
Continuous Alternation: The Complexity of Pursuit in Continuous Domains

By: John H. Reif and Stephen R. Tate

J. H. Reif and S. R. Tate. ―Continuous Alternation: The Complexity of Pursuit in Continuous Domains‖,

Algorithmica, Vol. 10(2-4), 1993, pp. 151–181.

Made available courtesy of Springer Verlag: The original publication is available at

http://www.springerlink.com

***Reprinted with permission. No further reproduction is authorized without written permission from

Springer Verlag. This version of the document is not the version of record. Figures and/or pictures

may be missing from this format of the document.***

Abstract:

Complexity theory has used a game-theoretic notion, namely alternation, to great advantage in modeling

parallelism and in obtaining lower bounds. The usual definition of alternation requires that transitions be made

in discrete steps. The study of differential games is a classic area of optimal control, where there is continuous

interaction and alternation between the players. Differential games capture many aspects of control theory and

optimal control over continuous domains. In this paper, we define a generalization of the notion of alternation

which applies to differential games, and which we call "continuous alternation." This approach allows us to

obtain the first known complexity-theoretic results for open problems in differential games and optimal control.

We concentrate our investigation on an important class of differential games, which we call polyhedral pursuit

games. Pursuit games have application to many fundamental problems in autonomous robot control in the

presence of an adversary. For example, this problem occurs in manufacturing environments with a single robot

moving among a number of autonomous robots with unknown control programs, as well as in automatic

automobile control, and collision control among aircraft and boats with unknown or adversary control.

We show that in a three-dimensional pursuit game where each player's velocity is bounded (but there is no

bound on acceleration), the pursuit game decision problem is hard for exponential time. This lower bound is

somewhat surprising due to the sparse nature of the problem: there are only two moving objects (the players),

each with only three degrees of freedom. It is also the first provably intractable result for any robotic problem

with complete information; previous intractability results have relied on complexity-theoretic assumptions.

Fortunately, we can counter our somewhat pessimistic lower bounds with polynomial time upper bounds for

obtaining approximate solutions. In particular, we give polynomial time algorithms that approximately solve a

very large class of pursuit games with arbitrarily small error. For ε > 0, this algorithm finds a winning strategy

for the evader provided that there is a winning strategy that always stays at least E distance from the pursuer and

all obstacles. If the obstacles are described with n bits, then the algorithm runs in time (n/ε)
0(1)

, and applies to

several types of pursuit games: either velocity or both acceleration and velocity may be bounded, and the bound

may be of either the L2- or -norm. Our algorithms also generalize to when the obstacles have constant degree

algebraic descriptions, and are allowed to have predictable movement.

Key Words: Motion planning, Pursuit games, Differential games, Lower bounds.

Article:

1. Introduction.
In alternation (as presented by Chandra et al. [7]), the state configurations are finite strings, and two players (an

existential and universal player), beginning at an initial configuration, alternately make discrete moves chosen

from a given finitely described next move relation. The players make these moves with perfect information of

the current position; the associated decision problem is to determine whether there is a strategy for the

http://libres.uncg.edu/ir/uncg/clist.aspx?id=110
http://www.springerlink.com/

existential player that always reaches a given final accepting configuration. Discrete alternation has proved to

be a very useful notion, with applications in complexity theory, game theory, and parallel computing.

We investigate an interesting variant of alternation, which we call continuous alternation. Each configuration is

a point in a dense space, say d
, and there are again two players; the existential and universal players. The

configuration x is partitioned into two parts, where each part is controlled by a distinct player. Each player

continuously makes moves satisfying differential constraints of the form F(t, x, x', x", . . .), where F defines a

set of semialgebraic inequalities in the derivatives of x and their norms. We also specify distinguished initial

and final configurations and their derivatives. Again, both players have perfect information, and the problem is

to determine a continuous strategy for the existential player that is successful in reaching the final configuration

with a continuous trajectory against any dynamic pursuer. In addition, there may also be a restriction on the

time required to reach the final configuration. Interesting examples of continuous alternation games are the

differential pursuit games considered in game theory (see, e.g., [2]). A typical pursuit game has constraints F(t,

x, x', x", . . .), where F specifies the geometry of obstacles to be avoided by players, the shape of the players, as

well as a restriction that the players not collide.
3
 F can also specify a norm bound on the velocity or acceleration

of each player. Such pursuit games are actually just robotic motion planning problems in the presence of an

adversary that tries to stop our robot. A short summary of previous work in motion planning is included in

Section 2.

The complexity of continuous alternation depends very much on the form of the differential constraints. We

provide the first upper and lower bounds on the complexity of a class of continuous alternation games. In

particular, we consider pursuit games in three dimensions, where the obstacle sets are polyhedra with fixed

rational position in 3
, and the L2-norm of the velocity of each player is bounded. We show that the decision

problem for these pursuit games is exponential time hard. The lower bound is quite surprising, since the degree

of freedom of the players (the dimension d of the configuration space) is constant. This is the first provable

intractability result for a robotics problem with perfect information. In fact, there had previously been no

provable intractability results for any robotic problems with perfect information, even with n degrees of

freedom. Note that there are problems with perfect information that have been shown to be NP-hard or even

PSPACE-hard; however, to say that a PSPACE-hard problem is provably intractable requires a proof that P

PSPACE. While this is considered a reasonable assumption by many computer scientists, it remains a major

open problem in complexity theory.

We give approximation algorithms for a wide class of pursuit games: the velocity and acceleration have either

 - or L2-norm bounds, the obstacle sets are (possibly moving) polyhedra with fixed rational initial positions,

and there are certain "safety" constraints on the closeness that the players can approach obstacles or each other.

Our approximation algorithms allow the existential player to find a strategy that reaches the final configuration

within an additive ε factor (for any ε > 0) of the optimal deadline time. In the case of L2-norm bounds, we have

to exceed the dynamics bounds by a multiplicative factor of ε. The algorithm generalizes to any type of obstacle

(not just polyhedra) that can be tested for collision in O(log n) space, such as obstacles having constant degree

algebraic descriptions.

To emphasize the relationship with discrete alternation, both the lower and upper bounds are proved using the

alternating Turing machine as the model of computation.

There are many variations on the pursuit game we have defined, and some minor changes can greatly affect the

complexity of the problem. For instance, if each player is a single point, then it can be shown that whenever the

pursuer is allowed a velocity bound at least as high as the evader, the game is easily decided by just calculating

the minimum distance to the goal for each player.

2. Previous Work in Motion Planning

2.1. Motion Planning for Static Problems with Perfect Information. We first describe the static obstacle

motion planning problem, which is to move the robot between two given locations, avoiding contact with fixed

obstacles. The problem has been formulated (see, e.g., Lozano-Perez and Wesley who called it the "FIND-

PATH problem" [15], Reif who called it the "furniture mover's problem" [18], and Schwartz and Sharir who

called it the "piano mover's problem" [27]), by describing the robot as a linked set of polyhedral bodies, and the

obstacles as a set of static polyhedra, fixed in given positions in three-space. Early work in this area includes:

obstacle growing techniques [15], and complexity-theoretic techniques, such as the first known PSPACE-

hardness result for n-linked polyhedral robots [18], [19]. Later work by Schwartz and Sharir developed

polynomial time motion planning algorithms for the case of robots with a constant number of degrees of

freedom and size n obstacle space [27]. The Schwartz and Sharir algorithm constructs a partitioning of the

configuration space by decomposing it into a simplicial complex. Their general algorithm used in part the

Collins decomposition developed originally to decide the theory of real closed fields (in fact, to decide the

theory of real closed fields with a constant number of variables, there was a previously known polynomial time

sequential algorithm due to Collins [9], but this does not give the path information needed to solve these robotic

movement planning problems).

2.2. Minimum Distance Path Planning with Perfect Information. In the simplest formulations of minimal

distance (static obstacle) path planning, the robot is assumed to be a point, or sphere. We wish to determine the

minimal distance path between two points for the robot that avoids a set of n fixed polyhedral obstacles.

Interesting techniques have been developed to solve these problems; such techniques might be applied to solve

many other robotic problems. For example, Sharir and Schorr give a doubly exponential sequential time

algorithm for the three-dimensional minimum path problem using the theory of real closed fields [28]; later,

Reif and Storer apply a formula collapsing trick that (aided by later work of Sharir) reduced the complexity to

single exponential sequential time or n
O(log n)

parallel time (using a large number of processors) [22]. The work

of Canny [3] and Renegar [24] on the existential theory of real closed fields further reduced the parallel time

and sequential space complexity to polynomial, but the total work (and sequential time) remains

nonpolynomial.

It will be difficult to reduce the work bounds of this problem to polynomial, since Canny and Reif proved that

the three-dimensional minimum distance path problem is NP-hard [6]. A key part of that proof uses the fact that

we can construct an exponential number of homotopic distinct paths through a set of O(n) convex obstacles.

Finally, we note that the two-dimensional minimum path problem can be solved in polynomial time; the best

known algorithm is O(nk log n) time [20], where k is the number of disconnected polyhedral obstacles.

Quadratic bounds are known when k = n, and this case has known parallel algorithms. (See also [21] for

variants of the two-dimensional minimum path problem where the number of turns is minimized.) In a more

practical vein, Papadimitriou gives a polynomial approximation algorithm for finding three-dimensional cost

paths using space discretization [17]; for any ε > 0, this algorithm will find a path that is probably within a (1 +

ε) factor of optimal. The running time for this approximation problem has been improved by Clarkson, as well

as giving an O((n/ε) log n) approximation algorithm for two dimensions [8].

2.3. Compliant Motion Control and Frictional Movement Planning. The inclusion of friction complicates

movement planning in interesting ways. In this case there is incomplete information about the position of the

robot. In fact, in compliant control the lack of knowledge and imprecision of the robot position can grow in time

(see also [10]). Canny and Reif showed that three-dimensional compliant motion control is nondeterministic

exponential time hard in the worst case [6], which was the first provably intractable result in robotics. These

lower bound results required incomplete information, whereas the problems addressed in this paper assume that

perfect information is available.

2.4. Motion Planning for Autonomous Robots in Dynamic Environments. A more realistic situation for robot

systems of the future is an army of autonomous robots operating in an environment that is not "nice." Due to the

existence of other autonomous robots (and possibly other factors) that act as moving obstacles, the environment

is not static, but can be changing and dynamic. This complication requires dynamic algorithms for control. With

the development of such controls, movement planning may eventually be relegated to a background process of a

robot. As very little is currently known about such problems, it remains a fundamental problem to develop

dynamic movement planning algorithms; this is the main thrust of our current paper.

2.5. Dynamic Motion Planning with Independently Moving Obstacles. One way that we can generalize the

mover's problem is to allow the obstacles to move; we assume that the obstacles are moving with known

trajectories. We then must move the robot on a path between two given positions, with bounded velocity while

avoiding the moving obstacles. This problem occurs in manufacturing environments with many other

autonomous preprogrammed robots, automatic automobile control, and automatic pilots and collision control

for aircraft and boats. The first papers with complexity results (i.e., algorithms and lower bounds for motion

planning with moving obstacles), were those of Reif and Sharir [20] and Sutner and Maas [30]. Reif and Sharir

develop algorithms for the three-dimensional movement planning problem with translating (but nonrotating)

polygonal obstacles, and give PSPACE lower bounds for three-dimensional movement planning of a disk,

among rotating obstacles [20]. This construction uses 52(n) rotating obstacles, while the lower bound

construction of this paper only needs two moving objects.

2.6. Kinodynamic Motion Planning. In kinodynamic motion planning, the kinematic and dynamic constraints

of the robot are taken into account, so driving forces, torques, and velocities of the robot are restricted by some

maximum allowed norm. The formulation may vary depending on whether L2- or -norm is used, and whether

the full kinodynamic equations are used. The minimum time problem is to move the robot (say a set of linked

polyhedra) between two given positions, with beginning and final velocities also specified. For dimension d =

1, the problem can be easily solved [16]. For d > 1, this problem is a very difficult one, and it dates back to at

least the last century. There has been some considerable previous work done by robotic researchers. For

example, Bobrow [1], and later Shin and McKay [29], proved some basic constraints on control paths; e.g., at

least some joint torque is at maximum (see also [26]). Hollerbach gives a dynamic time scaling technique [13],

which allowed him to develop discretization methods for systematically exploring the possible control paths,

giving an approximate solution to the problem [25]. His method requires 2
O(k)

 paths to be explored (k is the

number of segments in any coordinate direction of the discretization), which implies that exponential work is

required.

The work of Canny et al. gives the first provably good polynomial time approximation algorithm for the

problem of moving a single point though algebraic obstacles in three dimensions, with acceleration bounds

[4]. That algorithm required the trajectory of the point robot to be within an obstacle-free tube whose radius

depended on the velocity. Their algorithm finds a movement with elapsed time of at most (1 + ε)T, where T is

the actual minimum trajectory time. The algorithm makes key use of a nonuniform discretization that depends

on the velocity. Jacobs et al. generalized this result to kinodynamics problems with open-chain manipulators

and thus coupled dynamics [14]. The single point kinodynamics is generalized to the L2-norm, using more

advanced angular discretization methods to better approximate L2 bounded movements, by Donald and Xavier

[11] and independently by Reif and Tate [23]. Furthermore, Donald and Xavier improved the analysis of the

results to an additive error bound T + ε, and generalized the results for L2-norms to kinodynamics problems

with open-chain manipulators with bounded joint torques [11]. The above results are all polynomial time, but

with very large polynomial constants, and their complexity is strongly dependent on the velocity bounds

allowed.

A key further problem is determining cases of kinodynamic control planning that might be solvable (or at least

approximated) essentially in closed form. An example of progress on such restricted problems are the

translation force control of a point mass in a two-dimensional room with polygonal obstacles and with the

constraint that the -norm of the force is bounded by some given value. An exact solution for this problem

(called the race car problem) is given by Canny et al. [5], by partitioning a feasible path into a bounded number

of segments where we can use "bang—bang" control. Their algorithm requires more than polynomial sequential

time, but only polynomial space. In general, for L2-norms in dimension d > 1, the minimal path does not appear

to be algebraic.

3. Lower Bounds

In this section we consider polyhedral pursuit games in three dimensions, where the velocity of each player is

bounded (as measured by the L2-norm of the velocity vector). We will show that even this simple pursuit game

is hard for the complexity class EXPTIME, where EXPTIME = DTIME(2
n
). We first prove the result for a

system where only translations are allowed (no rotations), and then we show how a similar construction for

arbitrary movement can be constructed, yielding the lower bound for the more general problem.

To prove lower bounds for the pursuit problem, we construct a problem that simulates a given polynomial space

bounded alternating Turing machine (ATM) M. The reader unfamiliar with ATMs can view them as a simple

extension of nondeterministic Turing machines (NTMs). As with NTMs, an ATM has a set of states, a

distinguished start state, a set of tape symbols, and a multiply-defined transition function. Unlike an NTM, we

label the states as either existential, universal, accepting, or rejecting. We label configurations as accepting or

rejecting as follows (the labeling is inductively applied, starting at the configurations in either an accepting or

rejecting state):

 Any configuration in an accepting state is an accepting configuration.

 Any configuration in a rejecting state is a rejecting configuration.

 Any configuration in an existential state is accepting if and only if there exists a transition to an accepting

configuration.

 Any configuration in a universal state is accepting if and only if all transitions out of this configuration lead

to accepting configurations.

An input string is accepted by the ATM if the starting configuration on that input is an accepting configuration.

Notice that if the initial configuration is accepting, then there exists a strategy for picking transitions in

existential states such that the computation always arrives at the accepting state, regardless of the transitions

chosen in universal states. In this way, ATMs are related to game strategies between two players. It should be

clear that an NTM is simply an ATM with no universal states.

For any function S(n), let ASPACE(S(n)) denote the class of languages accepted by ATMs that use at most S(n)

space. From the classic work on ATMs by Chandra et al., we have the following lemma [7, Corollary 3.5].

LEMMA 3.1. If S(n) ≥ log n, then ASPACE(S(n)) = DTIME(c
S(n)

).

It follows from this lemma that APSPACE = ASPACE(n
c
) = EXPTIME, and furthermore that

ASPACE(log n) = P. The former equality is important to our lower bound proof, and the latter is used to show

that our approximation algorithms run in polynomial time.

In the following lower bound proof, we simulate an arbitrary polynomial space-bound ATM M. To simplify the

explanation, we assume that the ATM M uses only n tape cells; the generalization to an arbitrary polynomial

should be obvious.

One possible point of confusion in the proof that follows is that the existential player of the pursuit game

simulates all moves of the ATM (both existential and universal); the universal player of our continuous game

makes the transition choices in universal states, and forces the existential player to actually perform the

appropriate transition. To avoid problems with terminology, in this section we will refer to the existential player

(of the pursuit game) as the evader, and the universal player as the pursuer.

3.1. Basic Geometry and the Encoding of a Configuration. The evader in the construction will be a three-

dimensional cube with each side having length 2
-4n +t1

(note that while many dimensions in our construction are

exponentially small, only polynomially many bits are required to specify the boundary coordinates).

Rectangular tunnels that are exactly 2
-4n +1

 units tall
4
 and at most 4 units wide will be the areas in which the

evader will travel. The position of the evader along the width of this passage will encode the contents of the

ATM's tape. The general idea is to use the distance from a consistently chosen wall of the passage (called the

zero wall) to represent the tape contents if this distance is the binary number 0 · a1a2 ... an, then the tape contents

are a1,a2,... , an. Due to the size of the evader, there is clearly enough room to do this (the distance between valid

configuration encodings would be 2
-n

), but a slight modification must be made to include the position of the

tape head. This will be discussed in further detail in Section 3.4.

A similar encoding scheme was used by Canny and Reif [6] to represent the values of Boolean variables in an

instance of 3SAT. Their main result was an NP-hardness proof for three-dimensional minimum path

calculation, and we use several ideas from this earlier work. The most important concept in our lower bound

proof is the idea of shortest path classes, modified slightly from the work of Canny and Reif [6]. Consider a

polyhedral object (our robot) among a set of obstacles, and a given goal region (possibly disconnected). We

wish to move our robot until it touches some point in the goal region. Obviously, if it is possible to reach the

goal region, there is some minimum time T required to do so; the set of all paths to the goal region that take

time T (there can easily be more than one) is the shortest path class for this problem instance.

In all of our problems, the robot is a small cube (the evader), and the goal region will be a set of cross sections

of the evader's passages. For example, consider the simplest case of a straight, unobstructed passage with the

goal region being the end of the passage (see Figure 1(a) for a top view). Obviously, the only path in the

shortest path class is the straight-line path shown in the figure. When the evader follows this path, the distance

to the walls of the passage is preserved.

We will be defining sets of obstacles (called traps) such that any winning strategy for the evader involves

following a shortest path through the trap. The position of the evader in the cross section of its passageway

reflects the configuration of the ATM, and we have seen how this is preserved in shortest-path classes along a

straight section of the evader's passage. What if we want the evader to change the direction of its motion? For

this we use the "folded turn" shown in Figure 1(b). Imagine taking a piece of flat ribbon (representing the

evader's passage) and folding it at a 45° angle the top view should be like that shown in Figure 1(b). Several

shortest path classes are shown in the figure, representing various starting positions for the evader. The

construction we use cannot be exactly as visualized by folding a flat ribbon, since the passages (and walls) must

have some finite thickness. The actual construction consists of a 45° slot cut in the floor of the original passage,

and a vertical drop to a second-level passage (below the first). This second passage is oriented at a right angle to

the first.

We can also separate the path classes depending on the half of the passage in which the evader is travelling. By

using a "folded turn" construction, but having the 45° slot extending only across the bottom half of the passage,

and having the goal regions set up across the two resulting passages at an equal distance from the entrance, the

path classes will be separated (see Figure 2(a)). The resulting construction is called a "path splitter."

The shuffler is the most important construction, and can be viewed as a combination of the above constructions

(see Figure 2(b)). The path splitter divides the top and bottom path classes, and a folded turn on the top half of

the passages leaves both halves on the same level. Both passages then take a folded turn to travel horizontally,

with the top half of the passages dropping down to the bottom half with a slight offset from the bottom path

classes. Given a discrete set of valid starting positions for the evader, this effectively interleaves (or shuffles)

the path classes, as shown in the figure. There is a small technical problem with this construction; namely, we

would like the paths for all starting positions to have the same length. Unfortunately, while all paths starting in

the lower half of the passage have the same length, this length is slightly shorter than the paths starting in the

upper half of the passage. To alleviate this problem, the lower-half path classes are lengthened by adding an

additional vertical "jog" (a vertical drop followed by a vertical rise) after the path splitter. With this addition, it

should be clear that the shuffler works as desired.

The effect of the shuffler is to change the distance of an evader from 0 · a1a2... an (as measured from the zero

wall and written in binary fixed point) to 0 · 0a2a3 … ana1. This function is vital for testing individual bits of the

configuration. As in the paper of Canny and Reif [6], the shuffler halves the width of possible positions for our

evader; this was a major problem that limited the time of the simulation in [6] to polynomial. However, in the

current situation the presence of the pursuer allows us to overcome this problem (this will be explained further

in Section 3.4).

The pursuer will be a rectangular box 5 units wide, 2
-4n

 units tall, and 2
-4n

 units deep. Since rotations are not

allowed, we see that the pursuer cannot travel in the evader's passage (since the passage is at most 4 units wide),

and by making the pursuer's passages 2
-4n

 units deep, the evader will not be able to travel in the pursuer's

passages (since the evader is 2
-4n + 1

units deep). In this way, we ensure that there are only a few spots of

contention between the pursuer and evader namely, those places where the pursuer's passage intersects with the

evader's passage.

The actual velocity bounds on the pursuer and evader (vp and ve, respectively) are not important, but the ratio of

the two bounds will determine certain elements of the construction. For the sake of concreteness, we will let vp =

10ve.

3.2. Basic Form of the Proof. We describe a polyhedral environment that has a polynomial size binary

encoding. This environment will be constructible in O(log n) space by a deterministic Turing machine. We will

show that the players will be forced to play essentially in a discrete manner that simulates the given ATM M, or

else they will immediately lose the game. We will have a set of obstacles (called the state box) associated with

each state of the ATM M. The initial positions for the pursuit game players are at the entrance of the state box

associated with the initial state of M, and the position of the evader across the width of its passage encodes the

input of the ATM (i.e., the initial tape contents). The goal position of the evader is in the box associated with

the accepting state.

The proofs that follow show that for any winning strategy, the only valid paths through each state box

correspond to valid transitions of the ATM. By induction, any winning strategy will reach the goal position

(corresponding to the accepting state of the ATM) by a series of valid state transitions; therefore, there is a

winning strategy if and only if the ATM accepts. The canonical strategy for any accepting ATM reflects the

appropriate sequence of existential moves of the ATM.

3.3. Traps. The key component in the lower bound construction is the concept of a trap. A trap is a specific

region where the evader will become trapped if the shortest path through the region is not taken. After being

trapped, there will be no way for the evader to reach the goal position.

The basic trap is illustrated in Figure 3. The "evader move box" is some type of basic construction, such as a

shuffler. The pursuer's passage starts below the level of the evader's passage, and continues through the evader's

passage (the horizontal strip in Figure 3); when this passage reaches a certain height, it takes a 90° turn to

stretch horizontally to a position after the evader's move box. At this point, the passage turns down and

continues through the evader's passage.

The length of the pursuer's passage is carefully chosen (and set by the height it rises over the evader's passage),

so that the pursuer's shortest path from the entrance intersection to the exit intersection takes exactly the time of

the evader's shortest acceptable path between the intersections. We call the time required by the pursuer to go

between the two intersections with the evader's passage the threshold time of the trap.

A valid starting position for a trap is as follows. The pursuer is in its passage with its top flush with the floor of

the evader's passage. The evader starts at a position following the entrance intersection, with its trailing edge

flush with the edge of the intersection. The remaining degree of freedom for the evader's position is arbitrary (in

fact, it will encode the ATM's tape contents). Note that in this position the pursuer and evader are actually

touching at an edge; however, there is no collision as the volume of the intersection is zero.

THEOREM 3.1. There exists a strategy for the pursuer such that from a valid starting position, the evader can

leave a trap safely if and only if the time it takes to pass the exit intersection is no more than the threshold time

of the trap.

PROOF. The state of the pursuit game at any time can be completely specified by the positions of the players;

to denote the state at time t, we write st. Let S denote the set of all valid states. For a specific trap, we define the

function Ф : S → that maps states to an amount of time. Specifically, for any state s (where the evader is in

the trap), let tm be the minimum time required by the evader to travel to the entrance intersection and first

become flush with it. The function Фe is defined by Фe(s) = tm for all such position-time pairs—this may be a

fairly difficult function to compute, depending on the complexity of the evader move box, but we are not

concerned with the complexity of the pursuer's strategy. Notice that if s0 is a state with the evader in a starting

position for the trap (as described above), then Фe(s0) = 0. The function Фp: S → is defined similarly, but for

the pursuer; specifically, Фp(s) is the minimum time required for the pursuer to reach its starting position in the

trap.

Now we describe a strategy for the pursuer such that the evader will become caught in the trap if its path

through the trap takes longer than the threshold time. Notice that if both players travel as fast as possible

through the trap, then at all times, Ф(st) = Фp(st) = t. The idea behind the pursuer's strategy is as follows: if the

evader strays from a minimum distance path, some additional time is available for the pursuer to cover more

ground than the evader; in this way, the pursuer can reach the exit intersection before the evader leaves the trap.

Obviously, we do not want the pursuer to get too far ahead of the evader—otherwise, the evader could exit the

trap by reversing its course and leaving through the entrance. Specifically, the pursuer's strategy is to travel

forward in its passage as fast as possible, as long as Фp(st) ≤ Фe(st) + 2
-4n

/ve. If such a time is ever reached

where Фp(st) = Фe(st) + 2
-4n

/ve, then the pursuer simply imitates the progress of the evader, and this equality is

maintained.

We now show that the above strategy for the pursuer has the property that the evader can leave the trap only by

taking a minimum time path to the exit. First, notice that the evader cannot leave the trap past the entrance—if

the evader ever starts traveling backwards, then the pursuer will maintain the equality Фp(st) = Фe(st) + 2
-4n

/ve.

When the evader first becomes flush with the entrance intersection we have Фp(st) = 2
-4n

/ve so the pursuer is

able to collide with the evader before the evader can leave the trap. This is because from a position with Фe(st) =

0, since the evader has length 2
-4n + 1

= 2 · 2
-4n

 and the entrance intersection has length 2
-4n

, it takes the evader at

least 3(2
-4n

/ve) time to travel completely past the entrance intersection and out of the trap, but it takes the

pursuer at most one-third of this time to cross the evader's passage (colliding with the evader). A similar

argument shows that if the evader ever strays from a minimum distance path (so Фp(st) > Фe(st)), then the

evader cannot leave the exit of the trap without colliding with the pursuer.

Thus, if the threshold time is equal to the shortest path time of the evader, then the evader must follow a shortest

path. However, in the final construction, many traps will be connected together, so how can we be sure that the

pursuer cannot improve its strategy by following a path backwards in its passage? In other words, with the

above pursuit strategy, we can guarantee that the evader moves forward as quickly as possible—How can we

guarantee that the pursuer will do the same? This is easily done by making the pursuer go forward in order to

block a path to the goal for the evader. This idea is generalized in the notion of a "forced decision trap."

A top view of the forced decision trap is shown in Figure 4—only the evader's passage is shown in the figure,

and the dotted boxes correspond to intersections with the pursuer's passage. The actual three-dimensional

construction is quite complex, and a rough drawing is shown in Figure 5. This trap has a single entrance and

two exit passages for the evader. Inside the trap (but not shown in Figure 4), the pursuer's passage also splits

into two separate paths, and the evader must pick which exit to take according to the pursuer's choice. The

evader must choose the correct exit and take the shortest path, or else it will be caught in the trap.

The valid starting position is the same as the basic trap, with respect to slot S1. The evader's passage is a

straight passage with a slot cut in its floor (labeled "decision" in Figure 4). The passage under the decision slot

makes two "folded turns," and continues as the bottom exit of Figure 4.

Shortly after the pursuer's passage passes through slot Si, it forks into two passages. One path passes through S2

and then S5, and the other passage goes through S4 and S3. The requirement on the first passage is that the

shortest time from slot S1 to S5 is exactly the time it takes the evader to travel from slot S1 to S5. Furthermore,

the time required to travel from S1 to S2 must be slightly greater (see the proof of Theorem 3.2 for the exact

requirements) than the time for the evader to travel from S1 to the decision slot. The second passage has

analogous requirements.

When the pursuer takes the passage to S5, the correct path for the evader is to travel to the lower exit along its

shortest path. Similarly, the evader must take its shortest path to the upper exit if the pursuer takes the passage

to S3.

THEOREM 3.2. The evader can leave the trap if and only if it follows the canonical shortest path to the

appropriate exit (as chosen by the pursuer).

PROOF. In this proof we will assume that the pursuer wants to force the evader to take the bottom exit of

Figure 4. In such a case, the pursuer stays entirely in its passage between slots S1, S2, and S5. The case where

the pursuer forces the evader to take the top exit is almost identical to the case presented below, so is not

explicitly given here.

As in the proof of Theorem 3.1, let Фp(s) denote the minimum time required for the pursuer to travel from its

position in state s to its start position in the trap. It is important to remember that regardless of the moves made

by the evader, the pursuer stays only in the passage from S1 to S2 and S5. We define Фe(s) a little differently

than in Theorem 3.1. In particular, let td be the time required for the evader to reach a position directly above the

decision slot. Since the correct path for the evader is to the bottom exit, label all states with the evader to the

right of the position over the decision slot and to the left of slot S2 as "bad states." Now define Фe(s) to be the

same as in Theorem 3.1 whenever s is not a bad state; in other words, Фe(s) is the minimum time required for

the evader to travel back to S1. On the other hand, if s is a bad state then set Фe(s) = td.

Now we describe the timing requirement for the pursuer's passage to slot S2: the minimum time required for the

pursuer to travel from its start position to a position entirely blocking the evader's passage at S2 must be exactly

td + 2
-4n

/ve. This requirement is easily set by adjusting how high the pursuer's passage rises above slot S1.

The pursuer's strategy is exactly as in Theorem 3.1: the pursuer travels forward in its passage as fast as possible

while maintaining Фp(st) ≤ Фe(st) + 2
-4n

/ve. If the evader never enters a bad state, then the set of actions is

exactly like a basic trap, so the evader must take its shortest path by Theorem 3.1. If the evader ever enters a

bad state, then the function Фe(s) remains constant for some amount of time. During this time, the pursuer can

still travel, insuring that Фe(s) > Фp(s); as in Theorem 3.1, once this inequality is achieved it can be maintained,

and the evader cannot leave by either the entrance or the bottom exit. Clearly, when the evader reaches slot S2,

then we have had time to reach the point where Фp(s) = Фe(s) + 2
-4n

/ve; in other words, the pursuer will fully

block the top exit before the evader reaches S2, so the evader is completely caught in the trap.

With the above strategy, the only way for the evader to leave the trap is for it to take its shortest path to the

bottom exit. Clearly, the case for forcing the evader to take the top exit is almost identical, so is not presented

here.

As a special case of the forced decision trap, we can connect the top exit directly with the goal position through

a tunnel that the pursuer cannot enter. This ensures that the pursuer keeps moving forward on its path, since it

must force the evader to take the bottom exit. By placing these special constructions at positions following each

basic trap, we guarantee that if both players follow their best strategy, then they both move forward through the

construction as quickly as possible. The forced decision trap will also be used to simulate universal states of the

ATM.

3.4. ATM Transitions. Consider the following method of representing the tape contents: the 0's and l's on the

tape correspond to a number in base four notation (not all base four numbers will correspond to valid tape

configurations). In the position that is currently being scanned, the digit is changed from 0 or 1 to 2 or 3,

respectively. The distance from a consistently chosen wall (the zero wall) to the evader encodes this

representation. Let d denote this distance. Then the base four tape configuration representation r is related to d

by r = d2
2n — 2.

We can use the shuffler (Figure 2(b)) to examine bits of the configuration, but only bits in even numbered

positions will actually represent symbols on the tape; in the odd positions, a "1" marks the position of the tape

head, while all other odd-position bits are "0". The path splitter can be used to "peel off" the configuration when

it is shifted to the currently scanned tape position. Traveling through the shuffler backwards has the undesirable

side-effect of doubling the number of shortest path classes (but also doubles the width of possible positions for

the evader, which is good). In other words, for most input positions of the evader in the reversed shuffler there

are two different shortest paths to the exit slot, only one of which is the correct unshuffling path (see Figure 6).

The incorrect path will always end at a position that is not a valid encoding of a base 4 number. This problem is

impossible to overcome in the shortest path proof of [6]. Fortunately, the addition of a pursuer allows us to fix

this problem by using a forced decision trap—one side will go to a verifier for the tape configuration, so any

winning strategy must do the unshuffle correctly, or else the pursuer could force the evader into the verifier

where it will become trapped for not encoding a valid tape configuration.

LEMMA 3.2. Assuming the distance d to the zero wall is an integer multiple of 2
-4n+2

, there exists a trap such

that only valid encodings of base 4 numbers can escape the trap (i.e., only when the evader distance is a

multiple of 2
- 2n+ 2).

PROOF. The basic block is a modified version of the shuffler; it differs from the shuffler in that the final stage

(combining the top and bottom halves of the path splitter) does not have the offset required by the shuffler. If

the evader enters this box at distance d = 2k + d' from the zero wall for k {0, 1} and 1 ≤ d' < 2, then it leaves

the box at distance d' from the zero wall. In other words, the valid positions from the upper half of the evader's

passage are overlapped with valid positions in the lower half.

Repeating this construction 2n times (for geometrically decreasing passage width), the evader will leave the

final exit at distance zero if and only if it entered the construction in a valid position. Since the evader enters at

a multiple of 2
-4n +2,

all invalid positions will be at a distance greater than 2
-4n+2.

By placing a wall in front of all

positions further than 2
-4n+2

 from the zero wall and enclosing this structure in a basic trap, all invalid positions

will take too much time (since they have to go around the wall) and get caught in the trap.

To perform a state transition, the tape representation is shuffled until the current tape cell is found (i.e., the

evader passage is shuffled until the evader is in the upper half of the passage). To accomplish this, consider

alternating path splitters with shufflers (as in the top row of Figure 7). The splitters strip off the evader when the

tape head position is found, and then the currently scanned tape symbol is the most significant bit of the

evader's distance to the zero wall, so it can be easily tested, set, or reset. Even after the maximum number of

shuffles (2n), there is still a 2
-4n+2

spacing between valid positions for the evader, so it is still a simple matter to

distinguish between different configurations. Since, after being split off from the main passage, a tape update

simply involves adding a constant value to the configuration encoding, a transition is easily performed by

simply shifting the evader's position in its passage
5
 (actually, the passage is shifted, and the evader maintains a

straight-line path), followed by the correct number of unshufflers. This entire construction is shown in Figure 7.

Following all the unshufflers is a forced decision trap with one exit linked to a verifier as described in the

lemma above (the output of the verifier is a passage to the goal that the pursuer cannot enter, so that it would be

a bad strategy for the pursuer to force a correctly unshuffled evader into the verifier)—this ensures that all

unshufflers work correctly. The total number of gadgets required is n shufflers, n path splitters, 2n unshufflers, a

forced decision trap, and a verifier. The total number of bits required to encode these constructions is clearly

polynomial in n.

A set of gadgets is built for every state in the ATM. If the state is existential and there are k possible transitions

out of this state, then the incoming evader passage forks into k passages. Forced decision traps are placed at the

end of each of the k passages, with the bottom exit of each trap linked to the goal position. In this way, we give

the evader a free choice of which passage (i.e., transition) to take, and the forced decision trap makes the

pursuer chase the evader into the chosen transition. The top exit of each forced decision trap is connected to a

gadget that performs a transition as described above, and the output of each transition goes to the corresponding

next state.

If the state is universal with k next states, then construct a depth tree of forced decision traps with all but

k leaves (those corresponding to valid transitions) linked directly to the goal. Each nongoal exit is followed by a

construction that performs a transition out of the universal state, and the particular transition performed can be

chosen by the pursuer making decisions at all the internal nodes of the tree (recall that these are forced decision

traps). Since all "extra" leaves were connected directly to the goal, the pursuer will never force the evader to

travel to one of these invalid leaves.

Notice that in existential states, the evader has a free choice of which path to take, but for a winning strategy it

must make a choice compatible with all possible future universal options (since the pursuer can arbitrarily force

any choice in the universal states). We have proved the following theorem.

THEOREM 3.3. For any polynomial space bounded ATM and n-bit input x, a pursuit game with no rotations

can be constructed such that a winning strategy exists if and only if the ATM accepts x. The pursuit game has a

polynomial length binary encoding, and can be computed by a Turing machine in O(log n) space.

To extend the proof to a lower bound when rotations are allowed, consider a pursuer as above, but with a

groove cut in the top. The pursuer passages then have tracks that fit into the pursuer's groove and make rotations

impossible. Re-examination of the above construction shows that allowing rotation of the evader does not affect

the lower bound proof.

COROLLARY 3.1. For any polynomial space bounded ATM and n-bit input x, a general pursuit game can be

constructed such that a winning strategy exists if and only if the ATM accepts x. The pursuit game has a

polynomial length binary encoding, and can be computed by a Turing machine in O(log n) space.

The following corollary follows from the fact that APSPACE = EXPTIME.

COROLLARY 3.2. Any algorithm that solves the decision problem for the polyhedral pursuit game (either

with or without rotations) must take at least exponential time in the worst case.

4. Approximation Algorithms

In this section, we look at polyhedral pursuit games with various types of dynamics bounds, and develop

approximation algorithms for these games. The closeness of the approximation (as defined below) is given by a

parameter ε > 0. We are also given a deadline time for the pursuit game that is bounded by a polynomial in 1/ε.

Given any rational number ε, we call a strategy ε-safe if the strategy will always keep distance ε between the

evader and both the pursuer and all obstacles. In this section, we give an algorithm which, when given a pursuit

game and a safety margin ε, will always find a winning strategy if there exists an ε-safe strategy. If a

winning strategy exists, but there is no ε-safe strategy, then the algorithm may or may not find a winning

strategy (but will never give a bad strategy).

Such approximation algorithms exist for problems where either the velocity or both velocity and acceleration

are bounded, and the bound can be on either the L2- or -norm (although a slight concession must be made on

the dynamics bounds in the L2 case). For each variant of the problem, we have a different closeness lemma (this

is Lemma 4.1 below, for bounded -norm of velocity), but the relation to the continuous pursuit games is the

same in every case. In the first section below, we present proofs for the simplest case: bounded -norm of

velocity, with no bound on acceleration. The other cases are similar and involve "closeness" proofs (which we

give at the end of this section) that are very similar to the tracking lemmas in approximately optimal

kinodynamic planning (see [23] and [11]).

4.1. Bounded -Norm Velocity. The following discrete game will be used on a discretization of the geometry

of the continuous game. Since the reachability sets for the players may be different (due to the different shapes

of the players), we need a way of marking which players can follow which edges. This is the purpose of the

labeling function below.

Consider the following discrete game. The input is a graph where each edge e has a label le {0, 1}. Two

players (player 0 and player 1) start at given vertices, and player p is allowed to traverse edge e if p le. The

game consists of rounds where each player traverses a valid edge for that player, and we wish to know if there is

a strategy for player 0 so that it can reach a given goal vertex while never coming "close" (within two steps on

the graph) to player 1. It should be clear that this game can be decided in ASPACE(log n) for an n vertex graph.

We show that slight variants of this game can be constructed to solve the e-safe approximation version of

pursuit games. In d dimensions, the graph will have O((1/ε)
d
) vertices for bounded -norm velocity, and

slightly more (but still (1/e)
O(d)

) for the more complex pursuit games. We now present the case for pursuit

games with a bound on the -norm of the players' velocity.

If we are given the starting configuration for a pursuit game, and bounds on the -norm of the velocity for the

evader and the pursuer (denote the bounds by ve and vp, respectively), we superimpose a regular grid G with

grid-spacing g on the d-dimensional environment. We label each grid-point by a d-tuple of integers (x1, x2,… ,

xd). A graph is constructed on the grid by connecting every point (x1, x2, … , xd) to points (yl, y2, … , yd) with |xi

— yi| ≤ 1 for all i = 1, 2, ... , d. (This is just a d-dimensional grid-graph with diagonal edges added.) An arbitrary

point on each player is chosen; a player is at grid-point p when the chosen point of the player is at the grid-point

p. The edges of the graph are labeled according to whether the path joining the two endpoints is free of

obstacles for each player.

We will choose a sufficiently small grid-size so that the discrete game is a good approximation of the

continuous game. First, we show that for sufficiently small grid-size, there is always a good strategy for the

evader (traveling on the grid) against a continuous pursuer.

LEMMA 4.1. Assume g ≤

ε. Then if there is an c-safe strategy for the continuous evader, there is a 3g-safe

strategy that travels only between grid-points.

PROOF. Consider any path for the pursuer, and the corresponding ε-safe path (given by the c-safe strategy) for

the evader. We will approximate the continuous evader's path with a path traveling between grid-points. It takes

the evader exactly τ = g/ve time to traverse any edge of the grid-graph. By induction, it is easy to show that there

is a grid-path that is no further than veτ = g away from the continuous path at all times kτ for k any integer.

Furthermore, since the path is a close approximation at these discrete times, it is easy to show that the grid-path

is no further than veτ + ve(τ/2) =

g at all times.

In particular, since the pursuer is at least e away from the evader at all times, the distance from the pursuer to

the grid-path evader must be at least ε -

g ≥

g -

g = 3g.

When the pursuer is restricted to traveling on the grid, there is a problem with the chosen grid-size being

incompatible with the pursuer's velocity bound. For example, if the bounds are such that vp =

ve, then for each

edge traversal of the evader, the pursuer can traverse one and a half edges. This does not fit into the simple

discrete game defined earlier, so we make the following change. An additional game parameter s (a rational

number called the scaling factor) is introduced, and the effect of this parameter is that the pursuer will make s

moves for each move of the evader. For noninteger values of s, the meaning of this is unclear—if we are in

round r of the game, we actually let the pursuer make – moves. Using this scheme, the pursuer

will always be within one grid-point of the place it would be if fractional moves along the edges were allowed.

In our simulation, we let s = vp/ve. The following lemma ensures that restricting the pursuer to a grid-path is not

a great advantage for the evader.

LEMMA 4.2. If both players are restricted to making movements between grid-points, then any winning

strategy for the evader will also give a winning strategy against a continuous pursuer.

PROOF. Consider any continuous path for the pursuer. If fractional edge traversals were allowed, then we

could make an approximating path for the pursuer just as we did for the evader in Lemma 4.1. This path is

always within

g of the continuous path, but due to the discretization of fractional moves, an additional error of

g may be introduced. Thus at all times, the grid-path pursuer is within

g of the continuous pursuer.

By the definition of the discrete game, we know that the distance between the discrete versions of the players is

at least 3g. Thus the continuous pursuer must be at least

g away from the evader (i.e., the evader is not

captured by the continuous pursuer). The strategy for the evader against a continuous adversary is therefore to

make exactly the same moves as the discrete player would make against the discrete approximation of the

continuous pursuer. This is clearly a winning strategy.

The combination of the two preceding lemmas gives the proof of correctness for our approximation algorithm.

THEOREM 4.1. If g ≤

ε, then the discrete game will always find a winning strategy when there is an ε-safe

strategy for the original game. Furthermore, any winning strategy found in the discrete game is also a winning

strategy for the continuous game. The sequential time complexity of the approximation algorithm is (n/ε)
O(1)

.

PROOF. By Lemma 4.1, if there is an ε-safe strategy, then there is a 3g-safe strategy that only uses grid moves.

Restricting the pursuer to the grid means that at all times the pursuer is at least three edge traversals away from

the evader—this is exactly the condition we need to satisfy for a winning strategy in the discrete game. The

second claim in the theorem is exactly Lemma 4.2.

The complexity of this algorithm is exactly that of the discrete game, with one minor modification. We only

calculate grid-point adjacencies when a player is at the grid-point in question. To determine the adjacencies, we

only need to do simple calculations on the obstacle descriptions -this can be done in O(log n) space, so the

resulting complexity is ASPACE(d log(l/ε) + log n), or (n/e)
O(d)

 sequential time. For constant d, this is simply

(n/ε)
O(1)

.

Consider a generalization of this problem where the obstacles are allowed to move with constant velocity. The

location of all obstacle coordinates can then be computed by a simple linear function of time, and it takes no

more space than the original algorithm to compute vertex adjacencies.

COROLLARY 4.1. Given a pursuit game where obstacles are allowed to move with constant velocity, if g ≤

ε, then we can approximately compute a winning strategy (in the sense of the last theorem) in sequential time

(n/ε)
O(1)

.

In the following sections, we describe the discretization required for other forms of dynamics bounds, and prove

closeness lemma in each case.

4.2. Bounded -Norm Velocity and Acceleration. Now we consider a pursuit game where the -norm of

both velocity and acceleration are bounded. We use ve and ae to denote the velocity and acceleration bounds for

the evader; vp and ap represent the velocity and acceleration bounds for the pursuer. The "grid" produced is not a

regular grid in position space, as it was in the previous pursuit game. Instead, we construct a regular grid in

velocity space, and the position grid consists of points corresponding to moves on the velocity grid. This is

exactly the method used in kinodynamic planning, and we use the results of that work here; for more details on

the exact method, see [4] and [11].

The grid construction (from [4]) is specified by the discrete time-step τ (along with the value of ae). The

following closeness lemma for this game is stated in terms of this time-step.

LEMMA 4.3. Assume τ ≤ min(ε/20ve, ve/2ae). Then if there is an ε-safe strategy for the continuous evader,

there is a

ε-safe strategy that travels only between grid-points.

PROOF. The "Strong Tracking Lemma" of [11] states that if

then for any continuous trajectory meeting velocity and acceleration bounds ve and ae, respectively, there exists

a grid trajectory that is always within distance ηx of the continuous trajectory. The lemma above follows by

setting ηx = ε/4.

Now, of course, we must consider what happens when we discretize the continuous pursuer's trajectory. We can

guarantee that the grid pursuer (with the scaling factor as before) stays within ε/2 of the continuous pursuer's

trajectory as long as τ ≤ min(ε/20vp, vp/2ap. Notice that this means that when approximating both continuous

players on the grid, there is always at least ε/4 distance between the players, so the approximating trajectories

correspond to a winning strategy for the evader. This fact, combined with the preceding lemma, gives the

following theorem.

THEOREM 4.2. Assume τ ≤ min(ε/20ve, ve/2ae, ε/20vp, vp/2ap). Then the discrete game will always find a

winning strategy when there is an ε-safe strategy for the continuous game. Furthermore, any winning strategy

found in the discrete game is also a winning strategy for the continuous game. For a constant number of

dimensions d, the sequential time complexity of the approximation algorithm is polynomial in n/ e and the

parameters ve, ae, vp, and ap.

PROOF. The size of the grid is given in [11], and it is upper bounded by

where amax = max(ae, ap), vmax = max(ve, vp), and D is the diameter of the robot world. Since the time of our

simulation is bounded by a polynomial in (1/ε)
O(1)

, we can bound D by vmax/ε
O(1)

. Furthermore, 1/τ is polynomial

in 1/ε, ve, ae, vp, and ap, so the result is an algorithm polynomial in these values, as stated in the theorem.

4.3. Bounded L2-Norm Velocity. As in kinodynamic planning, bounding the L2-norm for dynamics bounds adds

additional problems to approximation algorithms. Specifically, we need to be able to closely approximate the

direction of motion (or acceleration, in the following section). In kinodynamic planning, we find an

approximately optimal trajectory that takes time (1 + ε)Tmin, where Tmin is the time required by the optimal

trajectory. In the current pursuit game, we cannot allow this extra time because of the interaction with the

pursuer—instead, we must allow the evader to exceed its dynamics bounds by a factor of c. In other words, we

allow the evader to have velocity as high as (1 + ε)ve; the effect of this is identical to allowing the evader to take

extra time, without the bad effects of allowing the evader more time.

In this section, we do not require the full power of the kinodynamic tracking lemma, but we use another

theorem from [23] to prove the following closeness lemma. We use a regular graph in position space with grid-

spacing g, as in the case of bounded -norm velocity, but only parts of the grid are used. In particular, with a

specified discrete time-step τ and error bound ε, we can construct a grid similar to that shown in Figure 8. The

arrows (called "choice vectors") denote the possible trajectories over the discrete time-step, and the dots

represent the underlying square grid (with grid spacing g)—the circle is shown only for reference and has radius

vmaxτ, so delimits the maximum distance the robot can travel in one time-step. The choice vectors are chosen

such that the angle between neighboring choice vectors is at most arccos(1 — ε/4(1 + ε)).

Assume that we want to track a continuous trajectory pc(t). We call a discrete trajectory pd(t) a "good

approximation" if at all the discrete times kτ (with k = 0, 1, 2,), the distance between the two trajectories is

bounded by ≤ vmaxτ. It has been shown that if g ≤ (ε/4)vmaxτ, then for any continuous

trajectory meeting the velocity bound vmax/(1 + ε) there exists a good approximating trajectory made up of only

choice vectors as described above [23, Theorem 3.1]. Using this result, we can prove the following lemma.

LEMMA 4.4. Assume g ≤ ε
2
/3(2 + ε). Then if there is an ε-safe strategy for the continuous evader, there is a

3g-safe strategy that travels only between grid-points.

PROOF. We use the discrete vectors from [23], as described above, with vmax = (1 + ε)ve. By setting g =

(ε/4)vmaxτ, and using the fact that the good approximating trajectory is within distance vmaxτ of the exact

(continuous) trajectory at all times kτ, it is clear that the good approximating trajectory is within distance 4g/ε of

the continuous trajectory at all times kτ. As in Lemma 4.1, we conclude that there is a discrete trajectory that is

within 4g/ε +

(4g/ε)= 6g/ε of the continuous trajectory at all times.

Since the continuous trajectory is ε-safe, this approximating trajectory is always at least ε – 6g/ε distance away

from the pursuer and all obstacles. The proof is completed by noticing that

The remainder of the proof of correctness for this case is almost identical to the bounded -norm velocity

case, so it is not spelled out here. The result is the following theorem.

THEOREM 4.3. If g ≤ ε
2
/3(2 + ε), then the discrete game will always find a winning strategy when there is an

ε-safe strategy for the original game. Furthermore, any winning strategy found in the discrete game is also a

winning strategy for the continuous game. The sequential time complexity of the approximation algorithm is

(n/ε)
)(1)

.

4.4. Bounded L2-Norm Velocity and Acceleration. When the L2-norm of both velocity and acceleration are

bounded, we use all of the ideas from the previous cases, in addition to the full L2 tracking lemma from [12] (we

could also use the tracking lemma of [23], but the bounds of [12] are slightly better). As in the previous L2-norm

case, we must allow the evader to slightly exceed its dynamics bounds; specifically, we allow the approximating

evader to have velocity (1 + ε)ve and acceleration (1 + ε)
2
ae.

Previously, Donald and Xavier [12, Lemma 6.3] have shown that any continuous trajectory meeting

acceleration bound amax/(1 + ε)
2
 can be approximated by a discrete trajectory with time-step τ and positional

error ηx as long as

Substituting ηx = ε/4(1 + ε)
2
 ≤ ε/4 and amax = (1 + E)

2
a,,this result implies that there is a discrete trajectory that

tracks our evader with positional error bounded by e/4. The result is stated in the following lemma.

LEMMA 4.5. Assume τ ≤ ε/2 . Then if there is an ε-safe strategy for the continuous evader, there

is a

ε-safe strategy that travels only between grid-points.

The final result for the bounded L2-norm velocity and acceleration game is stated in the following theorem.

THEOREM 4.4. Assume τ ≤ ε/2 where amax = max(ae, ap). Then the discrete game will

always find a winning strategy when there is an ε-safe strategy for the continuous game. Furthermore, any

winning strategy found in the discrete game is also a winning strategy for the continuous game. For a constant

number of dimensions d, the sequential time complexity of the approximation algorithm is polynomial in n/ε and

the parameters ve, ae, vp, and ap.

5. The Point-Robot Pursuit Game

In many other robotics problems, it can be assumed that the robot is a single point; more difficult problems are

reduced to a point-robot problem by growing the obstacles according to the shape of the robot. In the pursuit

game, there are two moving robots with possibly different shapes, so this obstacle-growing technique will not

work.

In this section, we consider the pursuit game where each player is a single point, and show that this problem is

computationally easier than the original pursuit game (assuming that PSPACE is a proper subset of EXPTIME).

We bound the velocity (but not acceleration) of each player, and further restrict the pursuer's velocity bound to

be at least as high as the evader's velocity bound. Notice that this game is identical to the game used in the

lower bound construction of Section 3, except that the players are points. A key factor of the lower bound proof

is that each player can only travel in its own passage, restricting the points of contention to several discrete

locations. We cannot use this construction when the players are points, so the lower bound does not apply to

this restriction. In fact, we can show that in this case, the problem is easily reducible to the shortest path

problem.
6
 We first prove the following theorem, showing the relationship between the point-robot pursuit game

and the shortest path problem.

THEOREM 5.1. In the point-robot pursuit game described above, there exists a winning strategy for the

evader if and only if its fastest path to the goal is quicker than the pursuer's fastest path to the goal.

PROOF. Let Te (resp. Tp) be the minimum time required for the evader (resp. pursuer) to reach the goal. These

can easily be calculated from the shortest distance path to the goal simply by dividing the distance by the

maximum allowed velocity.

First assume that there is no winning strategy for the evader. Then, in particular, there is some trajectory for the

pursuer that collides with the evader traveling along its fastest path to the goal. Let the time of collision be te.

Ignoring the evader, the pursuer could follow its collision path until time te, and then follow the remaining

segment of the evader's fastest path to the goal. This new path for the pursuer requires time

(recall that the evader's velocity bound is no greater than the pursuer's bound, so ve/vp ≤ 1). In other words, if the

pursuer can always catch the evader, then the pursuer's fastest path to the goal takes no longer than the evader's

path to the goal.

Now assume that the pursuer's fastest path to the goal takes no longer than the evader's fastest path. Then a

winning strategy for the pursuer is to move simply to the goal as fast as possible, effectively blocking the evader

from the goal. In other words, there can be no winning strategy for the evader.

This proves both directions of the "if and only if" statement in the theorem.

From the above theorem, the following corollary is obvious.

COROLLARY 5.1. The point-robot pursuit game described above is Turing reducible to the shortest path

problem, and only two calls on the shortest path oracle are required.

6. Open Problems

There are many open problems in the area of pursuit games. One of the most interesting questions is to see what

type of lower bound can be derived for pursuit games in which the -norm of velocity is bounded. Notice that

in our lower bound construction, the position of the evader along the width of the passage acted as a "memory"

of previous moves. With bounded -norm, the dimension representing the width of the passage is free to move

with no decrease in the time it takes to travel through a basic trap. This allows the evader to "cheat" by

performing invalid state transitions.

Another interesting open problem is to look at exact solutions for restricted games. For instance, many

interesting problems have few (or no) obstacles. In addition, the lower bound is for three or more dimensions;

Are exact solutions possible in two dimensions?

Notes:
3
 A collision is defined as an intersection of the players that has nonzero volume. In other words, when avoiding

collisions the boundaries are allowed to intersect, but no points internal to the players may overlap.
4
 In the descriptions of this section, "tall" refers to an object's length in the z-coordinate direction, "wide" refers

to the object's length in the x-coordinate direction, and "deep" refers to the object's length in the y-coordinate

direction.
5
 This changes only the tape contents and tape head position. The remaining part of a transition—the state

change—is accomplished by connecting the exit of this entire construction to the input of the next state.

6
 The reduction used is a Turing reduction. In other words, we assume that there is an oracle for shortest path,

and, in particular, our reduction makes only a constant number of calls (two) on the oracle.

References

[1] J. E. Bobrow. Optimal Control of Robotics Manipulators. Ph.D. Thesis, UCLA, Mechanics and

Structures Department, 1982.

[2] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere, Washington, DC, 1975.

[3] J. Canny. Some Algebraic and Geometric Computations in PSPACE. In 20th ACM Symposium on

Theory of Computing, 1988, pp. 460-467.

[4] J. Canny, B. Donald, J. Reif, and P. Xavier. On The Complexity of Kinodynamic Planning. In 29th IEEE

Symposium on Foundations of Computer Science, 1988, pp. 306-316.

[5] J. Canny, A. Rege, and J. Reif. An Exact Algorithm for Kinodynamic Planning in the Plane. In 6th

Annual ACM Symposium on Computational Geometry, 1990, pp. 271-280.

[6] J. Canny and J. Reif. New Lower Bound Techniques for Robot Motion Planning Problems. In 28th IEEE

Symposium on Foundations of Computer Science, 1987, pp. 49-60.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1): 114-133,

1981.

[8] K. L. Clarkson. Approximation Algorithms for Shortest Path Motion Planning. In 19th ACM Symposium

on Theory of Computing, 1987, pp. 56-65.

[9] G. Collins. Quantifier Elimination for Real Closed Fields by Cylindric Algebraic Decomposition. In 2nd

GI Conference on Automata Theory and Formal Languages, 1975; pp. 134-183.

[10] B. Donald. The Complexity of Planar Compliant Motion Planning Under Uncertainty. In 4th Annual

ACM Symposium on Computational Geometry, 1988, pp. 309-318.

[11] B. Donald and P. Xavier. A Provably Good Approximation Algorithm for Optimal-Time Trajectory

Planning. In IEEE International Conference on Robotics and Automation, 1989, pp. 958-963.

[12] B. Donald and P. Xavier. Provably Good Approximation Algorithms for Optimal Kinodynamic Planning

for Cartesian Robots and Open Chain Manipulators. Technical Report TR-1095, Cornell University, February

1990.

[13] M. Hollerbach. Dynamic Scaling of Manipulator Trajectories. In Proceedings of the American Control

Conference, 1983, pp. 752-756.

[14] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning Guaranteed Near Time-Optimal Trajectories

for a Manipulator in a Cluttered Workspace. Technical Report ESRC 89-20/RAMP 89-15, Engineering Systems

Research Center, University of California, Berkeley, 1989.

[15] T. Lozano-Perez and M. A. Wesley. An Algorithm for Planning Collision-Free Paths Among Polyhedral

Obstacles. Communications of the ACM, 22(10): 560-570, 1979.

[16] C. ODunlaing. Motion Planning with Inertial Constraints. Algorithmica, 2(4): 431-475,1987.

[17] C. H. Papadimitriou. An Algorithm for Shortest-Path Motion in Three Dimensions. Information

Processing Letters, 20(5): 259-263, June 1985.

[18] J. H. Reif. Complexity of the Mover's Problem and Generalizations. In 20th IEEE Symposium on

Foundations of Computer Science, 1979, pp. 421-427.

[19] J. H. Reif. A Survey on Advances in the Theory of Computational Robotics. In K. S. Narendra, editor,

Adaptive and Learning Systems: Theory and Applications. Plenum, New York, 1986.

[20] J. H. Reif and M. Sharir. Motion Planning in the Presence of Moving Obstacles. In 26th IEEE

Symposium on Foundations of Computer Science, 1985, pp. 144-154.

[21] J. H. Reif and J. A. Storer. Minimizing Turns for Discrete Movement in the Interior of a Polygon. IEEE

Journal of Robotics and Automation, 3(3): 182-193, 1987.

[22] J. H. Reif and J. A. Storer. 3-Dimensional Shortest Paths in the Presence of Polyhedral Obstacles. In 13th

International Symposium on Mathematical Foundations of Computer Science, 1988, pp. 85-92. LNCS, vol. 324,

Springer-Verlag, Berlin.

[23] J. H. Reif and S. R. Tate. Approximate Kinodynamic Planning Using L2-Norm Dynamics Bounds.

Technical Report CS-1990-13, Duke University Department of Computer Science, 1990.

[24] J. Renegar. On the Computational Complexity and Geometry of the First-Order Theory of the Reals.

Technical Report 853, Cornell University, School of O.R. and I.E., 1989.

[25] G. Sahar and J. M. Hollerbach. Planning of Minimum-Time Trajectories for Robot Arms. In IEEE

International Conference on Robotics and Automation, 1985, pp. 751-758.

[26] H. M. Schaettler. On the Optimality of Bang-Bang Trajectories in R
3
. Bulletin of the American

Mathematical Society, 18: 113-116, 1987.

[27] J. T. Schwartz and M. Sharir. On the Piano Movers' Problem: I. The Case of a Rigid Polygonal Body

Moving Amidst Polygonal Barriers. Communications on Pure and Applied Mathematics, 36: 345-398, 1983.

[28] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. In 16th ACM Symposium on Theory of

Computing, 1984, pp. 144-153.

[29] K. G. Shin and N. D. McKay. Selection of Near-Minimum Time Geometric Paths for Robotic

Manipulators. In Proceedings of the American Control Conference, 1985, pp. 346-355.

[30] K. Sutner and W. Maas. Motion Planning Among Time-Dependent Obstacles, 1985. Preprint.

