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Introduction 
Should we trust computers, and if so, to what extent? This is one of the most 
important questions facing our industry. It will be asked more and more often, 
and it is highly desirable that we, the professionals, agree on our answer and are 
able to justify it. 

Whether or not we should trust computers, the reality is that we - society - 
behave as if we trust computers more every year. We trust computers with our 
privacy, with our money, with the defence of our country, and with our lives. 
Few of us, perhaps none of us, realise how widespread is the trust we place in 
computer systems and in the men and women who design and implement them. 

In this paper, I shall show that critical computer systems are already wide- 
spread and that their use is growing rapidly. I shall describe the main reasons 
why computers are used for these applications, and consider some spectacular 
failures and whether or not we should be concerned. I shall then review a few 
technical approaches to developing critical systems, and attempt tO present an 
overall picture of the state of the industry. Finally I shall suggest that some urgent 
actions are needed. 

Much of  this paper involves safety, and this raises a great difficulty. It is not 
my wish to create public alarm, or widespread fear of computer systems in 
safety-related applications. Indeed, I want to say at the outset that I do not 
believe that such alarm or fear is justified. Nevertheless, sensational press report- 
ing of previous public discussions of safety issues has caused problems, which 
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have greatly reduced the extent to which computing professionals are willing to 
reveal details of safety-related systems - and especially of failures in such systems. 
Yet, if we are to decide the degree of trust which can be placed in computer 
systems, and if we are to understand the contribution which difgerent development 
techniques bring to the safety of a system, we must have information and the 
freedom to discuss it. 

The examples of failures which I give are not to be taken as criticism of any 
specific person, company or product. 

Some Trusted Systems 

I describe below a few of the applications where computer systems are implicitly 
trusted by society. In each area, the incorrect behaviour of the computer system 
would significantly increase the risk of a failure, possibly with serious consequen- 
ces. In most of the areas below, the computer system is only part (and often a 
small part) of the total system. Often, the designers of the system have provided 
back-up mechanisms to minimise ~the effects of a failure in the computer system. 
I consider later a few of the important ways that system designers seek to ensure 
the integrity of their systems; the purpose of this section is to illustrate by example 
the degree to which we already trust systems which contain computers, and the 
possible consequences if that trust is unjustified. I also attempt to show the rate 
at which new, trusted computer systems are being developed. 

Civil Aviation 

Computers are used extensively in civil aviation. On the ground, they are used 
for a wide range of purposes, from controlling airfield lighting to the air traffic 
control systems which provide the controllers with radar plots and aircraft details. 
A new computer system will soon be introduced which will automatically detect 
and report on potential collisions between aircraft in the controlled airspace over 
London. It is believed that this will permit the London airspace to become even 
more congested without compromising its excellent safety record. 

In the air, computer systems are used (inter alia) for navigation, engine control, 
and automatic takeoff and landing. In the Boeing 757 the instrument panel has 
been replaced by VDUs, with computer-generated instrument displays. In the 
Airbus A320 (which has recently come into service) the computer systems have 
full authority over the aircraft's controls, in three dimensions: the pilot is not 
moving the ailerons directly, for example, but through a computer which will 
override the pilot if the control movements are beyond those it has been program- 
med to accept. The first Airship with a full-authority computer control system 
was demonstrated in October 1988. 

On the A320 Airbus and the next version of  the Boeing 747, the three-man 
crew has been reduced to two by eliminating the role of the flight engineer. To 
a first approximation, computers are being given the flight engineer's job of  
monitoring the vital systems. 

Civil airliner systems are among the most safety-critical, as a serious accident 
to a wide-bodied jet could kill 300-400 people. 
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Medicine 

Computers are increasingly used in medicine in the following areas: 

Patient records. Data such as blood-types, allergies and test results are stored on 
computers. This raises issues of privacy as well as safety, if records are retrieved 
incorrectly. The privacy issue in particularly topical, as the number of tests for 
HIV (the virus which can lead to AIDS) increases. 
Prescription. General practitioners have started to rely on computer systems to 
identify potential drug interactions when prescribing. 
Patient monitoring. Computers are used to monitor vital functions of patients in 
operating theatres and intensive care units. If the values go outside limits, an 
alarin is raised to attract the attention of staff. 
Therapy. Computers are becoming widespread in equipment as diverse as heart 
pacemakers and radiotherapy machines. Computer systems sometimes control 
the rate of drug administration to patients receiving intravenous drips. 
Diagnosis. Computers are used for x-ray imaging, body scanners and similar 
equipment. 

Typically, an accident would only kill one person at a time, although a 
recurrent fault might kill several before it was corrected. 

Road Vehicles 

Computer systems are found in antiskid brakes, where a system failure could 
cause brake failure. Computers are also being introduced into self-adjusting 
suspension systems, where a failure whilst cornering could cause loss of direc- 
tional control. Engine management, electronic ignition and fuel injection are 
other common applications. Future developments already proposed include drive- 
by-wire; head-up displays; and collision detection and avoidance, where the 
computer could be given authority over the car's speed and direction. 

A typical accident could kill or injure the occupants of one or several cars, 
and possibly other road users. 

Water Industry 

Computer systems are used for such purposes as monitoring the levels of lakes 
and reservoirs, controlling dams, and controlling water treatment, including the 
addition of fluoride. 

Defenee 

Computer systems are used widely for defence purposes, including use of flight 
control of aircraft, for missile guidance, for arming weapons, for weapons manage- 
ment and control on aircraft, for scheduling the safe movement and storage of 
explosives and toxic materials, for cryptography and cryptanalysis, for surveill- 
ance and image enhancement and for battle management. 
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Nuclear Reactors 

British civil nuclear reactors do not use computers for reactor protection (although 
military reactors are believed to do so). This will change with Sizewell B, which 
will be the first British civil reactor to have a computer-controlled protection 
system. This system has a hardwired backup for the failures which are presumed 
to be most likely. 

A worst-case failure would cause a few hundred short-term deaths, many 
more long-term, and severe environmental damage. 

Emergency Services 

Police and other emergency services increasingly use computers for command 
and control, for example in dealing with civil emergencies. System failure during 
such an emergency could cost many lives. 

Finance 

Computers are used widely in trusted financial applications, ranging from auto- 
matic bank teller machines and electronic funds transfer, to electronic trading in 
securities and other markets. A worst-case failure could possibly cause the collapse 
of  one or several financial institutions. It has been suggested that the world 
stock-market crash in October 1987 was exacerbated by automatic trading by 
"'portfolio insurance" programs. 

Chemical Plant 

Computer systems are widely used for controlling highly exothermic chemical 
reactions. In some cases even the emergency trip systems are computer-based. 
The situation in the chemical industry differs greatly from that in civil aviation 
as many of the plants are owned by small companies with limited resources, and 
the control systems and safety systems employed differ widely from plant to plant. 

The degree of injury which would be caused by a worst-case accident depends 
substantially on the location of the plant. A severe accident in the UK might kill 
30 people. 

Computer systems may also be used to control the chemical processes which 
produce drugs, pesticides and fertilisers. If these processes were to go wrong and 
not be detected, the results could affect very many people. An incident of this 
nature has apparently recently occurred [Com88]: an input error in preparing 
the master batch documents for a pharmaceutical computer apparently led to 
6400 bottles of cough medicine being produced with ten times too much of one 
constituent. The bottles were recalled; but our concern should perhaps be directed 
at the data-validation routines in the computer system. 

Industrial Control and Robotics 

Computers control a wide range of industrial equipment. Some examples are 
hydraulic presses, machine tools, unmanned vehicles, guillotines, and robots for 
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welding, assembly, and painting. A typical accident could lead to the loss of a 
limb, or injury (perhaps fatal) to one person. 

Railway Signalling 

Computer systems are used to replace the complex systems of relays which 
interlock signals and points to ensure the separation of trains. As with road 
traffic-lights, the systems are designed to fail safe, with all signals set to stop. A 
worst-case accident could kill tens of people. 

Other Areas 

This brief survey is far from exhaustive. Among the areas not covered are the 
secondary, design applications, where a computer is used to design safety-critical 
structures such as bridges, the Severn Barrage, or the structure of a nuclear 
reactor. The discovery of an error in a design program for nuclear reactors led 
to the US Nuclear Regulatory Commission shutting down five reactors [ACM79]. 

Conclusion 

Computer systems are currently used in a very wide range of applications where 
the consequences of failure (of the system of which they are part) could be severe. 
The use of such systems is increasing rapidly, as is the complexity of the 
applications (and, consequently, of the computer systems). Increasingly often, 
the computer system has no hard-wired, low-complexity backup system. I believe 
it is important that we are able to monitor the growth in the use of computer 
systems for critical applications, and to be confident that we are not inadvertently 
creating areas of unacceptable risk. In a moment I shall consider whether there 
is evidence which could justify a degree of concern about the way critical computer 
systems are developed and used. Before that, however, I want to consider briefly 
the reasons why computer systems are being introduced into critical areas, as 
this provides a valuable context for later discussions. 

The Benefits of Computers 

As we have seen, computers are in use in a wide range of critical application 
areas, and this use is increasing in range, volume and complexity. There are three 
interrelated reasons for this: economics, functionality, and safety. 

Computer systems are very powerful: they are able to monitor a large range 
of inputs, perform complicated calculations, and drive many outputs, and all this 
at very high speeds. For this reason, there are many applications which would 
simply be impossible without using computers. This power also allows for finer 
control: if you can monitor more variables and take action quickly on what you 
find, you can control your process so that it is nearer its optimum efficiency. With 
cruder control mechanisms you may have to allow much greater safety margins, 
or to tolerate many more occasions when the controlled process is shut down by 
the safety system, either of which could cost a lot of money. 
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Computer systems are relatively cheap, so the cost of  building the control 
and protection systems may dictate the use of computers. They are light and 
small and consume little power. 

Integrated circuits can be very reliable components, under the right conditions. 
They can even be made radiation hardened. 

A Health and Safety Executive workshop [UKHnd] has concluded that the 
use of programmable systems can improve safety. Their main reasons were that 
the programmable system could monitor large numbers of  process variables to 
detect fault conditions, that they could enable operation staff to work further 
away from hazardous areas, and that they could reduce risks from human 
operating errors. 

It can be seen that there is a balance between cost and safety. Safety can 
always be improved at increased cost, but the point arrives where the risk is 
acceptable and the cost of improvement is too high. In considering the social 
implications of computers we should look critically at such areas, where safety 
margins may be eroded for economic reasons, and replaced by arguments that 
computer technology is providing equivalent, or greater, levels of safety. 

Society has a right to ask how we can be certain of these levels of  safety, and 
what steps we take to ensure that evgry such system is developed to the necessary 
high standards. These are issues to which I return later. 

Is There Cause for Concern? 

Developing critical systems is a difficult, time-consuming, and expensive process 
which requires great skill and experience. The control system cannot be considered 
in isolation from the controlled process (I shall give an example shortly of  the 
sort of  problems which can occur if it is). The potential hazards have to be 
identified and, as far as possible, eliminated by careful design of the whole 
process. Only when this has all been done can we draw up the specification for 
the computer system. 

This specification may be wrong. It may inadequately reflect the task which, 
with hindsight, we would have wished the computer system to perform. If the 
specification is contradictory, we should be able to detect it with analysis tech- 
niques. If it is incomplete, we may have enough information to discover it (for 
example, it may not specify the required behaviour for all possible input values). 
If, however, the specification is functionally wrong, we can only hope to realise 
it by animation or testing (or by some other form of review by experienced 
humans). Otherwise our implementation will seek to satisfy the given specification 
as accurately as possible, with the result that the computer system will be "correct" 
(with regard to the specification) but the overall behaviour will be wrong. 

When society asks how safe a system is, what can we say? Unfortunately, 
very little with any certainty. Testing will tell us almost nothing (since testing 
will exercise a very small percentage of possible system behaviours). Indeed, if 
testing has found any errors at all, there may be justification for claiming that 
the system is likely to contain too many errors for it to be put into use. This is 
not an argument for omitting testing of  critical systems, merely for avoiding using 
the results to attempt to quantify the safety of the system. 

It is rarely practical to test a critical system under real conditions of use for 
the necessary length of  time to achieve statistically-significant results. As soon 
as we move away from real-world testing, we start to introduce unquantifiable 
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probabilities that we are doing something wrong. We cannot usually get a formal 
specification of the real world requirement, because guaranteed models of the 
real world are not available. It seems to me that anything we do thereafter to 
derive a numerical probability of failure for a system will be built on sand. At 
best, we may be able to estimate a probability, but the likely error in the estimate 
will be orders of magnitude too large for critical systems. 

Traditional methods of estimating failure probabilities for critical systems 
derive from low-complexity, hard-wired systems. In these, the probability of 
hardware component failure is relatively easy to quantify, and it is probably 
justifiable to assume that the hardware failure rate greatly exceeds the probability 
of failures from design errors. In practice, unquantifiable failure probabilities 
(such as the design error rate) are ignored in safety and reliability calculations. 

This approach breaks down with programmable systems. The hardware is 
generally very reliable, and the software is totally reliable (in the sense that it 
will continue to display the same functionality it had when it was first designed). 
The most likely causes of failure are specification and design errors - but how 
can these be quantified? It is my belief that they cannot - at least, not to the 
required precision - and that pragmatic, non-numerical techniques must be 
employed to provide assurance of adequate safety. 

Some Failures 

For obvious reasons, the developers and owners of critical systems are usually 
unwilling to discuss failures which have occurred. Nevertheless, some failures 
have been described and they provide useful insight into the ways in which 
critical systems go wrong. (The richest source of descriptions of critical system 
failures or "near misses" is an ACM forum [Neund].) 

I have previously described a number of reported failures, as illustrations of 
the sort of problems which have occurred with safety-critical systems [The88]. 
I conclude that despite the skill and experience of the teams developing critical 
systems, potentially serious problems still occur, and that we cannot assume that 
the unquantifiable errors in complex systems development will be detected by 
current techniques, or that they are so infrequent that they can be ignored. 

Many of the failures described [The88] result from incorrect specifications, 
where the designers of the computer systems did not recognise the real-world 
implications of their specification and design decisions. There is also evidence 
of implementation and component errors. Some description of these problems 
comes from the Computing Division of RSRE Malvern, and has been reported 
by Cullyer [Culnd]. In this lecture, Cullyer reported experience with static code 
analysis techniques. 

Static code analysis is a powerful technique for revealing the potential 
behaviour of a computer program. It involves processing the source text (in some 
well-defined language) to convert it to a labelled, directed graph which represents 
the possible control flow and data usage. This graph is then reduced where 
possible, identifying anomalies such as unreachable code, or data which is used 
before it is initialised. The simplified graph is automatically annotated with 
algebraic expressions which reveal the functional dependency of each output on 
the inputs. This can then be compared with the intended relationships between 
outputs and inputs to reveal errors. There are at least two commercial suites of 
programs which provide versions of this technology. 
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Cullyer reports [Culnd]: 

It has been demonstrated using [commercially available tools] that programs 
written for high-integrity equipment may contain a significant number of 
errors when first delivered for operational use. 
Taking a broad average over the analysis done by RSRE and other establish- 
ments during 1982-1985, up to 10% of program modules or individual func- 
tions were shown to deviate from the original specification in one or more 
modes of operation. Such discrepancies were found even in software which 
had undergone extensive checking on multi-million pound test rigs. Many of 
the anomalies were too minor to have any perceptible effects, e.g. a discrepancy 
of one part in 32,000 in some computation using 16-bit arithmetic. However, 
about 1 in 20 of the functions which static code analysis had shown to be 
faulty, i.e. about 1 in 200 of all new modules, proved to have errors which 
had direct and observable effects on the performance of the system being 
controlled. For example, potential overflows in integer arithmetic were detec- 
ted, involving a change in sign of the direction of deflection of  an actuator 
(e.g. "turn left" when the correct action is "turn right"). 

RSRE also investigated the suitability of commercial microprocessor chips for 
use in safety-critical applications. They discovered, Cullyer reports [Culnd] 

. . .  the following issues 

a. Modern microprocessors are so complicated that even e~perienced desig- 
ners may misunderstand some aspects of their behaviour; 
b. Many of the devices on sale have design errors at silicon level; 
c. Microprocessor handbooks . . ,  describe the operation codes for chips in a 
manner which sometimes is ambiguous and may at worst convey totally wrong 
information; 
d. The designers . . .  change the internal details of the devices several times 
per year, resulting in chips of differing functionality from one production 
batch to another; . . .  

... these uncertainties could not be tolerated. In particular, the control of 
nuclear reactors ... requires a scientific and engineering certainty which is 
hard to achieve with commercial microprocessors. 

In consequence, RSRE has invented and developed a new 32-bit microprocessor, 
VIPER, with a mathematically formal specification and a rigorous development 
path [Cu187]. 

Critical Systems Development 
It is beyond the scope of this paper to survey all of the technical approaches 
currently employed in developing critical computer systems (see Leveson [Lev86] 
for a valuable survey), but it is useful to look at some general approaches. Note 
that this section deals with the development of the computer system, although, 
as we have seen above, this must be seen in the context of the overall controlled 
system, since that is where the hazards lie. 
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Diverse Development 

Diverse development is a powerful aid to the critical systems developer. At a 
basic level, the verification and validation ofthe system is carried out by a different 
team from the developers. Beyond this, multiple versions of the system may be 
implemented and run in parallel, with logic which requires that the multiple 
channels agree on the output for a given input. The multiple channels may be 
developed by different teams using different models of microprocessors, perhaps 
implemented in different fabrication technologies, programmed in different 
languages and cross-compiled from different host computers. In extreme cases 
the channels may be diverse from beginning to end - for example the danger 
threshold in a chemical reaction may be able to be detected by either a temperature 
sensor or a pressure sensor. By using both, one for each of a dual channel system, 
diversity can actually start at the physics of the sensor system. 

The rationale behind diversity is that separate teams are extremely unlikely 
to make identical or related mistakes - so it is unlikely that both channels will 
fail at the same time. There are technical problems with the approach (for example, 
the design of the voting logic; detecting which channel is at fault if two channels 
disagree; and ensuring that a fault in one channel is not masked so that when 
the second channel fails the whole system fails) but these can be overcome, and 
diversity is required and used in many critical applications. 

Unfortunately, some assessors have assumed complete independence of the 
channels when calculating safety or reliability figures, so that two channels, each 
with 10 -4 probability of failure, are assumed to give 10 -s probability of failure 
in parallel. This suffers from two difficulties: how we know that the channels are 
each 10 -4, and how we can be sure that there are no "common mode" failures, 
which will cause simultaneous failures of each channel. 

Redundancy 

Redundancy is generally used to reduce the impact of random hardware failures, 
and as I have described earlier, software does not exhibit random failures. 
Redundancy is often combined with diversity, so that a triplicated diverse system 
will be implemented with the requirement that two out of three of the channels 
agree. 

Fault Tolerance 

Computer systems can be built to be fault tolerant, to a degree. For example, a 
calculation can be performed and its result checked to be within bounds - if it 
is outside the bounds the calculation can be repeated using a different algorithm. 
Such approaches again suffer from technical difficulties. There may be common- 
mode failures between the alternative algorithms, or between the algorithms and 
the test of acceptability. There will usually be errors which the acceptance test 
cannot detect. 

It is very good (and widespread) practice to program defensively, checking 
for situations which "cannot occur" and taking appropriate action. This level of 
redundancy provides a level of tolerance to design errors and hardware failures. 



14 M. Thomas 

Fault tolerant designs add significantly to the safety and reliability of critical 
systems. 

Testing 

Critical systems are usually tested extensively, with various analyses to ensure 
that all the program text is exercised at least once, that all branches have been 
taken in each possible direction, and so on. Such testing may use an artificial 
test rig - which can have advantages of speed, reproducibility and the ability to 
exercise particular values of input parameters - or the real world. Test rigs have 
disadvantages: costs, time potentially wasted on impossible inputs, and common- 
mode failures with the development specification, for instance. The real world 
has disadvantages too: the controlled process may not be available for testing 
against, or the result of a test failure may be potentially too great. 

There is much evidence that testing does not detect all significant faults 
[Culnd] (and it is evident that, as testing can seldom if ever be exhaustive, testing 
will only show the presence of errors, not their absence). There is also the problem 
of what you should do when an error is detected in testing. Logically, the corrected 
system is a new system which should be completely revalidated - but this is 
impractical if a large number of faults is detected during development, testing 
and early use. 

Formal Approaches 

Developments in applied mathematics [[Hoa69, Dij76, Jon86] have made it 
possible to apply mathematical analysis to computer system specifications and 
implementations, both hardware and software. Of course, there are restrictions, 
some of them severe. The system specification and development must be recorded 
in a language or notation which is mathematically well-defined. The mathematical 
techniques are only well-developed at present for sequential systems and for 
limited types of  computer hardware. The systems must not be too large or complex, 
or they exceed the capability of current mathematicians to handle them. Staff 
need mathematical training. There can be specification errors which do not show 
up as incompleteness or inconsistency. 

Nevertheless, these techniques show great promise, and they are already in 
growing use. The UK Ministry of Defence has said that such techniques will 
become mandatory for military safety-critical software [Defnd]. 

The mathematics which underlies these methods is mathematical logic (dis- 
crete mathematics). It is the mathematics which models precisely the nature of 
digital systems, and it offers a scientific basis for the development of computer 
systems. The successes with static code analysis and with the VIPER development, 
both of which rely on mathematical methods, has been described earlier. These 
methods are the way of the future, offering far greater certainty throughout the 
development processs. 

However, formal methods do not address the whole problem, because there 
is clearly still the problem of understanding the controlled process, developing 
an adequate specification, analysing the system for potential hazards and the 
consequences of failures and so on. And, of course, even a mathematical analysis 
or proof has some probability of being incorrect [Fet88]. Formal methods should 
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be viewed as a way of  strengthening the development process, by formalising 
many of the informal processes which are currently employed. It must be stressed, 
however, that current informal methods can be extremely important in controlling 
risk, and that changes in methods should be made cautiously. 

Quality Assurance 

The whole development, operation and maintenance of a critical system will 
properly be carried out within the procedures of a rigorous quality control and 
quality management system. This will require that agreed procedures are followed, 
that all important decisions and actions are independently reviewed, and that 
adequate audit trails and documentation are maintained. 

The quality assurance should extend to the development tools, to ensure that 
no faults are introduced by building systems out of the wrong versions of  
component parts, and that errors are not introduced in the process of translating 
source text into binary images in the store of a computer. It is very difficult to 
ascribe meaningful failure probabilities to these steps. 

Review 

In my opinion, the current state of critical systems development is that of a 
sophisticated craft industry. Standards are variable - some are very high, other 
lamentable. There is no agreed, common approach to developing programmable, 
critical systems or to assessing their adequacy for the intended task. There is no 
scientific basis on which we can assign to complex systems of hardware or software 
the often-quoted, very low, probabilities of  failure. There is no authoritative 
source of  data on the number or range of  critical systems in use or under 
development, no public record of  their complexity or of their failure-rate in use. 
In short, there is an absence of  control and a lack of  information. 

Yet there is evidence of every-increasing reliance being placed on computers. 
There is also good reason to believe that computer systems, properly deployed, 
can provide increased levels of safety compared with earlier approaches, and 
bring substantial economic benefits. 

It is evident that system reliability and safety are a function of system 
complexity. This means that there must be limits to the complexity of control 
systems which can reasonably be adjudged suitable for use in critical applications. 
We need to agree those limits, and devise some mechanism for ensuring that 
important systems do not attempt to go beyond what we believe to be reasonable. 

We need to agree the safety and reliability levels which it is reasonable to 
claim for systems which have used specified development practices, and to agree 
the level of  risk which it is acceptable to entrust to systems at each level. 

Space has prevented me from reviewing the state of  national and international 
standardisation; had I done so, I would have presented a picture of unnecessary 
diversity between industries and nations. This is a legitimate cause of  concern. 
Someone living in Southern England is as much at risk from a French nuclear 
accident as from a British one, yet the safety standards seem very different. We 
should work through the industry to achieve harmonisation in these important 
areas. 

There is good evidence that formal methods, including static code analysis, 
reveal software errors which escape detection using conventional methods, yet 
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most safety-critical systems are still being developed without using these tech- 
niques. Indeed, some safety-critical systems are being installed without any formal 
hazard analysis and, if frequent anecdotal evidence is to be believed, some 
developers even ignore rudimentary principles of software engineering. Computer 
science and computer technology are far from mature, yet society is behaving as 
though it had limitless faith in computer systems. 

I believe that we have a duty to try to ensure that all safety-critical systems 
are developed to agreed high standards. Safety is a legitimate area for society's 
concern and action, and so this is where we should start. (Perhaps we shall be 
able to turn our attention to other classes of critical system later.) If we are to 
achieve high minimum standards, there is much work to be done. There is certainly 
no cause for panic, but the work is urgent and should not be delayed. 

What Needs to be Done? 

Exploitation of Current Best Practice 

Different companies and different industries follow widely differing practices 
when developing safety-critical computer systems. As a result, the safety of two 
systems may be very different although the consequences of failure may be the 
same. 

There is much in common in the requirements for safety-critical computer 
systems in different application areas, which means that very similar practices 
are appropriate in all industries. The measure should be the consequences of a 
failure - this should set the level of risk which is considered acceptable, and this 
in turn should determine the development practices to be adopted as a minimum. 

It is important to be able to demonstrate compliance with these minimum 
standards - a standard which does not support testing for compliance is of very 
limited usefulness. This would seem to require that the standards are prescriptive 
- that they actually lay down what has to be done and the way it should be done. 
The standards must also be kept up-to-date; in this fast-developing technology, 
this will involve a process of continuous review and improvement. 

Recognition of the Fundamental Role of Mathematics 

We need to introduce mathematical rigour wherever we can throughout the 
development process, to supplement and strengthen the techniques which are 
currently employed. Engineering judgement supported by calculation and logical 
argument is preferable to engineering judgement without such support. We need 
to cut through the debate about the merits of formal methods as alternatives to 
currently accepted methods and concentrate on setting the best of current develop- 
ment methods on a sound, formal base. 

Setting the Limits of Safety 

There will continue to be economic pressures to control ever more complex 
processes, using every more complex computer systems. To protect society, and 
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to remove intolerable pressures from individual engineers, we should define the 
safety levels which are required for systems of  a given criticality, and define 
(perhaps arbitrarily) the safety levels which can be claimed for a given 
implementation technology. This will enforce minimum standards, as described 
a moment ago, and it will also set limits on the complexity of  applications which 
can be attempted at any time. 

Licence for Release to Service 

To complete the control over safety-critical systems, we then need a mandatory 
licence for release into service of any system above a defined level of criticality. 
There are industry-specific precedents for this - telephones have to be licenced 
before they can be connected to the public network, because of the damage that 
faulty equipment could do; cars need specific or type approval to go on public 
roads; the Nuclear Installations Inspectorate licences nuclear reactors, the Civil 
Aviation Authority (CAA) licences aeroplanes, the Government Communication 
HQ licences computer systems which handle classified information . . . .  

Given the common requirements for safety-critical computer systems, it should 
be a great help m the existing regulatory authorities to have agreed common 
criteria for acceptability and licencing. In addition, mandatory licensing would 
catch all the areas where systems are not currently explicitly regulated, which 
would be wholly beneficial. 

Collection of Information 

If the mechanisms I have just described were set in place, it would create a 
framework which could enable us to collect statistics about the numbers of 
safety-critical computer systems in use, their criticality and the methods used in 
developing them, and the sorts of failures which occur and their frequency. This 
information would be extremely useful in guiding the development of  future 
standards. 

Again there is at least one precedent. The Air Navigation Order requires that 
any accident to an aeroplane be reported to the CAA, so that it can be analysed 
and lessons drawn which could improve safety for all. 

Harmonisation 

Whenever new controls are introduced there is a danger that they create non-tariff 
barriers to trade, with consequential economic damage. For this reason, it is 
highly desirable that the licencing procedures are agreed internationally, if this 
can be achieved, and work is currently being undertaken to create international 
standards [IECnd]. 

Conclusion 

Well-designed computer systems can be safer than hardwired alternatives, and 
computer systems can control processes which are too complex for hardwired 
solutions, or where the hardwired solution is uneconomic. 
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So should we trust computers? Within limits, yes - but we do not know where 
those limits are, or whether many systems have already crossed the line. Although 
most current systems are adequately safe, there are economic and marketing 
pressures which will lead to even more complex systems in the future. The rate 
of growth in both the number and the complexity of safety-critical systems seems 
to be high, and urgent action is therefore needed to create a framework within 
which we can exploit the power of computers safely and economically. 

Mathematical methods have a fundamental role to play in improving the 
certainty of computer systems development and the safety of trusted computer 
systems. This journal, by providing a forum for technical debate and the publica- 
tion of refereed results, will make a valuable contribution in this most important 
process. 
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