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A b s t r a c t  

In the hierarchical scheduling model to be considered, the decision at the 
aggregate level to acquire a number of identical machines has to be based on 
probabilistic information about the jobs that have to be scheduled on these 
machines at the detailed level. The objective is to minimize the sum of the ac- 
quisition costs and the expected average completion time of the jobs. In con- 
trast to previous models of this type, the second part of this objective function 
corresponds to a well-solvable scheduling problem that can be solved to opti- 
mality by a simple priority rule. A heuristic method to solve the entire prob- 
lem is described, for which strong asymptotic optimality results can be es- 
tablished. 

K e y w o r d s  a n d  p h r a s e s  

Hierarchical planning models, identical machine scheduling. 

1. I n t r o d u c t i o n  

Hierarchical planning problems involve a sequence  of  in t e r re l a t ed  decisions 

to  be t aken  over t ime at an increas ing level of  detail  and  wi th  an increas ing a m o u n t  of  

i n f o m l a t i o n .  

In a scheduling c o n t e x t ,  for  ins tance ,  the  first decisions in such a sequence  

typical ly  co r r e spond  to the  acquis i t ion  of  cer ta in  resources ,  whereas  la ter  decisions 
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involve the precise allocation of  these resources over time; the initial decisions at the 
aggregate level, however, usually have to be based on incomplete information on what 
the exact demand on the resources will be at the detailed level. 

In several papers [5,6,11,12], including one that appears elsewhere in this 
volume [11], it has been argued that the natural way to formulate such a problem is 
as a multi-stage stochastic programming problem, in which each stage corresponds to 
a decision level, the problem parameters of  which may initially be known only in 
probability. The objective will then be to set the decision variables at each level in 
such a way that the overall decision is optimal in expectation. 

The resulting stochastic programming problem is difficult to solve for two 
reasons. In the first place, the problems that have to be solved at the detailed level 
usually correspond to NP-hard [9] combinatorial optimization problems, for which 
truly efficient (in the sense ofpolynomially bounded [9])solut ion methods are very 
unlikely to exist. And secondly, the stochastic nature of  the problem gives rise to ad- 
ditional computational challenges. Hence, the natural way to solve these problems is 
by means of  stochastic programming heuristics [5,6,11,12]. Such heuristics are usual- 
ly based on sharp a priori estimates of  the optimal detailed level objective function 
value as a function of  the aggregate level decision variables, and were shown to have 
strong properties of  asymptotic optimality in various specific cases. 

The hierarchical scheduling model studied in this paper derives its interest 
from the fact that the problem at the detailed level is not NP-hard but solvable in 
polynomially bounded time by a simple priority rule. However, the stochastic nature 
of  the problem still forces us to resort to a heuristic solution method. In sect. 2, we 
introduce the model in more detail, and describe and motivate the heuristic solution 
method. In sect. 3, we develop and apply some advanced tools from probability theory 
to prove strong properties of  asymptotic optimality for the heuristic solution, includ- 
ing an estimate of  the rate at which its value converges to the value of  the optimal 
solution. In fact, we show that the relative loss that can be ascribed to imperfect in- 
formation at the aggregate level asymptotically tends to 0 almost surely (a.s.), which 
is the strongest possible result under the circumstances. Some concluding remarks are 
contained in sect. 4. 

2. T h e  s c h e d u l i n g  m o d e l  and  tile heur i s t i c  

Consider the following hierarchical planning problem. At the aggregate level 
a decision has to be made about the number m of Mentical machines that have to be 
acquired at cost c each. The machines will be used to process n jobs, whose processing 
times p! (j = 1, . . . ,n) are not yet known precisely at this level. Let us assume that 
these processing times can be conceived of  as independent, identically distributed ran- 
dom variables with a continuous common distribution function F(x] and (finite) ex- 
pected value/~. 
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After m has been chosen, a realization p = (Pl . . . . .  Pn) of the processing 
times is given and the jobs now have to be scheduled from time 0 onwards on the m 
machines acquired so as to minimize the average value C(m,p) of the job completion 
times @ (j -- 1 . . . . .  n]. Let us denote the optimal value of  C(m,p) for fixed m by 
C~ Initially, before a realization of  the processing times is given, this is a ran- 
dora variable. (All such variables will be underlined in the sequel.) Hence, the overall 
objective function Z(m,p) is given by 

Z(m,p_) ~= cm + fro (m,_p) . (1) 

This objective reflects the trade-off between the cost of  acquiring extra machines and 
the (possible) benefits of  having these extra machines available at the detailed level. 
We shall want to find the value m ~ such that 

E~_(m~ = min {E[Z(m,p_)]} = min {cm+E[-C~ (2) 
m m 

As announced in the introduction, it is a peculiar and an unusual t;eature of  
this scheduling model that the optimal detailed level objective function value C~ 
can be calculated in polynomial time for each realization of  p. Indeed, as demon- 
strated in [2], an optimal schedule can be constructed by assigning each job to the first 
available machine in order of  increasing processing times. I f p  (1) ~< p(2) ~< ... ~< p(n) 
are the order statistics of_p 1,_p2 . . . .  '_Pn, the optimality of the above SPT rule implies 
that 

~_O(m,p) = 1 Z n - j  + 1 p(.i) (3) 
- -  n m - j = l  

The analysis of  the expected value of  (3) as a function of  m is, however, not a trivial 
task. To find a suitable value of  m at the aggregate level, we will still have to rely on 
a heuristic approach. As in previous cases [5,6,12], this stochastic programming 
heuristic will be based on a lower bound on the detailed level objective (3) whose 
relative error is vanishingly small. In developing such a bound, we solve an open prob- 
lem posed in [4, p. 290]. 

A lower bound and a corresponding upper bound are given by the obvious in- 
equalities 

n n 

_ _  1 n - j +  + 1 p ( j )  (4) 1 Z n - i +  1 p( j )<~O(m,p)<. . .n  ~ m 
n m - -  - -  m - -  j = l  j = l  
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Let us calculate the expected value of the above lower bound rewritten as 

/7 17 ]_ r -  1 
7,; L --P/-,,-57 Z ( / - 1 ) p ( / ~ .  

j=l / = 1  
(5) 

The expected value of the first tema in (5) is equal to n/a/re. The expected value of tile 
second term is calculated as follows: 

" ) " 

Z ( / -  1)@(:') = n Z 
/ = I  o /=1 

(n-1 t 
( i -  1)\i _ 1 / F ( x ) i -  i(1 - F ( x ) )  n -ix-dF(x) 

~ n - 2 / n - 2 )  

= ,z(tz-1) kFO I k F ( x } k ( 1 - F ( x ) ) n - 2 - k x F ( x ) d F ( x }  

= n(.- l )  f xF(x)dF(x). 
0 

(6) 

Now, as a heuristic choice m H for 11l at the aggregate level we propose the value mini- 
mizing the lower bound on EZ(m,p) given by 

' f cm + -- (nla- (n - 1) xF{xJdF{x) )  . (7) 
t7l 

0 

i.e. tl~e most favorable integer round-off of 

(8) 

with 

. xF(x)dF(x). 
0 

Subsequently at the detailed level, we schedule the jobs on the m H machines 
acquired using the SPT rule. Thus, the heuristic solution value is given by 



J.B.G. Frenk  et al., A hierarchical scheduling problem 47 

Z_(mH,_p) = cmH + ~_o (mH, p_) . (9) 

We analyze the quality of this heuristic in the next section, and conclude this section 
by observing that  u can be readily calculated for some special cases of  practical im- 
portance. For example, if the processing times are uniformly distributed on an in- 
terval [a,b], then u = (b 3 - a 3 ) / ( 3 { b  -aJZ) ,  and if they come from a negative exponen- 
tial distribution with parameter X, then u = 3/(4?,). 

3. A n a l y s i s  o f  t h e  h e u r i s t i c  

To analyze the asymptotic behaviour of  the bounds in (4), we rewrite these 
inequalities as 

l Z -Pj + 1 J p(/.) 1 ~ o  
n--m I - - <~ - ( m,  2 )  

n2m 1 / ' =1  n - n - 

m + 1 Z _P/' + nm Z 1 - _ p(/) (10) 
n2rtl /.= i /.= i 

and observe that 

T r /  - -  - 1 -  
- ? l  

/ = 1  

is an example of  a so-called L-statistic, a weighted linear combination of  order sta- 
tistics, which in this case has the form 

1 x - -  
n L J 

] = 1  

(11) 

with J(t)  = 1 - t. 
In the appendix we establish the following general almost surely (a.s.) con- 

vergence result for such statistics. 

THEOREM 1. 

I f  J .  [0,1 ] -+IR is a eontirlzlous ftlrlctiotz, then 

(12) 
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n 

lim n ~ J n - P  
n - ~  j =  1 o 

(a.s.). (13) 

As a special case, we obtain that 

tim Tn = U -  v (a . s . ) .  ( 1 4 )  

To  an dyze the quality of  our heuristic, we now compare the upper bound on 
Z(mH,/2) given by (cf. (10)) 

?Z 

cm H+ n_!__ Tn+ 1 m H+ 1 Z P_/ 
mH - n m H 

i = l  
(15) 

to the solution value that could be realized in the case of perfect information, i.e. in 
the case that the realization (Pl, �9 �9 �9 ,Pn) is already "known when the aggregate level 
decision has to be rnade. The number of  machines to acquire then clearly depends on 
these values and may be written as m~ From (4), we derive that 

Z(m~ >1 rain {cm + m'Z _Tn} ( 1 6 )  
m 

and hence 

n 1 m H + 1 n 
cm H + - -  T n + ~ P_/ 

Z(nzH,p) m H -  n mH 
1 ~< ~< i = i ( 1 7 )  

Z(m~ 2 c~_ n 

From the definition of  m H (cf. (8)) and (14) we deduce that, almost surely, 

cmH I (c(np - (n - liP) ~112 1 
lim 2x/cnL ~ - l i m  2 \  7 n ? ~  ] = ~ (18) 

and similarly that 
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n 
Tn 

m H - 1 
lim - 2 (a.s.). 
n + = 2~/cnTn 

(19) 

Since, for n sufficiently large, 

#7 n 
2 nl mH+ 1 Z P._] n Z P.._] 

mH i = 1 i = 1 
<~ 

2<,/7_;= 2 
( 2 0 )  

and since the strong law of  large numbers [ 1] implies that this latter term converges to 
0 almost surely, we have arrived at the following result. 

THEOREM 2 

_Z(n#,p) 
lim 

,, ~ -  z _ ( ~ ~  
- 1 (a.s.). (21) 

Hence in the temainology of  [11], the heuristic is asymptotically clairvoyant 
ahnost surely: the relative loss due to imperfect information indeed goes to 0 almost 
surely. In particular, under some additional boundedness conditions, this result im- 
plies [11] the following corollary indicating that the heuristic is also asymptotically 
optimal in expectation 

COROLLARY 1 

E_Z( mH, p ] 
lim - - 1. (22) 

n ~ =  s176 

If the second moment Ep2.. may be assumed to be finite, it turns out that we 
can even establish the rate at wh~}a _ZH(m,pffZIt(m~ converges to 1, something 
that was not done in previous cases. For this purpose, we again make use of a general 
result that is established in the appendix. 



50 J.B.G. Frenk et al., A hierarchical scheduling problem 

T H E O R E M 3  

I f  J : [0,1 ] -+ IR is a continuously differentiable function, then 

n 

[1 j~=, j ( _ ~ ) _ p ( J ) -  ~xJ(F{xJJdF(x)  x/~ 
0 lim sup < oo (a.s.) (23) 

n - +  | x / l o ~ l o g  n 

We use Theorem 3 to analyze the convergence of the ratio Z(mH,_p)/Z(m_~ The 
right-hand side of inequality (17) is our starting point. From the definition of-m H we 
have 

cm H (c(nu - (n - 1 )v)) x/2 _ (cnTn) 1/2 
1 = 

(cnTn) 112 (cnTn) 112 

1 
- v +  ( u -  v)-_r n 17 

(24) 

Hence, Theorem 3 applied once again to the special case that J(t) = I - t yields that 

cmH 1]( n )i/2 
- -  ~ o o  

lim sup (cnTn)l/2 [ \ loglogn 
n 4 ~  

From (19) we have that 

nT_n 

m H 
lim 

n -. ~ (cnTn) 1/2 
- 1 

(a.s.). (25) 

(a.s.). (26) 

We observe that 
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cm H {cnT  n) 1/2 

(cnTn)'12 nL~ 
m H 

Together, (25), (26) and (27) imply 

nTn 

I(") 
lim sup (cnTn)X/2 1 lo~--og n 

?7 4 ~  

1 / 2  

(27) 

,,G 

] ,,,H cmH ]o , ,  
= lira sup l ( o , G ) , l  ~ 1 (cnG),  n jog < .o (a.s.) 

(28) 

Finally 

7l 

lira sup = 0 (a.s.) 
n ~ = ( c n T . ]  1/2 n 

and we have arrived at the following strong extension of Theorem 2. 

THEOREM4 

(29) 

lim sup 
_Z{ mH,p ] 

Zfm O(p),p) 
1(_ n )1/2 

loglog n 
< ~ (a . s . ) .  (30)  

We finally prove that not only the value of the heuristic but also the solution 
at the aggregate level itself almost surely converges to the optimal one. Indeed, we 
establish the rate of convergence in the following theorem. 
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THEOREM 5 

17l 0 (pfl I 114 
l i m s u p  - - - i 1/ < oo (a.s.) . 
n ~ mH I 

Proof" We define the funct ion  

A 'LG 
zLB(m,p)  = cm + 

m 

which for fixed p is a unimodal  funct ion o f  re. It is minimized  by 

mLB(p}_ _ ~= lnTcn) 112 

(31) 

(32) 

(33) 

We have 

n 
2 zLB(m-LB'-P) <~ Zfm~ ) <~ z-LBfn-ILB'p- ) + n ~ -Pi" 

/ = 1  

We now compu te  _m 1 and t__n 2 such that  

n 
2 Z- LBfm- 1,_P) = z-LBf~2,P) = _zLB:ndLB,_P) + n ~ P-j" 

/ = 1  

To do so, we solve the equal i ty  

(34) 

c m  + - -  

n 

nT-n = 2(cnT-n )I/z + n2_ Z _P/ 
m j= I 

(35) 

rewri t ten as 

CD,I 2 -- (cnTn)112 n -P 
i = 1  

m + n T  n = O, 

to f ind two roots  

_ml (?; n 

+1 Z 
cn j = l  

n 

7, 
j = l  

(36) 

(37) 

P/:c'T-d~/k /~ P/) } 
(38) 
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and 

_r_m2 

hence 

(39) 

The definitions of m 1 and m 2 and (34) imply that m 1 ~< m ~  ~< _m 2 and 

m_l m~ ~_l 1 _r_m 2 - nil 
~< ~ < -  + -  ( 4 0 )  

m H m H  m H m H 

Now 

(cnTn)  1/2 

cm H 

and 

( ~ n  ~ P/(CnTn )1'2 
2 )1/2 

/ = 1 - -  - -  

m H 

m: (cnT_.) :'2 

m H em H 

(5 
/ = 1  + 
m H 

(41) 

m2-D_.-/1 2 /2 ~ )1/2 2 (c_~ /~lp/. ) 
<" - - ~  - -  Z Pj(cnT-n )1/2 + - -  . (42) 

m H m \ c n  j = 1 - - m H " = 

As 

- < , ,o ( a . s . )  ( 4 3 )  /,'/ ~ j F/1/4 

(40), (41), (42) together with (19) and the strong law of large numbers imply the 
theorem. 

4. Concluding  remarks  

In sect. 3 and the appendix an analysis is given of the stochastic programming 
heuristic for a hierarchical planning problem whose detailed level decision is easy 
rather than computationally intractable. The analysis is based on a sharp a priori esti- 
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mate of  the solution value produced by a simple greedy-like priority rule, an estimate 
that is based on results from the theory of  order statistics. This theory may be of  simi- 
lar use in analyzing the performance of  other greedy-like solution methods (for an 
analysis in the classical case of  the minimum spanning tree, see [8]). As in the case 
treated here, such results might find natural application in the context of  hierarchical 
problems as well. 
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A p p e n d i x  

Proof of Theorem 1 

If  we denote the empirical distribution function by 

Fn(x ) ~ l lljlp_/ <~ x } l ,  
- -  n 

(A. 1) 

then 

U_ n ~ L Z J = xJ(Fn(x))d-Fn(x} �9 
- n j = l  

0 

(A.2) 

We consider the inverse function F -x (y) ~ inf x {x IF(x) > y }  ofF(x) and observe that 

= L  I l j l F ( p j )  <~ y }  I E n ( F - ' ( Y ) )  ~ - �9 (A.3) 

However ,v /=  F(_pj) is uniformly distributed on [0, 1] [7] and hence 

Fn{F-'(y)) = Vn(Y), (A.4) 

where Vn(Y ) is the empirical distribution function of n uniformly, independently dis- 
tributed random varianbles. Thus, if we substitute x = F -1 (y) in (A.2), we obtain that 

1 

U-n = fo F-' (Y)J(Vn(Y))d V-n(Y) 

1 1 

= f F-I(YJ(J(Vn(YJJ-J(Y))dVn(Y)+ ] F-I(Y)J(y]dV-n(Y)" 

0 0 

(A.S) 

Since J(t) is continuous on [0, 1] and hence uniformly continuous, we may use the 
fact that 

lim sup I Vn(Y ) - y l = 0 (a.s.) (A.6) 
n ~  ye[0 ,1 ]  
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(the Glivenko-Cantelli I_emma [1, p. 232]) to conclude that, for any e > 0, 

1 

lim sup - ~< e (a.s.). 

rE- '  (y) dV_n (y) 
0 

(A.7) 

Because of the strong law of large numbers [1, p. 250], the denominator in (A.7) con- 
verges to/a (a.s.), and hence 

lira sup F-X (y)(a(V_n(y)) - J(y))dVn(Y ) = 0 
n 4 ~  

( a . s . ) .  ( A . 8 )  

We again invoke the strong law of large numbers to analyze the second term on the 
right-hand side of (A.5) 

I n 
lim F-'(yJJ(y)dVn(Y)  = lim 1 )-- F_t(_vijJ(__vi ) 

n 
n - , =  o n - , |  i =  1 

= E(F -~ @iJJ(_vi)) 

Together (A.8) and (A.9) imply the theorem. 

= ] F-X(Y)J{)')dY 
0 

(a.s.) .  

(A.9) 

Proof o f  Theorem 3 

Using (A. 5), we write 

1 1 

U-n - I  F-i(y)J(y)dy= ] F-t(y)(J(V_n(y))-J(y))d_Vn(Y ) 
o 

7 F-~{y)J(y)dVn{Y) F-tO, JJ(yJdy (A.10) ] 
0 0 

and analyze the right-hand side of (A. 10) in parts. 
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Since J(t) is continuously differentiable on [0, I], we may apply the mean 
value theorem to conclude that there exists a 0 e (0, 1) such that 

J(Vn(Y)] - J(y) : a'(Wn{Y))(Vn(Y) - y) , (A.11) 

with 

W n(y ) ~= OVn(Y ) + ( 1 - O ) y .  (A. 12) 

Since V_n(y) is an increasing function and F-~(y) >~ O, we may conclude, after substi- 
tution of (A. 11) in the first term of  the right-hand side of (A. 10), that 

1 

0 

1 

~< sup IVn(Y) - y I S f - l ( y )  IJ'(Wn(yJ) ldVn(y).  (A. 13) 
ye 10, 11 0 

Now, since F is continuous ([3]) 

x /n l im sup n ~= IVn(Y ) - y  I = 1 (a.s.) (A.14) 
lira sup 2 

n -+ = ~ / 2  loglog n 

Furthermore, there exists a constant M such that 

1 

I F-l(y)  IJ'(W_n(y)) IdV_n(y) 

0 

1 

<~ M f F-l(y)dV_n(y), 

0 

(A.15) 

because J'(y) is continuous on [0, 1]. Now, 
1 

lim IXl- I F-~(y)dV-n(Y) = 1 . 

0 

(A.16) 

Hence, 1 

lira sup 
12 + = x/loglog n 

< oo (a.s.) (A.17) 
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The last two terms of  the right-hand side of  (A. 1 O) can be rewritten as 

1 

1 ~ F_X~,i)J@i ) _ F - ' ( y ) J {y ) dy .  
n 

/ = 1  o 

IfEp 7 < 0% we may apply the law of  the iterated logaritlml [10] to find that 

1 1 

lim sup < oo (a.s.) 
n -. = x/loglog n 

Together (A. 17) and (A. 19) imply the theorem. 

(A.18) 

(A.19) 


