o Master of Science

- - T Ut com e g

‘HIDDEN-SURFACE REMOVAL
IN POLYHEDRAL-CROSS-SECTIONS

s
T

Peter Egyeﬂd'

’ School of Computer Science
S McGill University
Montreal, Quebec, Canada
« oy July 1987

=/
»

= ¢ 8

-

. v A thesis submitted to‘ the
3 Faculty of Graduate Studies and Research -
in parnal fulfillment of the requirements for the degree of

© Peter Egyed .

PO ¢

s

o

IR A * " Abstract R

- . PSS “ > -

" One of

-ffidamental problems in computer graphics is determining which portions of
~ g “‘ . '.‘;' ‘ «

~, » .
v AR -y *

a scene aféi"@i'sziélq from a given viewing position. "I'he problem is known as thq hidden-line or
hidded-surface .problern depending on- wi}eﬂlfar edges or faces are displayed. Oﬁe approach to
the hidéen—s’urface ,pro-blem involves assigning priorities to thefaces of a scene. A realistic
image is then -renderéd by display.ing the faces with the r’esulting bn'ority ordexfng. Although

.

priority orderings have been researched, very little effort has gone into the development of a

s

mathematical theory. "In this paper-we develop a new formalism for describing priority order-

ings and propose efficient algorithms for deéling with a variety. of inputs. Aé well, we, present

)

- “insertion and deletion algorithms for maintaining a priority ordering in a dynamic environment.

g

$n

. Résumé -

. -

Un dés problémes fondamentaux dans le domaine des graphiques par, &fgfnateug est de
. » . b
- [N N 4 R .

déterminer lés portions d’une scéne qui sont visibles 3 partir d’un point-d¢ vue donné. Ce

A

probléme est connu sous le nom de probléme des lignes cachées ou de surface cachées, tout

dépendant si 'on présente 3 'écran des arétes ou des surfaces. Une des approches au

1

probléme de surfaces cachées consiste 2 attribuer des priorités aux faces d’une sceéne. Une
image réaliste est ensuite obtenue en affichant les faces par ordre de priorité. Bien que cette

méthode ait été¢ étudide, trés peu d’efforts ont été fournus pour développer une théone

3
M « . ° . . .
mathématique. Dans cette thése nous développons un nouveau formaliSme pour décnire les

classements par prionté et proposons des algorithmes performants pour diverses classes de

> -

scénes. Egalement, nous présentons des algorithmes d’inSertion et d’§limination pour maintenir
un classement par priorité dans un environnement dynamique. .
& 4 . :

“
a

Py
F)d 77\
:
.
PN

Sy

L
k]
{’ x
\ >
L
%
-
N
LI
5
44
2

t \
' Chapter 1:
Chgpter 2;
2.1,
2 22,
G e 723,

C‘hapter 3:
230

32.

7

" 'Chapter. 4:

Chapter 5:°

‘a

5.1

5.2.

b 53.
Chapter 6:

Refereqces

B .\ i

Table of Coht.entsi

[

~
i

bIntro}\.\ction VORI 1

“ L]

4 .
N s

The Scene .,........... rreveremsereNeneereessreseeses faasacsnsirarssnsansenanarsssvenranadesssissarn 6

P ‘ - ‘ -9 - /)
- Basic DefinitioNsccccccumeengenismmposeessessorsinssscnssesssssssssssstorsossaseres 6

- Defining the SCEDEcviiirninrineraparsesiinns e cevseossinnse s 7

»

- Properties Of the SCENE it e 8

Elementary SCEMESccivrimivmeneinnsensinsiiieessnsssenes onnaneesisiniien s

* ~v
~ 3 '

- Problem Descriptionzwioeeegusenessaeenenens creseseessneserensinans

-1

- Problem Solution veeveredoenenmmasfenerssesTanrensintanensassstsessresesnssnnenses .

B

COMPIEX SCEMES .uvurrrererrererissrnessnsnssionsssiaibesmsassnanssssesssssssensasfavapesmaene 25
, A .

.

- DQ"onoverlapﬁng SCEMES winvrrerriinesne e snre s e e et rensenene SR

25

- General SCENESccvviviiinssspmrssisnnsssassanans warirananes
e

31

" s
D R T L L P R X T PYT R T
. '

Dyiamic Priority Ordefin%s .

$

- The Data Structure [

-
¢
v

.- The Insertion Problem reesrsssechuesoniesnnerbinassasaensrreisrtnveueneastitens

47

-

’ ~ -

- The Deletion Problem "".. 49

. s - A) [N v ‘ »
? N . : s
Conclusion e eeisereessessasnessbasessnteansesesarsasspresessseadinsrriusrenennnneestants 55
. ; 7
. : ¢t P T oal
reetveseesntaasetabesaas b s susantnesmasnnsses srevns et ine et st s s aegere sirR s s s aegoe] 56
b N

a

Y . - ‘ ! ‘ ,
li X \ o
! -
7 \ Es
R K ‘ Chapter 1 .. -
‘ Introduction

| .
When displaying objects, one of the most challenging problems encountered involves
A Y |t\‘ -
~ removing the portions of the objects obscured W others nearer to the viewing position. ¥

Depending on whether edges or faces are d’isplayeﬂi, the, problem is commonly referred to as
- |

the hidden-line or hidden-surface problem.

Due to the variety of applications, many bifferent .algon'thms 4employing various ¥
approaches have been apfopbéed. In general, difi’erencgs between the algorithms arise from
different variables such as, Phe ::omplexity of the scene model, and, the required realism of the

q N o

image. Despite their great diversity, the algorithms all share one common characteristic: each -

.) ~p§rforms some kind of geometric sorting. %The use of éeometric sorting stems from the need to .
‘ ééstinguish those portions of the scene that are visible from those t;mt are hidden. Those parts
that are hidden lie further from the viewing position than the parts t:hat obscure them. The.
difficulty then,‘of the hidden:line and hidden-surface problems, arises from the complex nature

of orderings of objects in space.

) 5) ’ .
Algonthms for hidden-line and hiddéh-surface removal can be broadly classified into two

groups. /mage-space algorithms perform depth comparisons at each pixel of the display device.

T .

Their resulting time complexities are thus dependent on the resolution of the display device.
A
s

Object-space algorithms on the other hand, perform geometric comparisons directly on the

objects in some abstract space, and so their time complexities are strictly object dependent.

- Much of the motivation for the development of hidden-line and hidden-surface algorithms
- / . @
stems from their ever increasing importance in computer graphics. As a result, a cénsiderable

portion of the total research effort in the field has been guided by the practitioner’s viewp-oint»

For an overvie»\; of the algorithms designed from this point of wiew see [1-4]. Only recently,

I
L

™ 4

®

&

¢

1%
(- 4

s

spurred by developments in the new and flourishing field of c0mputati:mal geometgy, has the

'

theoretical nature of the problems begun to be investigated. 1‘; ~
. #

3

The notion of visibility amongst geometric objects has been intensivply investigated in
!

. _ ’ J
two dimensions. Many different vanations on the hidden-line or visibility-polygon problem,
ERY

°

have been considered. El Gindy and Avis [5], as well as Lee [6], each describe a linear and -

" thus optimal algerithm for the case of a single polygonal-object. An efficient algorithm for

3

determining visibility amongst a collection of disjoint polygons is proposed by Asano [7]. By ’

restricting the input to a single star-shaped polygon, Rappgport and Toussaint [8] are able to

exhibit a very simple linear algorithm for the problem. Introduced by "Avis and Toussaint [9],
edge-visibility problems consider polygonal visibility from an edge. The strong hidden-line

[-

problem, which involves determining' the region of a polygon visible from a specified edge, is
one such problem. Different solutions‘ to the problem czn; be found" in papers by Lee and Lin -
[10],‘.E1 Gindy [11], Chazelle and Gﬁuibas‘[l?.], and Toussaiqt [13]. Edelsbruriner et. al [14]
consider various visibihty'problems asséciated with scenes composed of simp]e’co;lvex objects.

One involves the marntenance of a view during the insertion and deletion of objects, and the

. .]
other considers frame-to-frame coherence while walking around a scene.

A vast amount of research in computational geometry has been devoted to. intersection

problems. In order to display a three-dimensional image, thé scene must be projected onto the
! . §
viewing plane and any conflicts between components must be resolved. It is only natural’ then,

9

,that the 'techniques discovered during the investigation of intersection problems be applied to

visibility problems in three dimensions.

-

Many different solutions, having various time and space requirements, have been pro-

posed for the general hidden-line problem. In order to put the various results into perspective,

let us first consider a few definitions. Let n denote the number of edges, in the scene and let &

o

<

-+

o

P
G

o ‘ .

%, .
and r respectively denote the number of intersections of edges and the number of times an *

edge is contained by a polygon, both in the viewing plane. Schmitt [15\] has demonstrated a

-

worst-case Q~(“n2) lower bound for the problem. Devai [16] has es’tablis'ned @(nz) time bound

by presenting an optimal O(n?) ume algorithm. The algorithm requires O(n?) space amyl relies

4

on existing ethods for computing line arrangements in the plane. Some output-sensitive algo-

rithms that depend on plane-sweep techniques also exist. Schmitt [15] presents such an algq-

v

rithm with a worst-case ru'ntime of 0(r+_(n+k)logn) and space requirements of O(n+k). Also

using th plane -sweep paradwm 1S an aloomhm propos,cd by Ottmann et. al [17] that requ1res
’.‘ a
) time and O(nlogn) space. A modification to this algorithm, due to Nurm [18],

reduces the time requirements to O((n+k)logn) but also increases the space requirements to

O((n+k)logn). Note that these algorithms all require more than O(nf) time in the. worst case.

By resm'«::ting the class of input considered; other authors have obtained improyej results. Rap-

\S

paport [19] for eXample, presents a linear algorithm for the case of a single monm)one slab. For
finitely-oriented sets of polygons:, Guting and Ottmann [20] are able to obtain an algorithm

which runs in O(nlogn+k) time and requiréd O(nlogn) space.
{
Some theoretical results have also been obtained in the area of hidden-surface removal.

. * N / . i
Schmitt [15] has demonstrated % worst-case Q(nz) lower bound for the problem. As well,

]

Mckenna [21] has presented an optimal O(n?) time algorithm thus establishing an O(n?) time

bound. The algorithm requires O(n*) space and depends on existing techniques for computing

<

line arrangements in the plane. One method that shows great promise is the priority approach.
ﬁt

This technique involves assigning depth priority numbesf to the aces of a scene. The desired
obscuring effect is then achieved by displaying the faces using the resuiting priority ordering,
This type of procedure is commonly known as the painter's algorithm. Suppose for a given

viewing_position some face f, obscures another face f,. This reldtionship between the pair

o

¢

\ v -]

must then be correctly reflected by their assigned priorities. Unfortunately, it is not always pos-

%

sible to compute priority orderings since cyclic*constraints may exist. On the other hand, many

scenes exhibit a remarkable property in that it is possible to compute -priority orderings for
e

3

[

them before a viewing position is specified. This of course leads to significant uzq: savings
during image' generation. Although several papers [22-26] have considered varidus aspects of

the problem, they fail to develop any significant theoretical insight into the problem. In con-

.

trast, Yao [27] investigates the underlying mathematical nature of prionty orderings, and pro-

poses efficient algorithms for a restricted class-of wput. For the class, Yao proves that for a
(S ’ N 4 -
given view point the priority ordering can be computed 1in O(nlogn) time using O(n) space As

'

well, Yao demonstrates an ©(#n) bound for the required number of priority orderings. P
'

a 2
The purpose of thus thesis is to extend the work of Yao. In particular, we consider a new

o

fotmalism for degcnbing priority orderings and present efficient algorithms for dealing with a
¢l ’ ' '

-
w |

variety of inputs. As well, we propose algorithms for maintaining a priority ordering during a

series of insertions and deletions. We now briefly describe the remainder of this thesis. In

chapter two, the class of scenes to be considered is defined and some basic properties of the
{

objects comprising the scene are deduced. A new formalism for _déscribmg priority orderings is
introduced in chapter three. Also, an existjng algorithm due to Yao, and a modification of the
algorithm, are presented for a» .bcllass of scenes that is predominantly two-dimensional. In
_ chapter four the most general class of scenes is qonsidered. These scenes do not in general
admit priority orderifigs. To re;medy this situation, different decompositions of the scene are
proposed, and algorithms for solving the problem ar¢ prese.rfted. Although finding a minimum

decomposition appears difficult, a heuristic is presented that usgs at most twice the minimum

number of cuts. In chapter five, algorithms for maintaining a priority ordering through a senes
-t

-

-

of insertions and deletions are developed. Finally, possible future research is discussed in the

b
.
N
»
.
..
’
¥

[4
.
hJ
- .
°
-
0
w
+
—
”
&
.
[y

S

'1»- _ - ' ‘Chaptérzh

. " VThe Scene
\ ' .

The complexity of a two-dimensional scene is dependent on the class of objects chosen to

e represent the scene. In general, choosiné\ a class of objects appropriate for a specific applica-
Y

tion involves a trade-off between scene complexity and processing efficiency. We introduce in
- this chapter, a three-dimensional scene of moderate complexity, whose two-dimensional proper-

ties afford an efficient solution to the hidden-surface problem.
x y'

In the sections of this chapter, we first introduce some basic defimtions gnd notation, then

define the scene, and conclude by proving some properties of the scene.

2.1. Basic Definitions '
iy ~ . b #

“rr As is standard in computational geometry, points are termed verrices, and pairs of points

o

defining line segments are fermed edges. A simple polygon P is a sumply connected subset of
the plane whose boundary is a closed chain of edges linked by their endpoints, with no two

nonadjacent edges intersecting. We represent such polygons by a clockwise sequence of ver-

by
tices, vy, vy, ..., v,, Where each vertex v, is described by its cartesian coordinates (x,, y,). The

sy

sequence is assumed to be in standard form, i.e., the vertices are distinct and no three consecu-

tive vertices, indices taken modulo n, are collinear. A pair of consecutive vertices, say v,, v,,q,

indices taken modulo n, termed the tail and head respectively, define the i edge and_is

- represented by e,. The seduence ey, €y, ..., e, of edges forms Ehe bouhdary of a polygon P, is
denoted by bnd(P), and partitions the plane into\\Eyvo open regions: one bounded, termed the

interior of P and denoted by int(P), and the othe\r unbounded, termed th,e exterior of P ang

1

denoted by ext(P).

=)

2.2. Defining the Scene .

]
o o

A polyhedron is 5 solid bounded by simple polygons, termed faces, so that each edge is e w
e ¥ 4 g\ol

-

, . . i
shared by a pair of adjacent faces anid no two nonadjacent faces intersect. We define.a scene,” -

1

the class of input to be cozlsidered, as a collecion § = (PX,, PX, ..., PX,) of nonintersecting
polyhedral-cross-sections. A polyhedral-cross-section is a polyhedron of restricted form that is

enclosed by base-faces, ~ simple polygons Py, =(vbl1,hvb‘2, o Von,) and

P =1, {’,‘ 2 eers v,‘,,") that lie in parallel planes z = zb,‘and z =z, respectively, and also by a

~

collection F, = (fiy, fiz) -+ fin,) Of simple polygons, termed lateral-faces, that connect P, and

-

P,. The base-faces P, and P, are named with the convention z; > zp ,.and termed the top and

borttom base-face respectively. Note that a vertex v; of a base-face is described by its planar

cartesian coordinates (x;, y,) and the plane r =z, in which it lies. Given a three-dimensional

-

object G, let its projection onto the x-y piane, termed the x-y projection, be denoted by G .

[

Py, and P, are restricted so that either P,,; c P,; or P,; < P,,;. Alternate symbolsgfor. the

-

base-faces are derived from the containment relation: if Pb‘ =P, , then the minor base-face,

denoted by P,,, is P,, and the superior base-face, denoted by7 P, is Py, otherwise P, is the

1

properly contained base-face «and P, s ;hg other. -For _simplicity we ~shall denote
int(P;) N in(P;) by T'(P,, P;). The placement of the polyhedral-cross:secﬁons is restricted so
that given. any pair PX,, PX; of S, if I"(P_,: , P,:) # @ and z, <z, th;n z, Sz, ie, if the x-
y projections of two polyhedral-cros's-s;cdons intérsect, then one lies above the other. A

i
(] ’ x
pelyhedral-cross-section is composed of base-edges, those that form the base-faces, and

_lateral-edges which together form the latera¥faces. Let A,ﬁa binary operator on sifnple

polygons, be defined so t{gt P, AP; =P; —in(P;). A lateral-edge links a vertex of each of -

-, o R o~ . (.
P, and P, ie., of the type Voo Vsgr 18 denoted by €igr and is restricted so that |
- I . b
.) .
T - N 1 4

¢
s

%

¢4

[%

<

®
o - _
>

‘ e,-; € P,; A P,,'lf . We represent a polyhedral-cross-section PX; by (P, 2z, Py, 2, F;), and

-~

m ® m i
deriote the complexity of the scene, Y|Py | + [P, | = Xn, + ny, by n.

/ P _ =l i=1

2.3. Properties of the Scene

’ o
we present in this section a theorem pertaining to the two-dimensional properties of a

4

i ' A
polyhedral-cross-section. In order to prove the theorem we first propose several lemmas. Note

. -~ h

that the reader may skip the proofs without any loss of continuity.

N
Lemma 2.1. A lateral-face f, of 4 polyhedral-cross-section PX is eithef a tnangle bounded by

[-~
two lateral-edges and a base-edge, or a convex quadrilateral bounded by two lateral-edges and

" a pair of parallel base-edges, one from each of the base-faces. \

Proof: Let V), and V, be the subset:s of the vertices of P, and P, respectively that Jefine f,.
Consider the plane B in which f; lies and its,intersection with the parallel planes B, a%d B,,

defined as z =z, and z°= z, respectively. The intersection betwqén a pair of parallel planes

and a third plane not parallel.to the pair, is a pair of parallel lines. With respect to ‘the intersec-

-l

tion of B with B, ang B/, we denote the pair of parallel lines by [, and /,. Referring to figure

S

s

2.1, since the vertices of V), and V, lie in I, and /,, and also since /, and [, are parallel, the

vertices of each of V), and V, are consécutive vertices of f,, and so must also be consecutive

vertices of P, and P,.- But the vertices of P, and P, are in standard form and so |V, |'$2

and [V,]| 2. In the case where |f;| =3, f; is a triangle and so each pair of vertices define

" an edge,. with the result that f; is bounded by two lateralaledges%nd a base-edge. If on the

[y

other hand [f;| = 4, then V, and V, determine the.pdrallel lines J; and /, and so f; is a con-
vex quadrilateral bounded by two lateral-edges and a pair of parall‘el base-edges, one from each

of the base-faces. Q.E.D.
. g

&

.or bnd (P,,) N ext(P,) # @, both of which lead to contradictions. Q.E.D.

Corollary. There are b(n) lateral-faces in a scene. ,]

- N

. b ,
Aroof: Each edge of a polyhedron is common to two faces. Since each lateral-face is bounded
9

by one or two base-edges, and each- base-edge bounds the top or the bottom base-face, the

number ofnléteral-faces is O(n).

Define a polygonal-chain C as a chain of convex polygonal faces in which each link in
t hd .

the chain is an edge common to two adjacent faces and no two nonadjacent faces intersect.

Lerhma 22. The set F'=(fy, fo .. fy) of lateral-faces of a polyhedral-cross-section PX,
form a closed polygonal-chain C linked by lateral-edges.

Proof: We know that each lateral-face f; is convex and bounded in part by two lateral-edges.
: o

[

As well, eagh lateral-edge is shared by a pair of adjacent lateral-faces. Now, since the number

.9 ‘
of faces in a polyhedron is finite, the lateral-faces form a closed chain C with the lateral-edges

as the links. Finally, no two lateral-faces interSect unless they are adjacent faces, and so C is a
closed polygonal-chain. Q.E.D.

Lemma 2.3. Given two lateral-faces f;- and f, of a polyhedral-cross-section PX,

PN
r(fi»fj)=®'
’ /

Proof: Let C denote the polygonal-chain of the lateral-faces of PX. If I'(f, ,-', ’f j') # O, then € /

©

must be properly self-intersecting. However, if this is true, then either Pb' or P,' self-intersects,

3

1 c‘ ”
We are now ready to prove the main result of this chapter in which the general shape of -

A

-

a polyhedral-cross-section PX is deduced.

Theorem 2.1. The x-y projection of the set F of lateral-faces of a polyhedr'alvcross-s\ectim

~ PX, represents a convex non-overlapping decomposition of P,' A P,,',.

~ c B
M -
.

@ —

& A
A] . 6 !
Proof: This follows directly from lemmas 2.1 - 2.3. Q.E.D. , _
. TR)
Referring to figure 2.2, consider the two-dimensional properties of a polyhédralicross-

section as proved in the theorem of this chapter; that the lateral-faces are convex and that their

x-y projections decompose the difference between the x-y profections of the superior and minor

L 4

base-faces, are used extensively in the development of an efficient solution _to the hidden-

) - hd
4
- ° 4 .
surface problem. - ‘ .
> ~
- <
.
. ~
’ s
i . 4
. .
{ :
.
-
A
o - .
L] e
.
. \]
- ° - s
/
. Vs
1S
. ’ 1 -~ .
-
. .
-
N Ty
.
¢
.
4 '
h ©
R
[1 9 A
/
&
,
- -4 - - v
&
R
» 2 f <
. *
. b '
- » - -~ N 4
- .
. WA 11,‘11 NI
N s
- ®
\
i *
1}
-~ LN
. v
a . =
*
. ~ ", ‘.
\ N » * &
- - “\ . .
* L
4 -
A Y
1
¢ o
. .
. .
¥
v -
.
- A
- : * '
. .
- -
0
- Ld
.
s : 1 ’‘ "
.
-)
. .
s .-
- . ©
-~ "'0 10
. - -
~ v, ~ . Y 2

-
.
[

.
'
‘
‘
A
-
. l
.
r
.
- ®
0
-
.

L
5, ‘
h\ ¢ '
+ . ‘ .
] . e N
] .
T ‘)
.»
g
v ’)
. [
. .
0 .
i [
- .
.
. .
[]
‘ir
\ .
-~ '
s
L
>———t
.
.
»
@O
+ f —
l\
)
@
» - .
R
v v A ’
.
-4. . i
AR . *
1
R . »
. 1 "
v =
. ‘| ,) + -
2 N "
4
. figure 2.1 : ’
N \1 - I)
ot .o
~ . » ’ ‘:‘ Tt
' . v v
.
' <
a
.
[
a
1]
. .
.
.
R
-
Kl - l
H ']
,
.
.
. ’ : .
LY .
~ -
s
-
» N)
. a N ‘
, . .
‘ . X
o . :) i
R , ¢ - f & ‘ °
: _ <11- » : A '
o ' | ’
(" N
v . [» >)
’ 1

Chapter 3 S co

Elementary Scenes

In this chapter we consider the priority approach to hlddcn~surface removal with respect
& . ©

to scenes that, although comprised of polyhedral-cross- secuons are predommantly two dmen-

sional. ’I’he hedral-cross-sections of these scenes are restricted so that the set of top base- _

1) / -
r ~

faces and the set of bottom base-faces each lie in a'fixed'z-plane and each pair of base-faces is

. G

congruent. ‘ - .

In the first secnon of this chapter, we formahze Lhe problem of compuung priority order-

ings fbr}%sm'cted’class of sceneS. In the second and last section, we réi)roduce, due to their

+ importance with respect to this thesis, the results of Yao [\27] on the priority appro#ch to
hiddep—surface removal. The algorithm proposed ipy 'Yao involves two passes of the data set:

"2 ~the ﬁﬁtidetermines a partial ordering 9f the faces of the scene ele the second topologically

N ¢ - v o

sorts the ordering yielding a linear ordering of the faces. In addition, we present a new formal-
N \. ism for describing priority ordenings which leads to a simple modification to 'Yao’s algorithm, »

, eliminating the need for the second pass. We have recently learned that this modification was
[]

independently discovered by Ottmann and Widmayer [28] withih the context of lipe segntent

translation. We note however that our method of proof, on which another chapter of this thesis
3 . »

- \ -

. depenés, is of a complétely diffetent flavor than that of Ottmann and Widmayer.
\ 5 :
3.1.- Problem Description
& .
Consider a. scene S = (PX,, PX,, .’, PX,) of polyhedral-cross-sections. Referring to

figure 3.1, consider a class of; input restricted so that for each polyhedral-cross- -section PX

. P.b. = Pf: » 2y, = 2, and zrl = z, where z, and 3, are each a constant. Furthermore, lateral-edges
1 EY

link the similar vertices of each base-face. We shall refer to each polyhedral-cross-section PX;

[

. .] .12_

- .
’ ' <
‘Lt M ¢ 3
L .

of such a scene, as a prism. Since P, =P, we refef to each S

-
.

@

To define a dominance relation between the. faces of a scene, requires’that a viewing
: “

model be chosen. We choose the parallel viewing model since it affords a simple a;rxalysis and

is of practical importance in many applications. In the parallel modél, refer to figure 3.2,

parallel rays emanate from an observer at infinity and head towards the scene. The observer’s

. .“vitw is then completely determined by the pai'r of angles (6, ¢), 0 £ 06 <2 and :g- <6< -g—,

formed by the projections of a ray r onto the x-y and x-z plafies respectively.

Define ‘the outward normal vector of a face as the umt normal of the face directed away

B c

from the interior of the polygon. Given an observer, each fage whose outward normal vector

has no component in the direction of the obsérver, is invisible. We call such 1mvisible faces,
_ b&ck—faces, and describe the remaining poténtially visible faces as visible. Having d&rded the

back-faces, displaying the remaining vis‘x‘b]e faces with a valid pripx;ilty ordering, results in a
Y
correctly rendered scene.

4

Consider a scene § <;f Srisms anfi suppose ¢ # 0, then either all the top base-faces or all
the bottom bas;-faces are visible, otherwise ¢ = 0, and then no base-faces are visible. Any ray
r that intersects a visible base-face must do so before intersecting any visible latera'l-fgce,,and
also may not intersect any other visible base-face. Thus each of fhe visible base-faces has an

" equal and highest priority. Solving .the hidden-surface problem for "a scene of prisms, usir;‘g' a

priority based approach, is then a matter of determining a valid priority ordegiing for the visible \ -

lateral-faces. Consider the cases in which ¢ = —'—;i or ¢ = 12‘_ "The solution in thesé cases is

trivial since the lateral-faces are all back-faces. We assume therefore that —%—c- << -g—

¢
t

Let F be a set of faces.\ Define W(F,r) to be the partial ordering of the faces of F
induced by their order of ifitersection with a ray r. Let F =(fy, f2, .., fn) be the lateral® °
—'
[¢ -13-

ot i A

. e
. o«
‘ ‘«1‘

3

Cérs
Fagrsa

%

&

I

b v (

faces of S. Consider any ray r in a fixed direction (6, 0) that lies parallel to and between the

. planes z = z;, and z = z,. Let R be the family of rays for which for each s € R, s =r.

A
u

g Since for eachray s € R, W(F, s) and W¥(F, r) are consistent, th?, problem of determining a

v .

valid priority ordering for the visible Jateral-faces of F is independent of ¢. As a result, the

- problem can be further simplified: deter%nining the required ordering is equivalent to determin-

a

‘ing, in two dimensions;} a valid priority ordering for the visible edges of F = (f , f 2', - f,,')
in the direction . As a matter of convenience, an edge of F " will be referred to by"its

1

corresponding face in F.)

.
- hd 1

.

Consider 2 clockwise view-interveN @ = [p;,’p,], defined so that |@| is maxiniized with

»
® - 5 . .

thecondition that if f, is, visible for any angle 8 € @, then f, is visible for all angles 6 € o.

'Since a face f; is visible over an interval of length m, the complete interval [0, 27] is prOperiy

. -~ 9
[] .

divided into at most n view-intervals, each of which contains O(n) faces in general.

“u

In the nmext section, two important results are discussed: one, that there exists a static

. priority ordering for a scene of prisms within any view-interval, and two, that this ordering can’

’

be computed quickly.

o
-

3.2. Problem Solution) - -

LS

We now present Yao’s approach to computing priority orderings with some improve-

A

' ments. While the worst-case complexity remains the same, some simplifications to the algo-

rithm are obtained. The simplifications arise due to the introductiop of a new formalism for

describing priority orderings. The new_ orderings introduced will be used in subsequent
- . ’ %
chapters.

Refore a solution can be proposed, it is necessary to discuss the abstract representation of

a scene. The problem of representing a scene S is easily resolved since it clearly suffices to’

- -14 - ,

i %4

e

-

-

represent S by S and the bounding pfanes z =12, and z = z,, Each p%lygon P;of § " can be
suitably represented by a doubly-linked-list of its vertiges.

Given a scene S and a view-interval ® = [py, p,] we can, without loss of generality,

rotate the scene so that the view-jnterval can be expressed as @ = [0, p]. Let F,'a subset of F,

N -

be the faces of the view-interval @. If for a view-interval @, a face f, must be assigned a
higher priority than an face f,, we say that f, dominates f, and \flenote the reladonship by

f, domf,. Referﬁng'to figure 3.3, consit:r an edge f, and define the region R, to include the

two half-lines determining its boundary, but exclude the portion of f; not lying on the half-

lines, Suppose for view-interval ® that f , dom f,, then f , mmust 1ntersect the region R;. Of
¢ * ’

the two vertices determining a face f,, the tail is denoted by v, =(x,,y;) and the head is

denoted by v, = (x4, ys). Referring to figure 3.4, supi:dse f; dom f, then either f, inter- -

]

sects ¢he half-line boundary of R, containing v, , or it does not; these cases are denoted respec-

.tively by £, lefidom f, and £, rightdom f,.

4

Theorem 3.1. For any view-interval ® = [0, p] of a scene composed of prisms, there exists a

'priority ordering on the faces of F, (Yao [27]). * ’

a

Proof: Refernng to figure 3.5, consider the following three facts: (i) the relation leftdom is

acyclic; (ii) if £, rightdom f,, then, x, > x, ; i) if f; leftdom f, and f, rightdom fy, then
‘ [

o -
f, dom f,. Of the maximal faces with respect to leftdom, ise., those thut dre not left-

dominat‘ed, consider the ope whose tail has the largest x-coordinate and denote it by . We
‘ ’ ' “{
will now show that f,, is not dominated by any other face. First, suppose that the tails of two

- , i
. . &1 ’ .
faces have the same x-coordinate, then one must lefi-dominate the other, consequently f,, is

unique. Let f., dom f,, then since f,, 1h§ maximal with respect to leftdom, f, rightdom f,,.

By fact (i), there exists\q noncyclic sequence f leftdom f leftdom - - - lefidom f, such that

‘

-15.

-t 4
P

¢

A

3

il

3 | i pdducinal

L)

©

fe=F:- Apply‘ing fact (iii) to the sequence repeatedly yields f dort fm- Now, since f,, is

maximal with respect to leftd;m, fi rightdom f,,, and by fact (i), x, >x, . But f, was

maximal with-respect to dom, there exists a priority ordering on F,. Q.E.D.

imal with respect to leftdom. Note, if f; is ntaximal with respect to leftdom then

—

chosen so that, of ‘the maximal elements with Jespect to leftdom, its tail had the largest x-

coordinate, thus we have a contradiction. Singe for any F,, there exists an element f,, that is

Consider a relation ileftdom, defined so that f, ilefrdom f, jf and only .if f, left-

dominates f; immediately from above, i.e., no face intersects the left half-line of R, below fj.

A face is of course maximal with respect to leftdom if and only if it is maximal with respect to

ileftdom. Suppose we add a face ¥ ,, that left-dominates all other faces, then f ,, is the only

face maximal with respect to ileftdonj. Since each face, with the exception of f,,, is immedi-

ately lefi-dominated by only one face, the relation ileftdom can be represented by 4 tree T

.

rooted by fax, Let T be arranged so that the children of a node f, those immediately left-

o

dominated by f, are o;‘dered from left to night by the value’ of the x-coordinate of their tail.

~ Suppose the subtrees of a wee T, ordered from left to right, are T, Ty, ..., T,. Consider the

K3

‘ hy, ko, ..., hs, h appear in the given order.

ordered from left to right, are hy, A4, ..., hy, then in the postorder listing of T the nodes

)

Ne

Theorem 3.2. The left to right postorder trg,\;ersal of the tree T yields a priority ordering on

F,, which can:be optimally calculated in O(nlogn) time wsing O(x) space.

following recursive definition of the left to right postorder traversal of T: list the nodes of

Y Ty, Ty, ..., T, in postorder all followed by the root of T. Thus, if the children of a node 4,

]

Proof: Let f be a face of F, then referring to figure 3.6, let Ty be the subtree of T in which

the faces occurring before f in a left to right postorder traversal of T, have been eliminated.

.Also, let Ly be the left most patlr; from root to leaf, of T, and note that the leaf of Leisf. It

4 -

-16 -

-~

fyf1 fa - fi- This enables the construction df a doubly-linked-list in which a face is
@

is sufﬁcien't to show, by theorerp 3.1, that given f and the faces of T — Ty, of the faces maxi-.
mal with respect to Iéftdém, the tail of f has the largest x-coordinate. Referring to fihre 3.7,
Consider the partition of the faces in F, induced by the ileftdom sequence represented by L.
Denote the partitioning line by Cy and note that Cy 1s either ;;iecewise linear and descends
from lef to right, or is vertical. Also, by the definition of ilefidom no two partitioning hnes *
may cross. Clearly then, given a face of T - Ty, either its tail lies left of Cy or it is a descen- >

dant of f in T. Therefore, given f and the faces of T — Ty, f is maximal with respect to left-

dom, and of those faces that are maximal with respect to leftdom, the tail of f is rightmost.

It now remains to show that the postorder listing can be computed in O(nlogn) time.

e) F

Suppose' the faces are processed so that a face f and those faces immediately left-dominated
- . i

by fu f1sf 2 cr fis ordéred\by the x-coordinate of their tail, are encountered in the order

o
—

inserted before the face that immediately left-dominates it, achieving the desired suborder of

fl)fZ: x-yfk:f-
The problem is solved with a plane sweep techm'qué similar to that used by Bentley and
Otfmann [29]. Referring to figure 3.8, consider a vertical line ! through v,, the tail of a face f,

and its intersection with the elements of F,. The face of F, that intersects { directly above v,,

Aimmediately left-dominates f. Since no two faces intersect, the ordering of the intersections of

the faces with [as it is‘swept from left to right, changes only as an end point of a face is
encountered. The ordering, as [is swept from left to right, can theret:ore be maintained in a
balanced tree in which a face f is inserted when its tail is processed, and deleted when its
head is processed. The face that immediately left-dominates f is found when f is inserted.

Since the tails are encountered from left to right, a face f and fy, f, .-, fx, those faces®

immediately left-dominated py f, are.encountered in the order f, f1, f, ..., fi as desired.

-17- .

anaiy- M

&)

”
Wi
ik

¢

¢

j
. !
In O(n) time the back-faces can be eliminated and the scene rotated so that @ = [0, p].

Computational details concerning back-face elimination and scene rotation can be found in [3].
{ 7 s
7

The end points can Be sorted accordingﬂto their x-coordinate, with special attention paid to
points with the same x-coordinate, in O(nlogns time. Each insertion into and each deletion
from the balanced tree can be done in O(logn) tume. In addition, O(logn) time is required fol-
lowing each insertion in order to determine which face immediately left-dominates the inserted

L]
face. Thus the total time spent manipulating the balanced tree is O(nlogn). Since each inseruon
A}
, /
® into the doubly-linked-list representing the priority ordering requires O(I) timue, its construction

requires O(n) time. The priority ordering can therefore be determined in O(nlogn) ume, and
>

since each data structure useXhas é@ space requirements, using O(xn) space.

The optimality of the algorithm follows simply since sorting 1s linear time transferable to

the priority ordering problem.*'Consider aset X =(xq, x5, . ,:;,,) of n distinct integers. Of the

»

elements of X, let x,., be the largest. Suppose we wish to sort X 1n descending order. Refer-

ring to figure 3.9,. map each x, to a horizontal line segment as follows:
x = [(x,, Xmax = %)y (Xax + 1, Xpax — x,)]. Clearly, the result;ng set of line segments has a

unique pnor:iq; ordenng for the direction 8 = 0, and this ordering corresponds to the sorted

values of X. Since the ransformations obviously require linear time, the algorithm is optimal.

Q.ED.

-

~ -

A scene is said to be k-regular if'number of view intervals is.k. In general, no two faces

will be visible over the same interval of length t and so & = n, however, there exists scenes in

which k <« n. By angular sorting, the k view-intervals can be calculated in O(nlogn) time.

r‘—‘\

The & priority orderings, which are sufficient for all views, and the corresponding & lists can '
q
be calculated in O(knlogn) time and stored in O(kn) space. Displaying the scene from a given

° view point (0, ¢) requires an O(logk) time search to locate the required “view-interval, /Q(n)

“

] '18'

@

4

. time-to project the scene, and O(n) display commands to render an image. The computational

s

particulars regarding scene projection and displaying can be found in.[3].
e .
In the next chapter we extend the theory so far yveloped to include more general classes

° § R .
of scenes. In the'se scenes the base-faces Jre no longer restricted to two z-planes and each pair

of base-faces are not necessarily congruent.

4 - 3
\o !
. - -
- R \ .
a
" i
—— -
, -
LY
; « .
. > ” '
i} , - .
.)
N -
.
R
. - o "
» w
N ~
&
+ N -~
" \ §
. .
~ -
N ey .
_ ?.;r-ﬁ;;i;}: :
f-*“’“;q ' N
~-19- .

Zs
e;.-vcu
B

ar

in
=

-~

.

.20 -

figure 3.3

’

s

Vi, < / o
. V. o ‘ #
“~ hi

figure 3.4

(ii)
~ figure 3.5

figure 3.6

Fan

il

TR T

a0

R T

figure 3.7
-23 -

— I nInn
e~ ’
i
. f ; %
. |
ﬁ
Lol
‘V lv
’
w 1
) %
f
° ~
x
/) ! !

- .
' D
ES
®
. 4
p p -
. ’
- -
- N
POV
%
o
.
~—
Y
s
4
¥
K cemeee timae 7 rens caee stsemomes o cvesese o =
s
.h.:..u...: aqtesesnsnaenans os sesn wse b sves vper semd
\
a
N
.
ES
. -
. - ~
. " i
.
P
- Ta

Ya

« »

L : Chapter 4 ' .

Complex Scenes ' .

So far we have considered scenes of polyhedral-cross-sections whose two-dimensional
: : ;
properties afford an efficient §olu(tion to the hidden-surface problem. These two-dimensional

properties resulted largely from the placement of the base-faces. In this chapter we examine 'a

more general class of scenes, in which the placement of base-faces is not so rigidly confined.

In general, these scenes do not admit priority orderings on their faces, i.e., the corresponding

) [N
lefidom relation is cyclic. To remedy this situation, a scene is decomposed so as to eliminate

. . \
\
.

° >

potential problem areas.

) ’ °
In the firét section of ‘this chapter, we discuss nonoverlapping scenes, those for which no
two x-y' projections of superior base-faces intersect. For these scenes we consider vertical

decoffipositions in order to avdbid problem situadons. The most generjl class of scenes is

- ‘.
treated in the last section. These scenes require both vertical and horizontal decompositions to

’
i

eliminate potential problem areas. .

- 4.1. Nonoverlapping Scenes

- o

-

Consider a sceme S = (PXy, PX,, .., PX,) of polyhedral-cross-sections and let .

F=(1fa . fr) be the corresponding lateral-faces. Restriqt S so ‘that for-any pair
N ? B

)PXi, PX, of polyhedral-cross-sections, I"(P,", P,j') = . Call each polyhedral-cross-section of

?
H

such a scene a column. As remarked in the previous chapter, an observer’s view-point in the

parallg] viewing model is completely determined by the pair of angles (8, ¢), 0 <0 < 2x and

B D
T - . . " . : .
> < ¢ <—.° We assume —2?:--< ¢ <-72£ since we will consider the special cases in which

RN E

¢ =. ‘:21" ord = 125- in section 4.2. {

h “ ¢
B

N
through the entire range of ©..Clearly, this disqualifies from consﬁ%cruuon any method that

IS | |

Unlike in a scene composed of prisms, the top and ‘bottom base-faces of a scene con-

- @
»

structed from columns, do not necessarily lie in r'éspecn‘ve z-planes. Consequently, referring to
figure 4.1, for a fixed vieq_iig position (6, ¢), the visible base-faces do not necessarily have

equal and highest priority. Thus it is no longer sufficient to simply determine a valid priority

8 . .
ordering for the set of lateral-faces. The question then is, is it even possible to compute a

o Y

priority ordering fol‘ the combined set of lateral-faces and base-faces? In general, the answer is

no. Referring to figure 4.2, it is simple to construct a scene of columns in which for any vie®

[y

ing position, there-exist a base-face and lateral-face that determine a cycle, i.e., neither can

have a higher prionty than the other. To remedy this situation, we will introduce a- vertical

N 4

decomposition of the scene which easily adapts to the existing framework'

It is of course desirable to render the problem independent of ¢, and hence reduce it to

»

two dimensions. Note however, that a lateral-face in general position may not, for a fixed value

of 8, be vgble through the complete range of ¢, yet may, fof specific values of ¢, be visible

v r
computes a priority ordering after the elimination of the back-faces. Instead, we adopt a stra-

tegy that computés a view-interval dependent total ordering of the faces 1n a scene Given a

s

viewing position, the back-faces can then be quickly €liminated. . :

. o .
Su;/)(aose each minor base-face P, 'of § is triarigulated. Euler showed that a planar graph

- ¢
on n vertices has O(n) edges and faces. Consequently, referring to figure 4.3, the decomposi-

. i 1
tion of the minor base-faces yields O(n) triangular-faces and induces a vertical decomposition

of S. Redefine.F = (fy, f3, ..., f,) to include both the lateral-fuces and triangplar-fams of §

4 ’ 4 I ’
Note that the elements of F '=(f,,f4, ... f,) are edges and convex polygnps. and

" ’

I'(f,', fj) =@ fdr’fauriynpair fi f, of F. ° .

!]

s/

* o
!)

A

‘ .. * Lemma 4.1. Any priority ordering on the elements of F for a fixed direction 9, is valid on

s

the faces of F for every direction (8, ¢).
i

°
-

Proof: Let.r be any ray with direction 0 in the x-y plane. Define R to be the family of rays
for which for each ray s € R, s =r. In order to establish the required result, it is sufficient
to demonstr'fné that for aify ray s € R, ‘i:(l:".’;"s) and W(F , r) are consistent. Let f, be any
N face of F, and s any yay of R. Since f, is convex, s intersects f, and r intersects f ,~' at most

" ° .once. Then, refernng to figure 4.4, since for any pair f,, f; of F, I"(f,';.fll)-= @, Y(F,s)and

-

W(F, r) are consistent. Q.E.D. . .

All that remains, is to bring the superior base-facés into the argument. Let F, be the sét

e N

" of lateral-faces and triangular-faces of a column PX,. F,' defines a non-overlapping decompo-

sition of P, in that Fy = Pg . Since each non vertical face of F, is associated with a unique

4 w 9
. I . (‘ d
(component of the decomposition of Ps:hsufﬁces to compute a priority ordering solely on the
'fa@es of F', R

In order to process a scene S, a suitable repgesentation of each column of § is required.

c From such a representation, the base-faces and lateral-faces must be immediately available. To

’

satisfy this conditidn a planar g;aph structure, lych as the doubly-connected-edge-list of Muller
. &

- -« anq Preparata [30], is used. Note that due to vertical lateral-faces, the x-y projections of two

¢

~e
edges may overlap. However, due to the superior and minor labels of the base-faces,, conflicts

can be Tesolved and so a planar graph structure is still appropriate. The main component of

A “

the doubly-connected-edge-list is the edge-node. There is a one-to-one correspondence

between the edge-nodes and the edges of the graph. Each edge-node consists of six fields
¢

named V,, V,, Fy, Fp, Py, and Pz.' The fields V; and V, contain. the names of the head and
S

L4

tail of the edge respectively, effectively orienting the edge. Given this orientation, the fields F

(and F, contain the names of the faces which lie to the left and to the right of the edge

i
» -

=

]

respectively. The field P, is a pointe; to the edge-node containing the next odge about V, in

the counterclockwise direction. P, is defined analogously This representation is suitable since

,ila

for any edge it is possible to start walkmg clockwxse around erther of its adjacent faces In
additdon, each step of the walk‘ involves only a constant amount of work, and so.the faces can
be retrieved in O(n) time. So that the lateral-faces and base-faces can be distinguished, a type

indicator field is includetl with each edge-nade.

Before attempting to compuje a priority ordering on’F, it is necessary to triangulate the

minor base-faces of F. Since the triangulation of a minor base-face does not effect the planar-
. P s
3

ity of the corresponding column the doubly- connected -edge-list remains a suitable representa-

S
tion. So that. ﬂlé;‘&angulhr-faces can be dxsunomshed\ the type mdlcator of cuach edge-node

ofy AL
v..
N, Yo . o

' represenung a tnangulapbn edge is apprépriately set. - .

Lemma 4.2. 'I'he set M (P,,, 1 Pmys - P) of minor base-faces can be triangulated, and the

corresponding doubly-oonnected-edge-lists updated, in O(r;Iogn) time using O(n) space.. |,
Proof: Many algorithms [:31-34] exist for tri;ngulan‘ng a simple pOlng?l in O(nlogn) time and
o(m space With respect to thxs thesxs, these results are sufficient. However, it should be men-
tioned that Tarjan and Van Wyk [35] have recemly dxscovcred an O(nloglogn) time algomhm -

< .
Each minor base-face is' a simple polygon. Since there are O(n) vertices determining the m

a

.) s
minor base-faces, the m minor base-faces can be extracted from the doubly-conncctcd_-a)lm
x -

_ lists in O(n) time, and subsequemly triang:ﬁl'atod in O(nlogn) tme and O(n) space. Given a lisy

of the O(n) tnangulauon edges, it remains to show that the doubly-connected-edge- -lists "can be
quickly updated. ConSIder a minor base- deC P, and the corresponding doubsly- Lonncucd
edge-list. Allocate an edge-node for each trangulation edge, and arbitranly designate the head
and tail. Refernng to figure 4.5, sort the the tnangulation edges so that for each vertex v of

& : . .)
P,,, the edges with v as an endpoint are sorted counterclockwise between the bounding cdges

”

~—

Id

v @ »

e, and e_ of P, atv. From this information, in<comtant time it is possible to update the P,

and P, fields of any edge-node\v/vith P, as a bordering face. With equal ease, the P and P,

.

fields® of the new edge-nodes can be set. To update the F; and F, fields, the information con-

b

tained in the P, and P, fields is used. Ckonsidcr a triangulation edge e. Referring to figure 4.6,

it is possible, in constant time, to determine the edges bounding the two friangles bordering e

E

.and suﬁsequendy update their F; and F, fields. The sort step dominates the updating pro-

cedure, and so, since there are O(n) triangulation edges, updating the doubly-connected-edge-

lists can be accomplished in O(nlogn) time using O(n) space. Q.E.D.

‘Ideally,j the treatment of convex polygons, with respect to computing priority orderings,

would not differ from that for edges. We shall nTw show that, with only a few extra considera-

L S
4

tions, this is in fact true. Let P be a convex polygon. A line ! is a line of support of

interior of P lies completely to one side of /. A pair of vertices v;, v; of P is an antipodal
pair if it admits parallel lines of support. Call the ‘edge e determined by an antipodal pair, a
e -

shadow-edge. .

@B

Lemma 4.3. When computing a priority ordering for a fixed direcﬁjl 6, it suffices to replace
each polygon ~of F by an appropriate shadow-edge.

Proof: Referring to figure 4.7, consider ﬂ;e parallel fineé ‘of su port of a polygon frof F.in
the direction 6, and let ¢_denote the corresponding shadow-edge determined by the antipodal
pair v,, v;. Since f, is convex, e lies within f,, and, as remarked by Guibas and Yao [36],
f;‘ and e sweep the same area when translated in the directon 8. Furthermore, for any pair of
faces f;, f, of F, I“(f,', f,') =@, and so ‘e, and e;, the shadow-edges of f, and f; with

~

respect to 0, do not intersect. However, e, and e, may overlap. Fortunately, this is not a

problem since each face of F is either a triangle or a quadrilateral, and so in constant time the

ordering of f ," and f]' with respect to 8 can be computed. Finally, since no edge and shadow-

H

-20 .

N
®

-

~
~ v X L)

% edge of F " intersect (overlap is handled as above), it suffices to replace each polygon of F ’ by

its shadow-edge for the direction 6. Q.E.D.

~ Lemma 4.4. The polygoﬁs of F have O(n) shadow-edges, each valid dmroﬁgh some range of

i

8, which can be computed in 'O(n) time.

Proof: Shamos [37] showed, for a convex polygon P on n vertices, that the O(n) antipodal

El CCoa

pairs of of P can be computed in O(n) time. In addition, refex.-nng to figure 4.8, each‘:!mtinodul

1

pair defines a family of parallel lines of support through a clockwise angular-interval
. a=[0oy, 07] and its reflection o, = [o}+7, Gy+xn]. Note that |a| = |0, | < %. The result then

. follows simply since each antipodal pair defines a shadow-edge, and also since the polygons of

F ',are determined by a toatl of O(n) vertices. Q.E.D. ¢

For a scene S, there are then O(n) edges and shadow-edges. Associated with each edge

2

e are two nonoverlapping intervals of length &, reflecting the distinct sides of e. The visibility

Ee

€

of each side of e will be associated with the corresponding interval. Likewise, the two
angular-intervals « and ¢, of a shadow-edge e, define the‘ visibility of the two sides of ¢ Ley
E =(ey, €, ..., €,) be the edgés and shadow-edges of F. A view-interval @ = (P1s pzl,'xs
_ redefined sb that || is maxim:‘zctd with the condition that if e, is visible for any angle 0 ¢ o,
then ¢; is visible for all angles -9 € @. The visibility of each edge ¢, € E is defined with

respect to two equal but opposite intervals.’As a result, each view-interval ® = [p,, p;} has &

mirror image ©, = [py+x, py+rl. Since 8 € © if and only if 6+ € w),, reversing the priority

. *

ordering determined for @ yields a valid priority ordering for w,. Therefore, rather than con-
Q

.sidering the complete interval [0, 2x], it is sufficient to determine priority orderings over the

interval [0, t). Without loss of generality, S can be Totated so that a view-interval

7 @={p,, py] can be expressed as w = {0, p]. Clearly, the interval {0, x] is properly divided

%) into O(n) view-intervals, each of which contains O(n) edges.

Theorem 4.1. For any view-interval @ = [0, p] of a scene composed from columns, there
]
’ Wy
exists a priority ordering on F which can be optimally calculated in O(nlogn) time and O(n)

space.)

] ~

f’roof: The proof foilows directly from lemmas 4.1-4.4 and theorem 3,2. Q.E.D.

Given a k-regular scene composed of columns, the minor base-faces can be triangulated

N .
- and the ‘k view-intervals computed in O(nlogn) time and O(n) space. ‘The comresponding &
7 S

priority ordenngs can be determined in O(knlogn) time and O(kn) space. In order to display the

scene from a view-point (8, ¢), the appropriate view-interval, which can be computed in

N °©

O(logk) time, m‘ust first be determined. Next, in O(n) time, the back-faces can be eliminated
and the scene projected. Since each non w;erﬁcal face has a portion of a major base-face assoc/i-
ated ,with it, the relative ordering of the pair must be conside.red in the case where x;;eigher is a
back-fat;e. Suppose this is the case, théir relative ordering will then b\e arbigrary since otherwise
a ray in the directio\n (6, ¢) must intersect both, with the result)hat one ml]St be a back-face.
Finally, O(n) display-commands are needed to render an image. Note that if the base-faces are
confined to two z-planes as in the previous chapter, then the results simplify since the u-iangu-

-

lation of the minor base-faces is not required. .

In the next section the most general class of scenes is considered. In these scenes the x-y

- projections of two polyhedral-cross-section may intersect.

-

‘4.2, -General Scenes .

t

- &
We now consider the most general class of scenes. Let § = (PX,;, PX,, ..., PX,,) be a
scene of polyhedral-cross-section$. The placement of the polyhedral-cross-sections is restricted
so that given any pair PX,, PX,, if I‘(P,: , P,;) # (0 and z,, <z, ~then z, < 2. This restric-

tion limits the placement o%he polyhedral-cross-sections so that if the x-y projections of any

-31 - ’

] i 4

-

»

.

| R - s

pair intersect, then there exists a z-plane which sef)arates the pair. We now ask the following

» question: is'it possible to compute a priority ordering on the faces of such a scene? In general,

the answer is no. Referring to figure 4.9, Yao f27] showed that it is possible to construct

AT . . -TC n .
scenes in which for any viewing position (6, ¢), > << 5 there exists a set of lateral-faces

that determine a cycle. In order to avoid such a situation, we introduce a horizontal decompost-
tion of the scene.

First consider the cases in which ¢=% and ¢=-§-. For any two lateral-faces

Cb .
f)s fr e PX,, I'(fj', f;k) = (. Also, if given a pair of polyhedral-cross-sections PX,, PX, for

which l"(P,: , P,'j) # O, then PX, and PX, are separable by a z-plane. Consequently, if the/lﬂ,)‘

base-faces,are sortgd~and renamed so that z, <z, < -+ - <z, then assigning each fuce of 4

po_lyhedral—cross-section PX, the priority #, induces a priority ordering on the faces for ¢ = -721

A similar result holds for ¢ =—;—t-. Since this process amounts to simple sorting, we will

7 []

assumemat—'zlt-<¢<-72-r-. ‘

Consider partiioning space into r + 1 horizontal slabs with a series of ¢ z-planes
+

z=2z]<z=2z5< ---<z=z. Suppose a scene § is decomposed by such a partitioning

into ¢ + 1 subscenes so that within each subscene If(P,: , P,;)= @ for any par PX,, PX, of

IS

polyhedral-cross-sections. Any ray » in a fixed direction (0, ¢) either passes thiough a sinple

slab (¢ = 0) or traverses the slabs in a fixed order. In the case where ¢ < 0, 7 passes throuph

the slabs bottom-up intersecting the z-planes i the order z =2,z ==z, , z =z. The ud

ering is simply reversed if & > 0. It therefore suffices to pfocc.xs and display the subscenes
N

indepe:ndemlg.\ For each subscene the prionty ordenngs are computed as n section 4|

Rendering an image from a fixed viewing position (0, ¢), involves displaying the subscenes

v @

.32

’

1
.

‘ individually based on the order of intersection of a ray r in the direction (9, ¢+n)-with the

corresponding slabs. Note that this strategy may decompose a scene even though no cycles are

£

' present. : -

Determining where to cut a scene is a major consideration since it could adversely effect

the complexity of the scene. Minimizing the complexity of ‘the scene, ie., minimizing the

., number of lateral-faces cut by the z-planes, is. a difficult problem. Instead, we concentrate on

minimizing the number of cuts. A scene S is said to be r~curtable if ¢ is the minimum number
Y

Vot z-planes required to decompose S so that within"each subscene, no two x-y projections f)of-/

superior base-faces intersect. We-now present an algorithm that decomposes a scene S as

+ ~
required. The alggrithm determines atsmost 2 z-planes and so minimizes within a constant fac-
L
tor.

I'd

o

The problem of deciding where to cut a scene is basically one of determining two-
dimensional intersections. Given two polyhedral-cross-sections PX, and PX, such that

I, ., Py)/’:/ﬁ‘ and z, <z, the scene must be cut with some z-plane z =z, 2, <z, < 2y,

Suppose the scene is cut with a series of z-planes z = z, pZ Tk 2 =0 Clearly, such a

= decomposition always appropriately cuts the scene, and so ¢+ < m. It is easy to realize scenes in
which m cuts are necessary simply by stacking polyhedral-cross-sections one on top of
-another. Consider the x-y projection of a scene. In the worst case as many as O(r? intersec-

0 tions will exist between the X-y projections of the superior base-facks, aﬂ\s&s\o any algorithmr

. that computes, all the intersections will require O(r®) time in the worst case. Since at most

>

\Qﬁn) cuts are required to decompose a scene, it would be advantageous to eliminate the excess
<
from cons:deration. Consider a polyhedral-cross-section PX, and let

- L={j | T(P;, P)+ @andz, <z} Also, let min =min(z),j el,. Clearly, cuting

(the scenewith the z-plane z =z, z, <z, < min,, eliminates the intersections above, and in

~ -

.l

¢)

' A
t
2
s

9

paét due to, PX;.

The key to the quickness of our algorithm will lie in its ability to locate the intersections
between polyhedral-cross-sections in close proximity. The algorithm uses a divide-and-conquer
scheme. During the divide phase, the scene is decomposed with a set of O(n) z-planes This 15
followad by the conquer phase which then selects at most 2t of the z-planes. At the heart of
the algorithm is intersection testing, determining whether or nmot any pair of x-y projections of
supenor base-faces intersect. In general the supenor base-faces are simple polygons, a class of
polygons which do not lend themselves to the existing, fast algorithms, To remedy this situa-
t_iag we assume the superior base-faces have been decomposed. Consirder the decomposition of

each superior base-face, induced by its lateral-faces and the triangulation of its minor base-face.

i

_@f/explained in section 4.1, such a decomposition requires O(nlogn) time and O(n) space to

~ compute, and yields O(n) components. Of the components, which are line segments, triangles,

*

. _ . ' 3 e Y
and convex quadrilaterals, the line segments are redundant with respect to the relevant intersec-

tion testing, and so -are ignored. The plane‘sweep algorithm of Shamos and Hoey [38] is used
to detect intersectiqns. Given a set of n triangles and quadrilaterals, the algorithm can detect
whether any pair of objects intersects in O(nlogn) time using O(n) space. Using this algorithm,

a 0-curtable scene could be quickly detected.

-

_ Theorem 42. For any scene S that is r-curtable, a set of at most 2¢r z-planes that properly

°

decompose S, can be computed in O(nlognlogm) time using O(n) space.

Proof: For each’polyhedral-cross-section PX,, let ¢, and b, denote z, and z, respectively, and

let D; denote the set of components of the decomposition of P,. Sort the « s and b,’'s

separately, and rename the polyhedral-cross-sections so that £; S 6, < - - <1, Merge the

.-

sorted sequences of +'s and b,"s using the convention that if ¢, = b, then in the ordenng 1,

comes before b,. Call the resultant sequence O and append to it, as its bottornmost symbol,

<34

/

PR

\

° , &
the dummy symbol ¢q. Now each int€rsection can be characterized as follows: suppgse i < j,

then 4 <b; and I'(D;,D)# . To complete the divjyle phase, consider’ the, triple

G; = (@;, B;, T}). Q; is the subsequen;:e of 0 above ¢#_;, up to and including t. B, and T;,

first and Jast symbols of Q,. Note that by the definition of a scene, each G, initially defines a

slab within which there are no intersections.

-3

At each levekof the conquer phase adjacent pairs of G;’s are merged, and any intersec-
tion between the pair is detected. If any intersection is detected, then a cut splitting the pair is

introduced and any intersections straddling the cut are eliminated. Let » dengte the number of

‘ G,’s at the current level of the conquer phase, thus initially r = m. At each level, for al%odd

i,1£i<gr,let j= —H'—l-. If i+1 <r then G, and G;4 are m'erged into G,, otherwise G; 1s

simply renamed G,. After each level, r is updated as follows: if 7 is odd r = _r_-;-_l_’ otherwise

A 4

: : ’ N

»

r .
r=-—
2

. If at each level the intersections between the merged pairs.are detected and eliminated,
.) N p

then clearly the resulting set of cuts will appropﬁately decompose §. Once an intersection has
been détepte?i, and a cut made, it would be_senseless to search for intersections straddling the

cut. To prevent this from happening; when G; and G;,; are merged, only intersections between

. Bj; and T;,; will be considered. Note that from B; to the topmost symbol of Q;; and from the

bottommost symbol of Q;, to T,,;, there are-no intersections. Suppose &; and G;,, are about

to bé merged, then any intersection between the pair can be characterized as follows: if j < &

[y

“then tj € Q,', tj”Z B;, kaE QH-I’ bk < TsH,l, and I"(DJ, DkJ # . Let V, = { tj € S,} and

* ¢

~

let W;=1{j|b; € 5;}, then detecting an intersection involves determining for any pair

D,D,, jeV; and \k € W,-{,,l whether I(D,, D) # @.* For this purpose, we use the

-35- .

i A0

- which derote the bottom and top search boundaries within G;, are respectively set équal to the ¢

&

)

~

*
9

algorithm of Shamos and Hoey. If an intersection is detected, then cutting at ¢;, the topmost

. symbol of Q;, eliminates all intersections between G, and G;,;. What remains is to merge G,

o

anci G into G;. There are two cases to consider depending on whether or not an intersection
is detected. In both cases Q; is determined by concatenadng Q; and Q,,;. Rcﬁrr?g to figure
4.10, if an intersection is detected ihen T,=T, and B, = B,,,. .Note that if B, < Ty then @,
has not been cut. Referring to ﬁgu}e 4.11, consider the case in which‘an intersection is not
deF;;cted. IfB, <T; then T, =Ty, otherwise ;‘j =T,. On the other hand, if B,,; < T,,; then
’BJ'»=‘ B,, otherwise B, = B, .

Let us consider the com;ﬂexity of the algonthm. The space requirements are clearly O(n).
In the divide‘ phase the running time is dominated by the somng..and so O(mlogm) time is

required. Since at each level of the ﬁgnquer phase lé;J merges occur, there are O(logm) lev-
AL .

)

els. At each level the intersecton detection computations dominate the running time. Since the

sum of the number of components of the D,’s 1s O¢n), and since each component is considered
at most twice, once for each of 1, and b,, the total time time spent detecting interscctions at

each level is O(nlogn). Therefore, the running time of the algonthm is O(nlognlogm).

LAY
. - . ¥ .
What remains to be shown is that at most 2¢ cuts are made. Referring to fijure 4.12, sup-
1Y L
pose that while mer&ing G, and G,,;, an intersection is detected. Let j and & L_j < k, denote

" the intersection pair, then ¢, € Q; and b, € Q,,). Also, let ¢ denote the topmost symbol of

/

Q;. Clearly, the line segment ! = (r,, by) .must be cut. Chooding ¢ achieves this and ensures

all intersections straddling ¢ are eliminated, it does not however guarantee minimality. Let d

LN

derote the number of cuts made. It is possible that an imc/rscction will be detected between G,
and what is below G;, and between G,,, and what is above G,,y. Still referring to figure 4.12,

let [, and [/, denote the line segments lhd,t would neced to be cut. Clearly, { and [, agd. { and

‘

1, may overlap,-however, I, and /, will not. Thus, if we consider-the sequence of d cuts in

bottom-to-top order, then of the corresponding d segments, every second segment is non-

overlapping. Hence at least [—g—] cuts are required and so at most 2¢ cuts have been made.

* P ‘ (/) .

Q.E.D. ‘ {\ . ‘ . |
Given a t-cuttable scene, the minor base-faces can be triangulated in O(nlogn) timg using
O(n) space. A set of at most it cuts, which appropriately decompose S, can be determined in
O(nlognlogm) time and O(n) spacg. Cutting a éolghedral-cross-se:ction PX is sixfif; ‘since each
of the resultant objects has the same topology as PX. In order to determine which. polyhedral-

cross-sections are cut, sort the cuts and denote the resulting list by C = (cy, ¢4, .., ¢;). Next,

merge O and C, ordering ¢, before ¢, if f; =¢,. Now, scan the resultant list, inserting PX;

into an active list when b, is encountered, and deleting it when ¢, is encountered. Further,

when ¢, is encountered, output it andthe active list. Therefore, the scene can be cut in

O(tn+tlogt) tixr;e and stored in O(tn) space. Let us say a scene is k-régular if the maximum

€

number of view-intervals in any slab, is k. Inl_total, O(tnlogn) time and O(tn) space are

~

required to determine the O(kn) view-intervals. The corresponding priority orderings can be

LI

computed in O(tknlogn) time and stored inw(n) space. In order to display a scene from a

-

view-point (é,:f)} the appropriite viéw-intervals, which can be determi/n/ed in O(tlogk) time,

must first be determined. Then in O(tn) time the back-faces must be eliminated and the scene

12

projected. Finally, O(sn) display commands render an image. -

Pe

In the next chapter we consider the insertion and de/letion of edges from priority order-

ings. These problems are a fundamental concern when maintaining dynamic scenes.

¢ &~

¢ -

- 37 -) . é\‘{' .‘:"':.

€

Lo

‘38.
4

figure 4.3

pen i r
¢
? \ ’]
f3 fl , ‘ fz >
© » v
figure 4.4
-39.

o

‘&A

F.

-

—teny

¢9

-l
A
figure 4.7
y C N y
A lr
)
o, o
)
e
»
»
e
- X
< figure 4.8 ,
-
-41-

9

TN

figure 4.9

N

B_i+1
Gl+1
Ti+1
cut —_ G f
B] —
G
I
T e T e
figure 4.10

-‘2-

Bottom

figure 4.12

-43 -

¢

.] ' "Chapter 5
Dynamic Priority Orderings

Up until now we have only considered static scenes. In this chapter we examine the fun-

damental problerh encountered when.objects are allowed to be inserted into and deleted from a
¢ [

scene. The problém involves updating a priority ordering in order to reflect the insertion or

deletionr of a face. Consider a set F of fgces (edges), a view-interval ©, and —lct

Fo=(f1,f2 - fn) denote the faces of . As usual, we assume the view-interval ® = [py, p;]

has been rotgted so that ® = [0, p]. Suppose we add an extra face f p,,, which left-dominates .
all other faces, including any that will be inserted. As shown in section 3.2, the tleftdom rela-

tion can be represented by a tree T which is rooted by f .. In T the children of a node f

"
are ordered from left to right by the value of the x-coordinate of their tail. We know from

theorem. 3.2 that the left to right postorder traversal of T yields a prionty or«fen’ng on F,

Maintaining a correct priority ordering through a series of insertions and deletions will amount

to updating T in order to reflect the changes in the ileftdom relation.

»

¢ In the first section of this chapter an appropriate data structure and search technique are

red in the second sccu'on,(_and in the last section,

introduced. The inseion problem is cg

the deletion problem iginvesti
4 3
5.1. The Data Structure '
* In order to represent a tree T, an appropriate data structure is required. For our purposes
the leftmost-child, right-sibling representation [39] is adequate. The main component of this

F

reprezentation is the edge-node. Each edge-node consists of four ficlds whose names, which are

first-chsld, next-sibling, previous-sibling, and parent, describe their function. The main reason

A% .
for using this representation is th:%for a given edge-node. f, the edge-node which immediately

\

left-dominates f, and those immediately left-dominated by f, can be quickly determined. Also,

-

inserting into and deleting from T are simple operations. Finally, postorder and preorder traver-

sals of T, which are crucial in the maintenance of priority orderings, can be pe)'formed in 0(;1)
time. -

In some applications a large database is constructed before anya general insertions or dele-
tions are processed. In these cases it will often be beneficial, due to t-he time complexity of a
single insertion, to construct T directly rather than considering the construction as a series of ,
insertions. Consider the a]g;ithm proposed in theorem 3.2. Let f be a face and let
i f2 - fx bethe faces, ordered from left to right, immediately left~dominated by f. Since

) the algorithm ;ncounters these faces in the order f, fy, f2, .- fio we can, provided we store
fo'r each face its last child detected, use the algorithm tol construct T in O(nlogn) time using
O(n) space. ‘

When a face is inserted or"deleted_ it is necessary to reconfigure T in order to reflect the
changes in the ileftdom relation. To do this quickly, T mugt be systematically traversed so that
any changes in the ileftdom relation can be reported in some orderly manner. For this purposé,
we inn‘c;gluce a search of the space containing F, which corresporids to a combination

. preorder-postorder traversal of T. Suppose the subtrees of T, ordered from left to right, are
1"1, T, .. T,. Consider the following re'cursive definition of the left to right prepostorder
traversal of T': list the root of T, followed by the prepostorder listings of Ty, T, .., T,, all

-

followed by the root of T. Each node of T 'then is visited twice, once before its descendants,

°

and once after. Such a traversal c;m be completed in O(n) time.

Let f, be a face of F, an@,’let L, denote the path in T from the root to f,. As descyibed

¢

in section 3.2, L, induces a partition of the faces in F,. As well, C,, the line representing the

partition, which we shall call a chain, is either piecewise linear and descends from left to riéht,

. 45 -

3

.
.a E
o
o

N\
or vertical. Referring to figure 5.1, let C, denote the chain which results-when f; and C, are
combined. A chain is said to be monotone w1;h respect to a direction 6, if when trav?rsgf:i. it
yields a monotonically increasing proj.ection onto a line in the direction 8. Clearly, C, fand ¢/
are monotone v‘vith respect to the x-direction. Suppose we wish to determine which face of F,
immediately lefi-dominates some face f with tail v,. To solve the problem we modify the

prepostorder traversal so that at every step it is determined whether a particular interval of a

face lies directly above v,. Let f be any face of £, and let f, and f|, f3, ..., f, respectively

Idenotg,, provided they exist, the parent and children of f. Referring to figure 5.2, we now -

\ a
modify the prepostorder traversal of T as follows: when f is first encountered, consider the

-

interval of f, left of v;; during the second encounter, consider the interval of f right of v, .

The two special cases must also be examined: if f* = f .., then no interval is considered dur-
ing the first encounter; if f is a leaf, then all of f is considered during the second encounter.

To summar_ize, the interval(s) of f left of v, are examined when f, fy, .., fi arc first

encountered, and the remainder of f is examined when £ is encountered for the second ti'mf.

Lemma 5.1. The first face discovered during the*modified prepostorder traversal of T that lies

directly above v;, immediately left-dominates f . .

Proof: Clearly, all portions of all faces afe considered and so some solution will be found

Suppose the algorithm stopped when f, was encountered, however the comrect solution [wats

not reported. Referring to figure 5.3, the algorithm will have reported either f ,» the parent of

/f;, or f, itself, depending on whether it was the first or second encounter of f, If f, was

reported, then v, lies left of C,, otherwise, v, lies left of C,. Whichever the case may be,
é
denote the chain by C. Now, C and C, do not cross, and, each 1s monotone with respect to

the x-cirection. Therefore, C, lies left of C and so the appropriate interval of £, will already

have been considered. We thus have a contradiction. Q.E.D.

\"

*

Y]

)

L

In the following sections, we consider the insertion and deletion problems in priority ord-’

erings. At the heart of the algorithms that are proposed, is the modified prepostorder traversal

described above.

5.2. The Insertion Problem‘

L

Consider the following problem: given a tree T representing. the ileftdom relation on a set

Fo={(f 1> f2 - fn) Of faces, insert a new face fvinto F, and update T in order to reflect the

‘ -
changes in the ileftdom relation. To realize the changes, we must determine the face fp that

immediately left-dominates f, and the faces f, fo, ..., f, ordered from left to right, immedi-

ately left-dominated by f. ’ \

As proved in lemma 5.1, the modified prepostorder traversal of T will compute f,. As
]
well, the traversal examines the_intervals of f, from left to right, and so the position of f

amongst the children of f, can éasily be determined.

All that remains then is to calculate f 10 L 20 oo Fis prefgrably in their natural order. Once
\'fpuhd, removing fy, f2, ..., fx from their old positions in T is a simple matter. As well, note
that the 's.ubtrees which they root do not change. Suppose the subtrees of a tree T, ordered
from left to right, are Ty, Ty, .., T,. Consider the following recursive definition of the left to
right preorder traversal of T: list the root of T followed by the preorder listings of
T, f;'z; «»sy T,. Thus, if the chuldren of a node_h, quered from left to right, are hy by oy by
then ;n the preorder listing of T the nodes 4, hy, Ay, ..., b, appear in the given order. Refer-
ring to figure 5.4, determining which faces are immediately left-dominated by f is equivalent
to determining which of the relevant vertical sections of the chains are cut by f. Let f be any

face of F, and let f, be the face that immediately left-dominates f. Suppose we modify the

preorder traversal of T so that when f is encountered, we determine, referring to figure 5.5, if

’

.47 -

3

&
A

oy
wd
eha-u.

0

the vertical interval of C between v, and f, is cut by f. For the ‘special‘case in which

f = f.max Do interval is examined.
s

Lemma 5.2. The faces f, f3, ..., fx, those immediately left-dominated by f, are discovered

in order'during the modified prepostorder traversal of T.

4

&

- Proof: Clearly, all the relevant vertical intervals are considerel(. and so f, fa ..y f Will be

found. We need to show then that if x, -< Xt then f, is found before f,. Since f does not
intersect any faces of F,, and also since each chain is monotone with respect to the x-direction,
f may intersect a given chain at most once. Referring to figure 5.6, x, < x, and so f cuts C;

left of C, with the result that f, will have been considered before f,. Q.E.D.
\ N

. Since the face f, ji“z, .- fi are found in order, they can be inserted as the children of /.
\ -

" as they are found. Once the traversal is completed, f can then be'gened into its proper posi-

‘tion amongst the children of f,.

Theorem 5.1. The priority ordering)on the faces of F, can be maintained at a cost of Oo(n)

time per insertion, ~

L3

Proof: The cost of updating T is dominated by the time 'x;\equired to execute the-modified
pmpost;rder and preorder traversals on T, ’each of which requi‘res O(n) time, Since determimng
the resulting priority ordering amounts to c\g’mpuu'ng the postorder traversal of T, which itself
;requires O(n) time, the priority ordering can be maintained at a cost of O(n) ume per insertion

Note that since the face to be insetted may immediately left-dominate O(n) faces, any method

which explicitly maintains the ileftdom relation will require O(a) time in the worst case.

%ED

°

s 7 .
. k ~

‘ . 5.3. The Deletion Problem . , .

-«

Consider the follbwing problem: given a-tree T, representing the ileftdom.relation on a
set Fo=(1, f 2 s fn) O faces, delete a face f frc—)m:Fn, and update T in order to reflect the
changes in'ileftdon relation. Suppose the fa;es immediately left-dominated by f, ordered from
left o right, are fy, fo, .., fxr. To update T requires that we determine for each f;, .

1<i < k,< fp, the face which immediately left-dominates f; when f is deleted.

Removing f from T is a simplfa Iflatter. As well, note ‘that'the subtrees rooted by
fuvfa , fk_ will remain intact, and so can be?émoved before we search for }‘p o Foo e o
« Given fi,15i <k, we know, from qumma 5.1, that the modified prepostorder traversal of T
can be useil to c.le.ten_nine fp,- Suppose that ‘in the Ea;'ersal fp, would be found be@ore pr if

c , ® é
- X, <X . Then a single traversal is sufficient to compute f,, fp., .4 fp,-

(| Lemma 5.3. Fhe faces .fp, fp,n S, those immediately left-dominated by £1, £ 3, - Fi»
aré fou’nd in order during the mo:iiﬁed prepostord;r tra\('ersal of T,

Proof: ¥ need to show that f, is found before fp, if %, < %,. Extend a vertical half line
upwafds from= each of x, ’a‘nd Xy 5 denc_;ting. them by /; and [; _respectivély. Sinc-e each chainyjs

monotone with respect to the x-direction, each of /; and l; may cross a given chain at most

-

" _ . once. Clealy, if Cp < ij' then since / lies left of I;, f, will have been considered before
fpj. Otherwise, referring to figure 5.7, since no pair of chains.can cross, and also since /; lies

lefi of 1,, G, lies left of C,, and so the same result holds. Q.E.D.

-) ey
> ‘ o During the traversal, the intervals of f Py 1<i <k, are congidered in order from left to
- right, and so the position of f; amongst the children of‘fm, can be easily determined. N
€ |
, ‘ ' »
‘ - .49 -

¢4

-

Theorem 5.2. The priority ordering on the faces of F,, can be maintained at a cost of b(n)

time per deletion.

™ - -
b}

Proof: The cost of updating T is dominated

€

the time required to execute, at a cost of O(n)
- time, the modified prepostorderetraversal on T. Sinc.e dete ‘ 'r:‘ing the resulting p.g'ority order-
ing %emands only a postorder traversal of T, which also requires O(n) time, the priority order-
ing can be maintained at a cost of O(n) time per deletion. Note that sinze the face to be deleted
may immediately lefi:dominate O(n) faces, any method which explicitly maintains the iIef:dZJm‘

relaton will require O(n) time in the warst cage. Q.E.D.

[HEE B DT |

RO T

figure 5.2

-51- W

a-.‘vi‘

i)

-
—~—— -
{
a::.w::.:: Ar
\/ / o | -
\ % .
‘ - Lol an
. @) et eareao
' ' \
|
& T
TR F::.::::::. 3 A
] . 4— N » ﬁ v
-5} . [
B - 5 B o
| =
: m.b [
BTGB C = o=
& ’ C f
QDT
\A (3
. ‘
LUUETERIT
F
- \u
[] b
\ R
I
¢ S
*
N o
1 -
g > ’3.\”0.
@ ., -
5 .
. °

-52.

At]

-

figurd 5.7

Xt

¢

-54.

’ . Chapter 6 | J

Conclusion

£
‘Several new results pertaining to.the priority approach to hidden-surface removal have

.been introduced. In particular, a new formalism, in which priority orderings are described as
.o # ‘ ’
«trees, has been proposed. Aﬁs well, efficient algorithm§ have been presented for solving the

hidden-surface problem in various restricted classes of polyhedra. Note that with only minor
) - (:
modifications, the algorjthms presented could be adapted’to include the degeneration of a minor

base-face to an edge or a vertex. Finally, the maintenance of a priority ordering in a dynamic

environment has been investigated, and efficient algorithms for the problem have been intro-

duced. : ‘ '
- -~

Future research includes the development of, algorithms for more "complex polyhegg.\

With respect to this thesis, several areas could be investigated. We have considered decompos-

7 -

ing a scene in order to avoid potential problem areas. A better approach would eliminate only
actual cyclic constraints. Another consideration when decomposing, is minimizing the number
of faces cut as opposed to simply minimizing the number of cuts. Lastly, of interest is

whether within some framework different from that presented, there exists sublinear algorithms

for the insertion and deletion problems. .

L

i

-55.

&'..‘ér;.’
i

.

(1]

[2]

(31

[4]

(5]

(6]

(7]

(8]

9]

(10]

. References

@

q

LE. Sutherland, P}F Sproull and R.A. Schumaker, A char;acterization of ten hidden-

C

surface algorithms, Computing Surveys 6 (1974), 1-55.
1.G. Griffiths, Bibliography of hidden-line and hidden-surface algorithms, Computer.

Aided Design 10, No. 3 (1978), 203-206.

W. Newman and R. Sproull, Principlles of Interactive Computer Graphics, McGraw-Hill,

New York, 1979. o
\ 2

1.D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison-

Wesley, Reading, 1982.

H. El Gindy and D. Avis, A linear algorithm for compu;xng the visibility polygon from a

point, Journal of Algonthms 2 (1981), 186-197. "

. ‘ [
D.T. Leé, Visibility of a simple polygon, Computer Vision, Graphics, and Image Process-

ing 22 (1983), 201-221.
T. Asano, Efficient algorithms for finding the visibility polygon from a polygonal region

with holes, Tech. Rept., Osaka Electro-Communication University, 1985.

—

D. Rappaport and G.T. Toussaint, A simple linear hidden-line algorithm for star-shaped

A

polygons, Tech. Rept: TR-SOCS-83.23, McGill University, 1983,

D. Avis and G.T. Toussaint, An optimal algorithm for determining the visibility of a

polygon from an edge, IEEE Transactions on Computers C-30, No. 12 (1981), 910-914.

-

-

D.T. Lee and A. Lin, Compunng the visibility polygon from an edge, Tech. Rept,

Northwestern University, 1984.

*

- 86 - S

el

’ \
'

.) .
(11] H. El Gindy, Hierarchical decomposition of polygons with applications, Ph.D. thesis,

- -McGill University, 1985. *

[12] B. Chazelle and L.J. Guibas, Visibility and intersection problegss in plan}z geometry, Proc.

ACM Symposium on Computational Geometry (1985), 135-146.

[13] G.T. Toussaint, An O(nloglogn) algorithm for solving the strong hidden-line problem in a

9.
simple polygon, Pattern Recognition Letters 4, No. 6 (1986), 449-451.

[14] H. Edelsbrun;xer, M.H. Qvermars and D. Wood, Graphics in ﬂatlanﬁ, in Advances in

Computing Research 1 (1983), F.P. Preparata, ed., 35-49.

[15] A. Schmitt, Time and space bounds for hidden-line and hidden-surface algorithms, Proc.

- . Eurographics’81 (1981), 43-56.

{ ~ ’ <

’ { : -
[16] F. Devai, Quadratic bounds for hidden-line elimination, Proc. ACM Symposium on
(Computational Geometry (1986), 269-275.) - -

17 T.‘Ottmann, P Widmayer and D. Wood, A worst-case efficient algorithm Jor hidden-line

elimination, International Journal of Computer Mathematics 18 (1985), 93-119.

-

[18] O. Nurmi, A fast, line-sweep alga{ithm for hidden-line elimination, BIT 25 (1985), 466-

472.

[} 4

[19] D. Rappaport, Eliminating hidden lines. from monotone slabs, Proc. 20th Allerton Confer-

ence on Communication, Control, and Computing, (1982), 43-52.

[20] R.H. Guting and T. Ottmann, New algorithms for special cases of the hidden-line elimi-

-

/ nation problem, Tech. Rept. 184, University of Dortmund, 1984,
[21] M. McKenna, Worst-case optimal hidden-surface removal, Tech. Rept., The Johns Hop- -

>
kins Univessity,11986.

-3
Bk

E44

¢

]

[22] R.A. Scilumaker, B. Brand, M Gilliland and W. Sharp, Study for applying computer-
generated images to visual simulation, Tech. Rept. AFHRL-TR-69-14, U.S. Air Force
. » -

;vHuman Resources Lab, 1969, / - ,

[23] M.E. Newell, R.G. Newell and T.L. Sancha, A new approath to the shaded picture prob-

L]

lem, Proc. ACM National Conference (1972), 443.

e

[24] W.R. Franklin and H.R...Lewis, 3-d graphic display of discrete spatial data by prism

maps, Proc. ACM Siggraph’78 (1978), 70-75.

[25] H. Fuchs, ZM. Kedem and B.F. Naylor, On visible surface generation by a priori tree

structures, Computer Graphics 14 (1980), 124-133.

—

[26] H. Hubschmarg and S.W., Zucker, F r;zme-to-frame coherence and the hidden-surface com-

.

putation, Computer Graphics 15 (1981), 45-54.

-

s[271 E.F. Yao, On the priority approach to hidden-surface algorithms, Proc. 2lst Annual

-~

IEEE Symposium on the Foundations of Computer Seience (1980), 301-307.

[28] T. Ottmann and P. Widmayer, On translating a set of line segments, Computer Vision,
Graphics, and Image Processing 24 (1983), 382-389.

[29] J. Bentley and T. Ottmann, Algorithms for reporting and counting geometric intersec-
tions, IEEE Transactions on Computers C-28, No. 9 (1979), 643-647.

[30] D.E. Muller ari\d F.P. Preparata, Finding the intersection of two convex polyhedra,

, Theoretical Computer Science 7 (1978), 217-236.

(31] B. Chazelle, A theorem on polygon cutrting with applications, Proc. 23rd Annual IEEE
Symposium on Foundations of Computer Science (1982), 339-349.
[32] E. Chazelle and J. Incerpi, Triangulating a polygon by divide-and-conquer, Proc. 21st

-Annual Allerton Conference on (forﬁmunimﬁon, Control, and Computing (1983), 447-

L -

-58- ¥

! A
456.

[33] M.R. Garey, D.S. Johnson; F.P. Preparata and R.E. Tarjan, Triangulating a simple

polygon, Information Processing Letters 7 (1978), 175-179. .

[34] S. Hertel and K. Mehlhorn, Fast triangulation of simple palygons, Proc. Conference on

+ Foundations of Computing Theory (1983), 207-218.)
[35] RE. Tarjan and CJ. Van Wyk, An O(nloglogn) algorithm for triang’t%ting a simple

polygon, SIAM Journal on Computing, to appear.

)
[36] L.J. Guibas and F.F Yao, On rransiating a set of rectangles, Proc. 12th Annual ACM

Symposiu%n on Theory of Computing (1980), 154-157.- 7

»

[37] M.I Shamos, Computational Geomertry, Ph.D thesis, Yale University, 1977.

[38] ML Shamos and D. Hoey, Geomerric intersection problems, Proc. 17th Annual- IEEE

t

Symposium on Foundations of Computer Science (1976), 208-215. : o

[39] A.V Aho, J.LH. Hopcroft and J.D. Ullmann, Data Structures and Algorithms, Addison-

Wesley, Reading, 1983.

-

.89.

- .

iy A

