
Formal Aspects of Computing (1989) 1:5-18
�9 1989 BCS FOrrnal Aspects

of Computing

Development Methods for Trusted
Computer Systems
Martyn Thomas
Praxis Systems pie, 20 Manvets Street, Bath BA1 IPX, United Kingdom

Key words: Safety critical computer systems; Trustworthiness; Good practice;
Formal methods

Introduction
Should we trust computers, and if so, to what extent? This is one of the most
important questions facing our industry. It will be asked more and more often,
and it is highly desirable that we, the professionals, agree on our answer and are
able to justify it.

Whether or not we should trust computers, the reality is that we - society -
behave as if we trust computers more every year. We trust computers with our
privacy, with our money, with the defence of our country, and with our lives.
Few of us, perhaps none of us, realise how widespread is the trust we place in
computer systems and in the men and women who design and implement them.

In this paper, I shall show that critical computer systems are already wide-
spread and that their use is growing rapidly. I shall describe the main reasons
why computers are used for these applications, and consider some spectacular
failures and whether or not we should be concerned. I shall then review a few
technical approaches to developing critical systems, and attempt tO present an
overall picture of the state of the industry. Finally I shall suggest that some urgent
actions are needed.

Much of this paper involves safety, and this raises a great difficulty. It is not
my wish to create public alarm, or widespread fear of computer systems in
safety-related applications. Indeed, I want to say at the outset that I do not
believe that such alarm or fear is justified. Nevertheless, sensational press report-
ing of previous public discussions of safety issues has caused problems, which

Correspondence and offprint requests to: M. Thomas, Chairman, Praxis Systems pie, 20 Manvers Street,
Bath BAI 1PX, UK.

6 M. Thomas

have greatly reduced the extent to which computing professionals are willing to
reveal details of safety-related systems - and especially of failures in such systems.
Yet, if we are to decide the degree of trust which can be placed in computer
systems, and if we are to understand the contribution which difgerent development
techniques bring to the safety of a system, we must have information and the
freedom to discuss it.

The examples of failures which I give are not to be taken as criticism of any
specific person, company or product.

Some Trusted Systems

I describe below a few of the applications where computer systems are implicitly
trusted by society. In each area, the incorrect behaviour of the computer system
would significantly increase the risk of a failure, possibly with serious consequen-
ces. In most of the areas below, the computer system is only part (and often a
small part) of the total system. Often, the designers of the system have provided
back-up mechanisms to minimise ~the effects of a failure in the computer system.
I consider later a few of the important ways that system designers seek to ensure
the integrity of their systems; the purpose of this section is to illustrate by example
the degree to which we already trust systems which contain computers, and the
possible consequences if that trust is unjustified. I also attempt to show the rate
at which new, trusted computer systems are being developed.

Civil Aviation

Computers are used extensively in civil aviation. On the ground, they are used
for a wide range of purposes, from controlling airfield lighting to the air traffic
control systems which provide the controllers with radar plots and aircraft details.
A new computer system will soon be introduced which will automatically detect
and report on potential collisions between aircraft in the controlled airspace over
London. It is believed that this will permit the London airspace to become even
more congested without compromising its excellent safety record.

In the air, computer systems are used (inter alia) for navigation, engine control,
and automatic takeoff and landing. In the Boeing 757 the instrument panel has
been replaced by VDUs, with computer-generated instrument displays. In the
Airbus A320 (which has recently come into service) the computer systems have
full authority over the aircraft's controls, in three dimensions: the pilot is not
moving the ailerons directly, for example, but through a computer which will
override the pilot if the control movements are beyond those it has been program-
med to accept. The first Airship with a full-authority computer control system
was demonstrated in October 1988.

On the A320 Airbus and the next version of the Boeing 747, the three-man
crew has been reduced to two by eliminating the role of the flight engineer. To
a first approximation, computers are being given the flight engineer's job of
monitoring the vital systems.

Civil airliner systems are among the most safety-critical, as a serious accident
to a wide-bodied jet could kill 300-400 people.

Development Methods for Trusted Computer Systems

Medicine

Computers are increasingly used in medicine in the following areas:

Patient records. Data such as blood-types, allergies and test results are stored on
computers. This raises issues of privacy as well as safety, if records are retrieved
incorrectly. The privacy issue in particularly topical, as the number of tests for
HIV (the virus which can lead to AIDS) increases.
Prescription. General practitioners have started to rely on computer systems to
identify potential drug interactions when prescribing.
Patient monitoring. Computers are used to monitor vital functions of patients in
operating theatres and intensive care units. If the values go outside limits, an
alarin is raised to attract the attention of staff.
Therapy. Computers are becoming widespread in equipment as diverse as heart
pacemakers and radiotherapy machines. Computer systems sometimes control
the rate of drug administration to patients receiving intravenous drips.
Diagnosis. Computers are used for x-ray imaging, body scanners and similar
equipment.

Typically, an accident would only kill one person at a time, although a
recurrent fault might kill several before it was corrected.

Road Vehicles

Computer systems are found in antiskid brakes, where a system failure could
cause brake failure. Computers are also being introduced into self-adjusting
suspension systems, where a failure whilst cornering could cause loss of direc-
tional control. Engine management, electronic ignition and fuel injection are
other common applications. Future developments already proposed include drive-
by-wire; head-up displays; and collision detection and avoidance, where the
computer could be given authority over the car's speed and direction.

A typical accident could kill or injure the occupants of one or several cars,
and possibly other road users.

Water Industry

Computer systems are used for such purposes as monitoring the levels of lakes
and reservoirs, controlling dams, and controlling water treatment, including the
addition of fluoride.

Defenee

Computer systems are used widely for defence purposes, including use of flight
control of aircraft, for missile guidance, for arming weapons, for weapons manage-
ment and control on aircraft, for scheduling the safe movement and storage of
explosives and toxic materials, for cryptography and cryptanalysis, for surveill-
ance and image enhancement and for battle management.

8 M. Thomas

Nuclear Reactors

British civil nuclear reactors do not use computers for reactor protection (although
military reactors are believed to do so). This will change with Sizewell B, which
will be the first British civil reactor to have a computer-controlled protection
system. This system has a hardwired backup for the failures which are presumed
to be most likely.

A worst-case failure would cause a few hundred short-term deaths, many
more long-term, and severe environmental damage.

Emergency Services

Police and other emergency services increasingly use computers for command
and control, for example in dealing with civil emergencies. System failure during
such an emergency could cost many lives.

Finance

Computers are used widely in trusted financial applications, ranging from auto-
matic bank teller machines and electronic funds transfer, to electronic trading in
securities and other markets. A worst-case failure could possibly cause the collapse
of one or several financial institutions. It has been suggested that the world
stock-market crash in October 1987 was exacerbated by automatic trading by
"'portfolio insurance" programs.

Chemical Plant

Computer systems are widely used for controlling highly exothermic chemical
reactions. In some cases even the emergency trip systems are computer-based.
The situation in the chemical industry differs greatly from that in civil aviation
as many of the plants are owned by small companies with limited resources, and
the control systems and safety systems employed differ widely from plant to plant.

The degree of injury which would be caused by a worst-case accident depends
substantially on the location of the plant. A severe accident in the UK might kill
30 people.

Computer systems may also be used to control the chemical processes which
produce drugs, pesticides and fertilisers. If these processes were to go wrong and
not be detected, the results could affect very many people. An incident of this
nature has apparently recently occurred [Com88]: an input error in preparing
the master batch documents for a pharmaceutical computer apparently led to
6400 bottles of cough medicine being produced with ten times too much of one
constituent. The bottles were recalled; but our concern should perhaps be directed
at the data-validation routines in the computer system.

Industrial Control and Robotics

Computers control a wide range of industrial equipment. Some examples are
hydraulic presses, machine tools, unmanned vehicles, guillotines, and robots for

Development Methods for Trusted Computer Systems 9

welding, assembly, and painting. A typical accident could lead to the loss of a
limb, or injury (perhaps fatal) to one person.

Railway Signalling

Computer systems are used to replace the complex systems of relays which
interlock signals and points to ensure the separation of trains. As with road
traffic-lights, the systems are designed to fail safe, with all signals set to stop. A
worst-case accident could kill tens of people.

Other Areas

This brief survey is far from exhaustive. Among the areas not covered are the
secondary, design applications, where a computer is used to design safety-critical
structures such as bridges, the Severn Barrage, or the structure of a nuclear
reactor. The discovery of an error in a design program for nuclear reactors led
to the US Nuclear Regulatory Commission shutting down five reactors [ACM79].

Conclusion

Computer systems are currently used in a very wide range of applications where
the consequences of failure (of the system of which they are part) could be severe.
The use of such systems is increasing rapidly, as is the complexity of the
applications (and, consequently, of the computer systems). Increasingly often,
the computer system has no hard-wired, low-complexity backup system. I believe
it is important that we are able to monitor the growth in the use of computer
systems for critical applications, and to be confident that we are not inadvertently
creating areas of unacceptable risk. In a moment I shall consider whether there
is evidence which could justify a degree of concern about the way critical computer
systems are developed and used. Before that, however, I want to consider briefly
the reasons why computer systems are being introduced into critical areas, as
this provides a valuable context for later discussions.

The Benefits of Computers

As we have seen, computers are in use in a wide range of critical application
areas, and this use is increasing in range, volume and complexity. There are three
interrelated reasons for this: economics, functionality, and safety.

Computer systems are very powerful: they are able to monitor a large range
of inputs, perform complicated calculations, and drive many outputs, and all this
at very high speeds. For this reason, there are many applications which would
simply be impossible without using computers. This power also allows for finer
control: if you can monitor more variables and take action quickly on what you
find, you can control your process so that it is nearer its optimum efficiency. With
cruder control mechanisms you may have to allow much greater safety margins,
or to tolerate many more occasions when the controlled process is shut down by
the safety system, either of which could cost a lot of money.

10 M. Thomas

Computer systems are relatively cheap, so the cost of building the control
and protection systems may dictate the use of computers. They are light and
small and consume little power.

Integrated circuits can be very reliable components, under the right conditions.
They can even be made radiation hardened.

A Health and Safety Executive workshop [UKHnd] has concluded that the
use of programmable systems can improve safety. Their main reasons were that
the programmable system could monitor large numbers of process variables to
detect fault conditions, that they could enable operation staff to work further
away from hazardous areas, and that they could reduce risks from human
operating errors.

It can be seen that there is a balance between cost and safety. Safety can
always be improved at increased cost, but the point arrives where the risk is
acceptable and the cost of improvement is too high. In considering the social
implications of computers we should look critically at such areas, where safety
margins may be eroded for economic reasons, and replaced by arguments that
computer technology is providing equivalent, or greater, levels of safety.

Society has a right to ask how we can be certain of these levels of safety, and
what steps we take to ensure that evgry such system is developed to the necessary
high standards. These are issues to which I return later.

Is There Cause for Concern?

Developing critical systems is a difficult, time-consuming, and expensive process
which requires great skill and experience. The control system cannot be considered
in isolation from the controlled process (I shall give an example shortly of the
sort of problems which can occur if it is). The potential hazards have to be
identified and, as far as possible, eliminated by careful design of the whole
process. Only when this has all been done can we draw up the specification for
the computer system.

This specification may be wrong. It may inadequately reflect the task which,
with hindsight, we would have wished the computer system to perform. If the
specification is contradictory, we should be able to detect it with analysis tech-
niques. If it is incomplete, we may have enough information to discover it (for
example, it may not specify the required behaviour for all possible input values).
If, however, the specification is functionally wrong, we can only hope to realise
it by animation or testing (or by some other form of review by experienced
humans). Otherwise our implementation will seek to satisfy the given specification
as accurately as possible, with the result that the computer system will be "correct"
(with regard to the specification) but the overall behaviour will be wrong.

When society asks how safe a system is, what can we say? Unfortunately,
very little with any certainty. Testing will tell us almost nothing (since testing
will exercise a very small percentage of possible system behaviours). Indeed, if
testing has found any errors at all, there may be justification for claiming that
the system is likely to contain too many errors for it to be put into use. This is
not an argument for omitting testing of critical systems, merely for avoiding using
the results to attempt to quantify the safety of the system.

It is rarely practical to test a critical system under real conditions of use for
the necessary length of time to achieve statistically-significant results. As soon
as we move away from real-world testing, we start to introduce unquantifiable

Development Methods for Trusted Computer Systems 11

probabilities that we are doing something wrong. We cannot usually get a formal
specification of the real world requirement, because guaranteed models of the
real world are not available. It seems to me that anything we do thereafter to
derive a numerical probability of failure for a system will be built on sand. At
best, we may be able to estimate a probability, but the likely error in the estimate
will be orders of magnitude too large for critical systems.

Traditional methods of estimating failure probabilities for critical systems
derive from low-complexity, hard-wired systems. In these, the probability of
hardware component failure is relatively easy to quantify, and it is probably
justifiable to assume that the hardware failure rate greatly exceeds the probability
of failures from design errors. In practice, unquantifiable failure probabilities
(such as the design error rate) are ignored in safety and reliability calculations.

This approach breaks down with programmable systems. The hardware is
generally very reliable, and the software is totally reliable (in the sense that it
will continue to display the same functionality it had when it was first designed).
The most likely causes of failure are specification and design errors - but how
can these be quantified? It is my belief that they cannot - at least, not to the
required precision - and that pragmatic, non-numerical techniques must be
employed to provide assurance of adequate safety.

Some Failures

For obvious reasons, the developers and owners of critical systems are usually
unwilling to discuss failures which have occurred. Nevertheless, some failures
have been described and they provide useful insight into the ways in which
critical systems go wrong. (The richest source of descriptions of critical system
failures or "near misses" is an ACM forum [Neund].)

I have previously described a number of reported failures, as illustrations of
the sort of problems which have occurred with safety-critical systems [The88].
I conclude that despite the skill and experience of the teams developing critical
systems, potentially serious problems still occur, and that we cannot assume that
the unquantifiable errors in complex systems development will be detected by
current techniques, or that they are so infrequent that they can be ignored.

Many of the failures described [The88] result from incorrect specifications,
where the designers of the computer systems did not recognise the real-world
implications of their specification and design decisions. There is also evidence
of implementation and component errors. Some description of these problems
comes from the Computing Division of RSRE Malvern, and has been reported
by Cullyer [Culnd]. In this lecture, Cullyer reported experience with static code
analysis techniques.

Static code analysis is a powerful technique for revealing the potential
behaviour of a computer program. It involves processing the source text (in some
well-defined language) to convert it to a labelled, directed graph which represents
the possible control flow and data usage. This graph is then reduced where
possible, identifying anomalies such as unreachable code, or data which is used
before it is initialised. The simplified graph is automatically annotated with
algebraic expressions which reveal the functional dependency of each output on
the inputs. This can then be compared with the intended relationships between
outputs and inputs to reveal errors. There are at least two commercial suites of
programs which provide versions of this technology.

12 M. Thomas

Cullyer reports [Culnd]:

It has been demonstrated using [commercially available tools] that programs
written for high-integrity equipment may contain a significant number of
errors when first delivered for operational use.
Taking a broad average over the analysis done by RSRE and other establish-
ments during 1982-1985, up to 10% of program modules or individual func-
tions were shown to deviate from the original specification in one or more
modes of operation. Such discrepancies were found even in software which
had undergone extensive checking on multi-million pound test rigs. Many of
the anomalies were too minor to have any perceptible effects, e.g. a discrepancy
of one part in 32,000 in some computation using 16-bit arithmetic. However,
about 1 in 20 of the functions which static code analysis had shown to be
faulty, i.e. about 1 in 200 of all new modules, proved to have errors which
had direct and observable effects on the performance of the system being
controlled. For example, potential overflows in integer arithmetic were detec-
ted, involving a change in sign of the direction of deflection of an actuator
(e.g. "turn left" when the correct action is "turn right").

RSRE also investigated the suitability of commercial microprocessor chips for
use in safety-critical applications. They discovered, Cullyer reports [Culnd]

. . . the following issues

a. Modern microprocessors are so complicated that even e~perienced desig-
ners may misunderstand some aspects of their behaviour;
b. Many of the devices on sale have design errors at silicon level;
c. Microprocessor handbooks . . , describe the operation codes for chips in a
manner which sometimes is ambiguous and may at worst convey totally wrong
information;
d. The designers . . . change the internal details of the devices several times
per year, resulting in chips of differing functionality from one production
batch to another; . . .

... these uncertainties could not be tolerated. In particular, the control of
nuclear reactors ... requires a scientific and engineering certainty which is
hard to achieve with commercial microprocessors.

In consequence, RSRE has invented and developed a new 32-bit microprocessor,
VIPER, with a mathematically formal specification and a rigorous development
path [Cu187].

Critical Systems Development
It is beyond the scope of this paper to survey all of the technical approaches
currently employed in developing critical computer systems (see Leveson [Lev86]
for a valuable survey), but it is useful to look at some general approaches. Note
that this section deals with the development of the computer system, although,
as we have seen above, this must be seen in the context of the overall controlled
system, since that is where the hazards lie.

Development Methods for Trusted Computer Systems 13

Diverse Development

Diverse development is a powerful aid to the critical systems developer. At a
basic level, the verification and validation ofthe system is carried out by a different
team from the developers. Beyond this, multiple versions of the system may be
implemented and run in parallel, with logic which requires that the multiple
channels agree on the output for a given input. The multiple channels may be
developed by different teams using different models of microprocessors, perhaps
implemented in different fabrication technologies, programmed in different
languages and cross-compiled from different host computers. In extreme cases
the channels may be diverse from beginning to end - for example the danger
threshold in a chemical reaction may be able to be detected by either a temperature
sensor or a pressure sensor. By using both, one for each of a dual channel system,
diversity can actually start at the physics of the sensor system.

The rationale behind diversity is that separate teams are extremely unlikely
to make identical or related mistakes - so it is unlikely that both channels will
fail at the same time. There are technical problems with the approach (for example,
the design of the voting logic; detecting which channel is at fault if two channels
disagree; and ensuring that a fault in one channel is not masked so that when
the second channel fails the whole system fails) but these can be overcome, and
diversity is required and used in many critical applications.

Unfortunately, some assessors have assumed complete independence of the
channels when calculating safety or reliability figures, so that two channels, each
with 10 -4 probability of failure, are assumed to give 10 -s probability of failure
in parallel. This suffers from two difficulties: how we know that the channels are
each 10 -4, and how we can be sure that there are no "common mode" failures,
which will cause simultaneous failures of each channel.

Redundancy

Redundancy is generally used to reduce the impact of random hardware failures,
and as I have described earlier, software does not exhibit random failures.
Redundancy is often combined with diversity, so that a triplicated diverse system
will be implemented with the requirement that two out of three of the channels
agree.

Fault Tolerance

Computer systems can be built to be fault tolerant, to a degree. For example, a
calculation can be performed and its result checked to be within bounds - if it
is outside the bounds the calculation can be repeated using a different algorithm.
Such approaches again suffer from technical difficulties. There may be common-
mode failures between the alternative algorithms, or between the algorithms and
the test of acceptability. There will usually be errors which the acceptance test
cannot detect.

It is very good (and widespread) practice to program defensively, checking
for situations which "cannot occur" and taking appropriate action. This level of
redundancy provides a level of tolerance to design errors and hardware failures.

14 M. Thomas

Fault tolerant designs add significantly to the safety and reliability of critical
systems.

Testing

Critical systems are usually tested extensively, with various analyses to ensure
that all the program text is exercised at least once, that all branches have been
taken in each possible direction, and so on. Such testing may use an artificial
test rig - which can have advantages of speed, reproducibility and the ability to
exercise particular values of input parameters - or the real world. Test rigs have
disadvantages: costs, time potentially wasted on impossible inputs, and common-
mode failures with the development specification, for instance. The real world
has disadvantages too: the controlled process may not be available for testing
against, or the result of a test failure may be potentially too great.

There is much evidence that testing does not detect all significant faults
[Culnd] (and it is evident that, as testing can seldom if ever be exhaustive, testing
will only show the presence of errors, not their absence). There is also the problem
of what you should do when an error is detected in testing. Logically, the corrected
system is a new system which should be completely revalidated - but this is
impractical if a large number of faults is detected during development, testing
and early use.

Formal Approaches

Developments in applied mathematics [[Hoa69, Dij76, Jon86] have made it
possible to apply mathematical analysis to computer system specifications and
implementations, both hardware and software. Of course, there are restrictions,
some of them severe. The system specification and development must be recorded
in a language or notation which is mathematically well-defined. The mathematical
techniques are only well-developed at present for sequential systems and for
limited types of computer hardware. The systems must not be too large or complex,
or they exceed the capability of current mathematicians to handle them. Staff
need mathematical training. There can be specification errors which do not show
up as incompleteness or inconsistency.

Nevertheless, these techniques show great promise, and they are already in
growing use. The UK Ministry of Defence has said that such techniques will
become mandatory for military safety-critical software [Defnd].

The mathematics which underlies these methods is mathematical logic (dis-
crete mathematics). It is the mathematics which models precisely the nature of
digital systems, and it offers a scientific basis for the development of computer
systems. The successes with static code analysis and with the VIPER development,
both of which rely on mathematical methods, has been described earlier. These
methods are the way of the future, offering far greater certainty throughout the
development processs.

However, formal methods do not address the whole problem, because there
is clearly still the problem of understanding the controlled process, developing
an adequate specification, analysing the system for potential hazards and the
consequences of failures and so on. And, of course, even a mathematical analysis
or proof has some probability of being incorrect [Fet88]. Formal methods should

Development Methods for Trusted Computer Systems 15

be viewed as a way of strengthening the development process, by formalising
many of the informal processes which are currently employed. It must be stressed,
however, that current informal methods can be extremely important in controlling
risk, and that changes in methods should be made cautiously.

Quality Assurance

The whole development, operation and maintenance of a critical system will
properly be carried out within the procedures of a rigorous quality control and
quality management system. This will require that agreed procedures are followed,
that all important decisions and actions are independently reviewed, and that
adequate audit trails and documentation are maintained.

The quality assurance should extend to the development tools, to ensure that
no faults are introduced by building systems out of the wrong versions of
component parts, and that errors are not introduced in the process of translating
source text into binary images in the store of a computer. It is very difficult to
ascribe meaningful failure probabilities to these steps.

Review

In my opinion, the current state of critical systems development is that of a
sophisticated craft industry. Standards are variable - some are very high, other
lamentable. There is no agreed, common approach to developing programmable,
critical systems or to assessing their adequacy for the intended task. There is no
scientific basis on which we can assign to complex systems of hardware or software
the often-quoted, very low, probabilities of failure. There is no authoritative
source of data on the number or range of critical systems in use or under
development, no public record of their complexity or of their failure-rate in use.
In short, there is an absence of control and a lack of information.

Yet there is evidence of every-increasing reliance being placed on computers.
There is also good reason to believe that computer systems, properly deployed,
can provide increased levels of safety compared with earlier approaches, and
bring substantial economic benefits.

It is evident that system reliability and safety are a function of system
complexity. This means that there must be limits to the complexity of control
systems which can reasonably be adjudged suitable for use in critical applications.
We need to agree those limits, and devise some mechanism for ensuring that
important systems do not attempt to go beyond what we believe to be reasonable.

We need to agree the safety and reliability levels which it is reasonable to
claim for systems which have used specified development practices, and to agree
the level of risk which it is acceptable to entrust to systems at each level.

Space has prevented me from reviewing the state of national and international
standardisation; had I done so, I would have presented a picture of unnecessary
diversity between industries and nations. This is a legitimate cause of concern.
Someone living in Southern England is as much at risk from a French nuclear
accident as from a British one, yet the safety standards seem very different. We
should work through the industry to achieve harmonisation in these important
areas.

There is good evidence that formal methods, including static code analysis,
reveal software errors which escape detection using conventional methods, yet

16 M. Thomas

most safety-critical systems are still being developed without using these tech-
niques. Indeed, some safety-critical systems are being installed without any formal
hazard analysis and, if frequent anecdotal evidence is to be believed, some
developers even ignore rudimentary principles of software engineering. Computer
science and computer technology are far from mature, yet society is behaving as
though it had limitless faith in computer systems.

I believe that we have a duty to try to ensure that all safety-critical systems
are developed to agreed high standards. Safety is a legitimate area for society's
concern and action, and so this is where we should start. (Perhaps we shall be
able to turn our attention to other classes of critical system later.) If we are to
achieve high minimum standards, there is much work to be done. There is certainly
no cause for panic, but the work is urgent and should not be delayed.

What Needs to be Done?

Exploitation of Current Best Practice

Different companies and different industries follow widely differing practices
when developing safety-critical computer systems. As a result, the safety of two
systems may be very different although the consequences of failure may be the
same.

There is much in common in the requirements for safety-critical computer
systems in different application areas, which means that very similar practices
are appropriate in all industries. The measure should be the consequences of a
failure - this should set the level of risk which is considered acceptable, and this
in turn should determine the development practices to be adopted as a minimum.

It is important to be able to demonstrate compliance with these minimum
standards - a standard which does not support testing for compliance is of very
limited usefulness. This would seem to require that the standards are prescriptive
- that they actually lay down what has to be done and the way it should be done.
The standards must also be kept up-to-date; in this fast-developing technology,
this will involve a process of continuous review and improvement.

Recognition of the Fundamental Role of Mathematics

We need to introduce mathematical rigour wherever we can throughout the
development process, to supplement and strengthen the techniques which are
currently employed. Engineering judgement supported by calculation and logical
argument is preferable to engineering judgement without such support. We need
to cut through the debate about the merits of formal methods as alternatives to
currently accepted methods and concentrate on setting the best of current develop-
ment methods on a sound, formal base.

Setting the Limits of Safety

There will continue to be economic pressures to control ever more complex
processes, using every more complex computer systems. To protect society, and

Development Methods for Trusted Computer Systems 17

to remove intolerable pressures from individual engineers, we should define the
safety levels which are required for systems of a given criticality, and define
(perhaps arbitrarily) the safety levels which can be claimed for a given
implementation technology. This will enforce minimum standards, as described
a moment ago, and it will also set limits on the complexity of applications which
can be attempted at any time.

Licence for Release to Service

To complete the control over safety-critical systems, we then need a mandatory
licence for release into service of any system above a defined level of criticality.
There are industry-specific precedents for this - telephones have to be licenced
before they can be connected to the public network, because of the damage that
faulty equipment could do; cars need specific or type approval to go on public
roads; the Nuclear Installations Inspectorate licences nuclear reactors, the Civil
Aviation Authority (CAA) licences aeroplanes, the Government Communication
HQ licences computer systems which handle classified information

Given the common requirements for safety-critical computer systems, it should
be a great help m the existing regulatory authorities to have agreed common
criteria for acceptability and licencing. In addition, mandatory licensing would
catch all the areas where systems are not currently explicitly regulated, which
would be wholly beneficial.

Collection of Information

If the mechanisms I have just described were set in place, it would create a
framework which could enable us to collect statistics about the numbers of
safety-critical computer systems in use, their criticality and the methods used in
developing them, and the sorts of failures which occur and their frequency. This
information would be extremely useful in guiding the development of future
standards.

Again there is at least one precedent. The Air Navigation Order requires that
any accident to an aeroplane be reported to the CAA, so that it can be analysed
and lessons drawn which could improve safety for all.

Harmonisation

Whenever new controls are introduced there is a danger that they create non-tariff
barriers to trade, with consequential economic damage. For this reason, it is
highly desirable that the licencing procedures are agreed internationally, if this
can be achieved, and work is currently being undertaken to create international
standards [IECnd].

Conclusion

Well-designed computer systems can be safer than hardwired alternatives, and
computer systems can control processes which are too complex for hardwired
solutions, or where the hardwired solution is uneconomic.

18 M. Thomas

So should we trust computers? Within limits, yes - but we do not know where
those limits are, or whether many systems have already crossed the line. Although
most current systems are adequately safe, there are economic and marketing
pressures which will lead to even more complex systems in the future. The rate
of growth in both the number and the complexity of safety-critical systems seems
to be high, and urgent action is therefore needed to create a framework within
which we can exploit the power of computers safely and economically.

Mathematical methods have a fundamental role to play in improving the
certainty of computer systems development and the safety of trusted computer
systems. This journal, by providing a forum for technical debate and the publica-
tion of refereed results, will make a valuable contribution in this most important
process.

Acknowledgement
This paper is a shortened, updated and amended version of the BCS/Unisys
Annual Lecture [Tho88].

References

[ACM79]
[Com88]
[Culnd]

[Cu187]

[Defnd]
[Dij76]
[Fet88]

[Hoa69]

[IECnd]
[Jon86]
[Lev86]
[Neund]

[Tho88]

[UKHnd]

ACM Software Engineering Notes, 4, 2 (1979).
Computing Australia, 13 June 1988.
Cullyer, W. J.: Should We Trust Computers? Lecture to the Society for the Application
of Research, Cambridge, UK. RSRE, St Andrews Rd, Gt Malvern, Worcestershire
WR14 3PS.
Cullyer, W. J.: Implementing Safety-Critical Systems: the VIPER Microprocessor, In:
Proc. Workshop on Hardware Verification, Calgary, Canada, January 1987.
Defence Standard 00-55.
Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall, 1976.
Fetzer, J. H.: Program Verification: the Very Idea. Communications of the ACM, 31
(1988).
Hoare, C. A. R.: An Axiomatic Basis for Computer Programming. Communications of
the ACM, 12, 576-580, 583 (1969).
International Electrotechnical Committee [IEC] WG65A, TC9 and TC10.
Jones, C. B.: Systematic Software Development Using VDM. Prentice-Hall, 1986.
Leveson, N.: ACM Computing Surveys, 18, 1986.
Neumann, P. (ed.): A CM Forum on Risks to the Public in Computers and Related Systems.
Extracts reprinted in ACM Software Engineering Notes. The Forum is published elec-
tronically on USENET as newsgroup comp. risks.
Thomas, M.: Should We Trust Computers? BCS/Unisys Annual Lecture 1988, available
from Maureen Murphy, BCS, 13, Mansfield Street, London W1 (s
UK Health and Safety Executive (unpublished).

Received July 1988
Accepted in a revised form November 1988 by D. J. Cooke

