 that produces an upper bound on g (X (w),w) which is asymptotically 

equal to the above probabilistic lower bound with probability 1: 
H H 

g 2 (X 1 ,le} 
-----+ 1 (wpl). 

g H1 (X Hl) 

No gen~ral recipe for the design of such a heuristic can be given, since 

the model considered here allows for a wide variety of problem types at the 

detailed level. 
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In this situation, it can be proved that the heuristics H1 and (H
1

,H
2

) 

are both asymptotically clairvoyant with probability 1. 

THEOREM 4. If X = JN , f (X) = cX ( c > 0) and H1 and H2 are such that 
Hl * H H H H 

g (X) = v/xY ~ g (X,~) (wpl) and g 2 (x 1,~)/g 1 (x 1) + 1 (wpl), then 

(i) zH2(xH1,w)/z*(x
0

(w),w) + 1 (wpl); 
Hl o ~ ~ ~ 

(ii) X /X (~} + 1 (wpl). 

Proof. (i} We can bound z*(x,~) from below (asymptotically with probability 

1) and from above (deterministically) by 

H H * H 
cX+g 1 (X) = z 1 (X) ~ z (X,~) ~ z 2 (X,~) 

H 
= cX+g 2 (X,~) (wpl), 

so that 

H H H * 0 H H2 H 
cX 1+g 1 (x 1) ~ z (X (~),~) ~ cX 1+g (X 1,~) (wpl). 

H H H H 
The assumption that g 2 cx 1 ,~)/g 1 cx 1) + 1 (wpl) gives the desired result. 

(ii} Let n denote problem size. For each e: > 0 we define 

Q' (e:) = {w: lim n-+oo 
xH1 1 

< -1-}. 
0 +e: 

X (w) 

The unimodality of zH1 implies that for~€ Q' (e:) asymptotically 

H H Ht o * 0 H2 H z 1 ((l+e:)X 1) ~ z (X (~)) ~ z (X (~) ,~) ~ z (X 1,~) (wpl). 

A tedious but straightforward calculation shows that for each n 

Hence, we have for~€ Q'(e:) that 

zH2 (XH1 ,~) 
lim ----- > 1 (wpl). 

n-+<>o zHt (XH1) 

On the ~ther hand, we know for w € Q that this limit is equal to 1 (wpl), ~ 



15 

so that Pr{w E Q1 (e)} = 0 for every E > 0. Similarly, Pr{w: lim xH1/x
0

(w) ~ H n-+<x> 
> 1/(1-e)} = 0. It follows that X 1/x

0 

(~) + 1 (wpl). 0 

Theorem 4 deals with convergence with probability 1 in the distribution 

model. It is not hard to obtain analogous results for the other types of 

stochastic convergence, also in the context of the two-stage decision model. 

As an example, we consider the hierarchical scheduling problem from 

[Dempster et al. 1983, Section 2]. At the aggregate level, one has to decide 

on the number X of identical parallel machines that are to be acquired, 

while knowing the number n of jobs that are to be processed. The job process­

ing times ~1, ••• ,~ are independently and identically distributed, with 

expectationµ and finite second moment. At the detailed level, a realization 

w = (w1, ••• ,wn) of the processing times becomes known, and one has to 

decide on a schedule in which each machine processes at most one job at a 

time, job j is processed during an uninterrupted period of length w. 
J 

(j = 1, .•• ,n), and no job is processed prior to time 0, so as to achieve a 

* minimum value g (X,w) of the maximum job completion time. We define w sum 
= l~-l w. and w = maxl<"< {wJ.}. 

J- J max -J-n * 
First, it is obvious that w /X ~ g (X,w), so that w(w) = w and 

sum sum 
yH= 1. Secondly, ~sum/nµ + 1 (wpl), so that v = nµ. It follows that 

g 1 (X) = nµ/X and X = /nµ/c. 

Thirdly, any list scheduling algorithm, which considers the jobs in an 

arbitrarily fixed order and assigns each next one to the earliest available 
H 

machine, achieves a schedule length g 2 cx,w) ~ w /X + w . The finiteness sum max 
of the second moment of thew. implies that w Jin+ 0 (wpl) and therefore 

H H ~J ~max 
g 2 (X,~) /g 1 (X) + 1 (wpl). 

The two-stage scheduling heuristic thus satisfies the properties ex­

pressed by Theorem 4. Under the perfectly reasonable assumption that there 

exist constants wL,wU E lN for which wL ~ w. ~ wu (j = 1, ••• ,n), Assumptions 
. J 

1-4 from Section 2.4 are valid, as the reader should verify. This implies, 

by Figure 1, that the heuristic satisfies a wide range of convergence prop­

erties. The extent to which Assumptions 1-4 are valid in the context of the 

routing model considered in [Marchetti Spaccamela et al. 1982] is a subject 

of further investigations. 
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3.2. A two-level scheduling problem 

We finally consider an extension of the hierarchical scheduling problem dis­

cussed in section 3.1. The difference is that, at the aggregate level, one 

has to decide upon the acquisition of a subset X out of a set M of uniform 

parallel machines; therefore, X = 2M, the power set of M. For each machine 

i € M, a cost c. and a speeds. are specified; we write c(X) = l, X c., 
1 1 1€ 1 

s(X) = l• X s. (X € X). When, at the aggregate level, job j is scheduled on 
1€ 1 

machine i, it has to be processed during a period of length w./s .• The fur­
J 1 

ther problem specification and notation are the same as for the identical 

machine problem. 
L U L U . 

We assume that there exist constants c ,c ,s ,s € JN for which 
L< u L u M c _ c, :;::;; c and s :;::;; s. :;::;; s (i E ) • This will imply that the number of 

1· 1 

machines selected at the aggregate level grows as In. It is then reasonable 

to assume that the number of available machines grows faster than In, but 

remains polynomially bounded inn in order to allow an efficient implementa­

tion of the selection algorithm. We therefore require that there exist con­

stants D,D' > 0, d' ~ d > 0 such that Dni+d:;::;; IMI :;::;; D'ni+d'. 

In [Dempster et al. 1983, Section 3], the observation that 

w /s(X) :;::;; g*(x,w) led to the choice of g8 1(x) = nµ/s(X) as an estimate of 
sum 

Eg*(x,~). As the minimization of z81 (X) = c(X)+nµ/s(X) over XE X turned out 

to be NP-hard, a greedy heuristic G was proposed to find an approximation XG 

to x81, for which 

The use of a list scheduling algorithm H2 at the detailed level resulted in 

a heuristic (G,H2) that was proved to be asymptotically expectation-optimal 

and even asymptotically optimal in probability. 

We will consider the distribution model rather than the two-stage deci­

sion model and prove the stronger result that the same heuristic is asympto­

tically clairvoyant with probability 1. 
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· The following lemma establishes the asymptotic behavior of the optimal 

and heuristic solution values at the detailed level. 

LEMMA 3. For each X E X with s (X} = 0 (v'p:°}, 

* (i} g (X,w)/(nµ/s(X}) + 1 (wpl}; 
H ~ 

(ii} g 2 (x,~}/(nµ/s(X)) + 1 (wpl}. 

Proof. For every realization w of~ we have 

w H
2 

w w 
~ < * (X } :;; (X ) < sum max s (X} - g ,w g ,w - s (X) + --L- • 

s 

Division by nµ/s(X} yields 

w nµ 8 2 w nµ w s(X) 
sum- + 

1
:;; g*(x,w} :;; g (X,w) :;; sum- + 1 + max 

nv nv/s (X) nµ/s (X) nv L nµs 

By the strong law of large numbers, (w -nµ)/nµ + 0 (wpl) [Ash 1972]. Due ~sum 
to the finiteness of the second moment of thew., w /./n + 0 (wpl). The 

~J ~max 
assumption that s(X) = o(./n} implies (i) and (ii). D 

For every realization w of~ we know that 

* ,z (X, w) 

w sum 
;:: c (X) + s (X) • 

In order to prove that (G,H
2

) is asymptotically clairvoyant with probabili­

ty 1, we need a probabilistic analog of this deterministic inequality. 

Since w1, ••• ,w are independent random variables, each with the same fixed ~ ~n 
second moment, Komogorov's strong law of large numbers [Ash 1972, p. 274] 

implies that (w -nµ)/na + 0 {wpl) for any a> -
2
1 • Choosing a fixed a E 

~sum 
(-
2
1

, 1), we have that asymptotically u> -nµ '?. -na {wp1) and hence 
- ~sum 

* z (X,~} 
a 

nv-n 
2:c(X}+s(X) (wpl}. 

Let X' EX denote the minimand of the right-hand side of this inequality. 

The following lemma states that the total speeds of the sets X' and XG grow 

as rn. 
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LEMMA 4. 

Ci:) s(X') = ecln). 
(ii:} s(XG) = 8(/n). 

Proof. (i) The proof proceeds along the same lines as that of Lennna 6 (a) in 

[Dempster et al,. 1983]. 

(ii) See Lemma 6 (b), ibidem. • 

We are now ready to prove our convergence result. 

H2 G * o THEOREM 5. z (X ,~)/z (X (~),~) + 1 (wpl). 

Proof. For every realization oo of~, we have 

8 2 G G w sum oo 
z (X ,oo) ~ c (X ) + --- + ~ 

s (XG) sL 

H 00 sum-nµ 00 
z 1 (XG) + max = + 

s (XG) L s 

H H 00 sum-nµ W: 
~ z l(X 1) +cu+ +~ 

s (XG) L s 

nµ-na na u 00sum-nµ + 00max 
= c(X') + s(X') + s(Xl) + c + G L 

s(X) .s 

We can bound the performance ratio from below (deterministically) and from 

above (asymptotically with probability 1) by 

a oo -nµ oo 
n u ~sum ~max 

H2 G s (X') + c + G +-L-z . (X r!e) s (X ) s 
1 ~ ~ 1 + 

z* (X0 (w) ,w) a nµ-n ~ ~ c (X') + s (X') 

u( a 
u oo -nµ 00 

) 1 +~. n C ~sum "'Illax 
(wpl}. ~ + s (X') 

+ + L 2 c; L 
c (s (X')) s (X ) s (X') s s (X') 
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Consider each of the four terms in the last factor above and re.call Lemma 4. 

Since a< 1, the first term tends to zero. The second one also tends to zero. 

By the strong law of large numbers, the third term tends to zero (wpl). Due 

to the finiteness of the second moment of the w., the fourth term tends to 
~] 

zero as well (wpl). These observations prove the theorem. 0 
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