HIDDEN-SURFACE REMOVAL IN POLYHEDRAL-CROSS-SECTIONS

(

One of the fuffdamental problems in computer graphics is determining which portions of

Abstract

 a scene arel visible, from a given viewing position. The problem is known as the hidden-line or hidderi-siurface problem depending on whether edges or faces are displayed. One approach to the hidden-surface problem involves assigning priorities to the saces of a scene. A realistic image is then rendered by displaying the faces with the resulting priority ordering. Although priority orderings have been researched, very little effort has gone into the development of a mathematical theory. In this paper-we develop a new formalism for describing priority orderings and propose efficient algorithms for dealing with a variety of inputs. A \dot{s} well, we.present insertion and deletion algorithms for maintaining a priority ordering in a dynamic environment.
Résùmé

Un dës problèmes fondạmentaux dans le domaine des graphiques par örqiateyr est de déterminer lés portions d'une scène qui sont visibles à partir d'un point đé vue donné. Ce problème est connu sous le nom de problème des lignes cachées ou de surface cachées, tout dépendant si l'on présente à l'écran des arêtes ou des surfaces. Une des approches au problème de surfaces "cachées consiste à attribuer des priorités aux faces d'une scène. Une image réaliste est ensuite obtenue en affichant les faces par ordre de prorité. Bien que certe méthode ait été étudrée, très peu d'efforts ont été fourns pour développer üne théone mathématique: Dañs cette thèse nous développons un nouveau formalisme pour décnre les classements par prionté et proposons des algorithmes performants pour diverses classes de scènes. Egalement, nous présentons des algorithmes d'insertion et d'élimination pourr maintenir un classement par priorité dans, un environnement dynamique.

Table of Contents

Chapter 1: Introduction 1
Chapter 2: The Scene 6
2.1. - Basic Definitions 6
2.2. - Defining the Scene 7
2.3. - Properties of the Scene 8
Chapter 3: Elementary Scenes 12
3.1. Problem Description 12
3.2. - Problem Solution 14
Chapter 4: Complex Scenes 25
4.1. - Konoverlap¥ing Scenes 25
4.2. - General Scenes 31
Chapter 5: Dynamic Priority Orderings 44
5.1. - The Data Structure :.............. 44
5.2. - The Insertion Problem 47
5.3. - The Deletiòn Problem 49
Chapter 6: Conclusion 55
References 56

When displaying objects, one of the most challenging problems encountered involves - removing the portions of the objects obscured by others nearer to the viewing position. :Depending on whether edges or faces are displayed, the problem is commonly referred to as the hidden-line or hidden-surface problem.

Due to the variety of applications, many different algorithms employing various* approaches have been ,proppsed. In general, differences between the algorithms arise from different variables such as, the complexity of the scene model, and, the required realism of the image. Despite their great diversity, the algorithms all share one common characteristic: each performs some kind of geometric sorting. The use of geometric sorting stems from the need to distinguish those portions of the scene that are visible from those that are hidden. Those parts that are hidden lie further from the viewing position than the parts that obscure them. Thedifficulty then, of the hidden-line and hidden-surface problems, arises from the complex nature of orderings of objects in space.

Algonthms for hidden-line and hidden-surface removal can be broadly classified into two groups. Image-space algorithms perform depth comparisons at each pixel of the display device. Th Their resulting time complexities are this dependent on the resolution of the display device. Object-space algorithms on the other hand, perform geometric comparisons directly on the objects in some abstract space, and so their time complexities are strictly object dependent.
spurred by developments in the new and flourishing field of computational geometry, has the theoretical nature of the problems begun to be investigated. ${ }^{\text {f }}$
$\overline{7}$
The notion of visibility amongst geometric objects has been Intensively investigated in two dimensions. Many different vanations on the hidden-line or visibility-polygon problem, have been consideręd. El Gindy and Avis [5], as well as Lee [6], each describe a linear and thus optimal algorithm for the case of a single polygonal object. An efficient algorithm for determining visibility amongst a collection of disjoint polygons is proposed by Asano [7]. By restricting the input to a single star-shaped polygon, Rappaport and Toussaint [8] are able to exhibit a very simple linear algorithm for the problem. Introduced by 'Avis and Toussaint [9], edge-visibility problems consider polygonal visibility from an edge. The strong hidden-line problem, which involves determining the region of a polygon visible from a specified edge, is one such problem. Different solutions to the problem can be found in papers by Lee and Lin . [10], El Gindy [11], Chazeile and Guibas [12], and Toussaint [13]. Edelsbruniner et. al [14] consider various visibility problems associated with scenes composed of simple convex objects. One involves the marntenance of a view during the insertion and deletion of objects, and the other considers frame-to-frame' coherence whule walking around a scene.

A vast amount of research in computational geometry has been devoted to intersection problems. In order to display a three-dimensional image, the scene must be projected onto the viewing plane and any conflicts between components must be resolved. It is only natural then, that the techniques discovered during the investigation of intersection problems be applied to visibility problems in three dimensions.

Many different solutions, having various time and space requirements, have, been proposed for the general hidden-line problem. In. order to put the various results into perspective, let us first consider a few definitions. Let n denote the number of edges, in the scene and let k
and r respectively denote the number of intersections of edges and the number of times an ' edge is contained by a polygon, both in the viewing plane. Schmitt [15] has démonstrated a worst-case $\Omega^{2}\left(n^{2}\right)$ lower bound for the problem. Devai [16] has establisined $\Theta\left(n^{2}\right)$ time bound by presenting an optimal $O\left(n^{2}\right)$ time algorithm. The algorithm requires $O\left(n^{2}\right)$ space ant relies on existing methods for computing line arrangements in the plane. Some output-sensitive algorithms that depend on plane-sweep techniques also exist. Schmitt [15] presents such an algqrithm with a worst-case rúntime of $O(r+(n+k) \log n)$ and space requirements of $O(n+k)$. Also using the plane-sweep paradigm is an algorithm proposed by Otmann et. al [17] that requires $\left.O((n+k) l o)^{2}\right)^{\prime \prime}$ time and $\dot{O}(n \log n)$ space. A modification to this algorithm, due to Nurmı [18], reduces the time requirements to $O((n+k) \log n)$ but also increases the space requirements to $\therefore \quad O((n+k) \log n)$. Note that these algorithms all require more than $O\left(n^{2}\right)$ time in the worst case. By restricting the class of input considered, other authors have , obtained improved results. Rappaport [19] for example, presents a linear algorithm for the case of a single monotone slab. For finitely-oriented sets of polygons, Guting and Otmann [20] are able to obtain an algorithm which runs in $O(n \log n+k)$ tume and requires $O(n \log n)$ space.

Some theoretical results have also been obtained in the area of hidden-surface removal. Schmitt [15] has demonstrated worst-case $\Omega^{\prime}\left(n^{2}\right)$ lower bound for the problem. As well, Mckenna [21] has presented an optimal $O\left(n^{2}\right)$ time algorithm thus establishing an $\Theta\left(n^{2}\right)$ time bound. The algorithm requires $O\left(n^{2}\right)$ space and depends on existing techniques for computing line arrangements in the plane. One, method that shows great promise is the priority approach. This technique involves assigning depth priority numberf to the faces of a scene. The desired obscuring effect is then achieved by displaying the faces using the resulting priority ordering. This type of procedure is commonly known as the painter's algorithmi. Suppose for a given viewing position some face f_{1} obscures another face f_{2}. This relàtionship between the pair must then be correctly reflected by their assignepd priorities. Unfortunately, it is not always possible to compute priority orderings since cyclic constraints may exist. On the other hand, many scenes exhibit a remarkable property in that it is possible to compute priority orderings for them before a viewing position is specified. This of course leads to significant tume savings during image' generation. Although several papers [22-26] have considered various aspects of the problem, they fail to develop any significant theoretical insight into the problem. In contrast, Yao [27] investigates the underlying mathematical nature of prionty orderings, and proposes efficient algorithms for a restricted class-of mput. For the class, Yao proves that for a given view point the pnority ordering can be computed in $O(n \log n)$ time using $O(n)$ space As well, Yao demonstrates an $\Theta(n)$ bound for the required number of priority orderings.

The purpose of this chesis is to extend the work of Yao. In particular, we consider a new formalism for describing proority orderings and present efficient algorithms for dealing with a variety of inputs. As well, we propose algorithms for maintaining a priority ordering during a series of insertions and deletions. We now briefly describe the remainder of this thesis. In chapter two, the class of scenes to be considered is defined and some basic properties of the objects comprising the scene are deduced. A new formalism for describing priority orderings is introduced in chapter three. Also, an existing algorithm due to Yao, and a modification of the algorithm, are presented for as bclass of scenes that is predominantly two-dimensional. In chapter four the most general class of scenes is considered. These scenes do not in general admit priority orderinigs. To remedy this situation, different decompositions of the scene are proposed, and algorithms for solving the problem are presented. Although finding a minimum decomposition appears difficult, a heuristic is presented that usess at most twice the minimum number of cuts. In chapter five, algorithms for maintaining a priority ordering through a senes -of insertions and deletions are developed. Finally, possible future research is discussed in the

Chapter 2

- 'The Scene

The complexity of a two-dimensional scene is dependent on the class of objects chosen to represent the scene. In general, choosing, a class of objects appropriate for a specific application involves a srade-off between scene complexity and processing efficiency. We introduce in this chapter, a three-dimensional scene of moderate complexity, whose two-dimensional properties afford an efficient solution to the hidden-surface problem.

In the sections of this chapter, we first introduce some basic defintions and notation, then define the scene, and conclude by proving some properties of the scene.

2.1. Basic Definitions

As is standard in computational geometry, points are termed vertices, and pairs of points defining line segments are termed edges. A simple polygon P is a simply connected subset of the plane whose boundary is a closed chain of edges linked by their endpoints, with no two nonadjacent edges intersectung. We represent such polygons by a clockwise sequence of ver*s tices, $v_{1}, v_{2}, \ldots, v_{n}$, where each vertex v_{1} is described by its cartesian coordinates $\left(x_{1}, y_{t}\right)$. The sequence is assumed to be in standard form,' i.e., the vertices are distinct and no three consecutive vertices, indices taken modulo n, are collinear. A pair of consecutive vertices, say v_{t}, v_{t+1}, indices taken modulo n, termed the tail and head respectively, define the $t^{\text {th }}$ edge and is represented by e_{i}. The sequence $e_{1}, e_{2}, \ldots, e_{n}$ of edges forms the boundary of a polygon P, is denoted by bnd (P), and partitions the plane into two open regions: one bounded, termed the interior of P and denoted by $\operatorname{int}(P)$, and the other unbounded, termed the exterior of P and denoted by $\operatorname{ext}(P)$.

2.2. Defining the Scene

A polyhedron is a solid bounded by simple polygons, termed faces, so that each edge is shared by a pair of adjacent faces and no two nonadjacent faces intersect. We definera scene, the class of input to be considered, as a collection $S=\left(P X_{1}, P X_{2}, \ldots, P X_{m}\right)$ of nonintersecting polyhedral-cross-sections. A polyhedral-cross-section is a polyhedron of restricted form that is enclosed by base-faces, simple, polygons $P_{b_{i}}=\left(v_{b_{1} 1}, v_{b_{1} 2}, \ldots, v_{b_{i} n_{b_{i}}}\right)$ and $P_{t_{1}}=\left(v_{t_{1}}, \bar{v}_{t_{1} 2}, \ldots, v_{t_{4} n_{t_{1}}}\right)$ that lie in parallel planes $z=z_{b_{1}}$ and $z=z_{t_{1}}$ respectively, and also by a collection $F_{t}=\left(f_{i 1}, f_{i 2}, \ldots, f_{i t_{1}}\right)$ of simple polygons, termed lateral-faces, that connect $P_{b_{1}}$ and $P_{t_{1}}$. The base-faces $P_{b_{1}}$ and $P_{t_{1}}$ are named with the convention $z_{t_{1}}>z_{b_{1}, \prime}$, and termed the top and bottom base-face respectively. Note that a vertex v_{i} of a base-face is described by its planar cartesian coordinates (x_{i}, y_{t}) and the plane $z=z_{t}$ in which it lies. Given a three-dimensional object G, let its projection onto the $x-y$ plane, termed the $x-y$ projection, be denoted by G^{\prime}. $P_{b_{i}}$ and $P_{t_{i}}$ are restricted so that either $P_{b_{i}}^{\prime} \subseteq P_{i_{i}}^{\prime}$ or $P_{t_{i}}^{\prime} \subseteq P_{b_{i}}^{\prime}$. Alternate symbols for the base-faces are derived from the containment relation: if $P_{b_{i}}^{\prime}=P_{t_{1}}^{\prime}$, then the minor base-face, denoted by $P_{m_{i}}$, is $P_{t_{i}}$, and the superior base-face, denoted by ${ }_{0} P_{s_{i}}$, is $P_{b_{i}}$, otherwise $P_{m_{i}}$ is the properly contained base-face and $P_{s_{i}}$ is the other. For simplicity we/shall denote $\operatorname{int}\left(P_{i}\right) \cap \operatorname{int}\left(P_{j}\right)$ by $\Gamma\left(P_{l}, P_{j}\right)$. The placement of the polyhedral-cross-sections is restricted so that given any pair $P X_{i}, P X_{j}$ of S, if $\Gamma\left(P_{s_{i}}^{\prime}, P_{s_{j}}^{\prime}\right) \neq \varnothing$ and $z_{b_{i}}<z_{b_{j}}$ then $z_{t_{i}} \leq z_{b_{j}}$, i.e., if the $\mathrm{x}-$ y projections of two polyhedral-cross-sections intersect, then one lies above the other. A pelyhedral-cross-section is composed of base-edges, those that form the base-faces, and lateral-edges which together form the laterakfaces. Let Δ, 毒 binary operator on simple polygons, be defined so that $P_{i} \Delta P_{j}=P_{i}-\operatorname{int}\left(P_{j}\right)$. A lateral-edge links a vertex of each of . $P_{m_{i}}$ and $P_{s_{i}}$; i.e., of the type $v_{m_{i j}}, v_{s_{\bar{u}}}$, is denoted by $\bar{e}_{i_{j k}}$, and is restricted so that
$e_{i_{j i}}^{\prime} \in P_{s_{i}}^{\prime} \Delta P_{m_{i}}^{\prime}$. We represent a polyhedral-cross-section $P X_{i}$ by $\left(P_{b_{i}}, z_{b_{i}}, P_{t_{i}}, z_{t_{i}}, F_{i}\right)$, and denote the complexity of the scene, $\sum_{i=1}^{m}\left|P_{b_{i}}\right|+\left|P_{t_{i}}\right|=\sum_{i=1}^{m} n_{b_{i}}+n_{t_{i}}$, by n.

2.3. Properties of the Scene

We present in this section a theorem pertaining to the two-dimensional properties of a polyhedral-cross-section. In order to prove the theorem we first propose several lemmas. Note that the reader may skip the proofs without any loss of continuity.

Lemma 2.1. A lateral-face f_{1} of a polyhedral-cross-section $P X$ is either a trangle bounded by two lateral-edges and a base-edge, or a convex quadrilateral bounded by two lateral-edges and a pair of parallel base-edges, one from each of the base-faces.

Proof: Let V_{b} and V_{t} be the subsets of the vertices of P_{b} and P_{t} respectively that define f_{i}. Consider the plane B in which f_{i} lies and its, intersection with the parallel planes B_{b} and B_{b}, defined as $z=z_{b}$ and $z^{\circ}=z_{l}$ respectively. The intersection between a pair of parallel planes and a third plane not parallel to the pair, is a pair of parallel lines. With respect to the intersection of B with B_{b} and B_{t}°, we denote the pair of parallel lines by l_{b} and l_{t}. Referring to figure 2.1, since the vertices of V_{b} and V_{t} lie in l_{b} and l_{t}, and also since l_{b} and l_{t} are parallel, the vertices of each of V_{b} and V_{t} are consecutive vertices of $\overline{f_{1}}$, and so must also be consecutive vertices of P_{b} and P_{t}. But the vertices of P_{b} and P_{t} are in standard form and so $\left|V_{b}\right|^{\prime} \leq 2$ and $\left|V_{i}\right| \leq 2$. In the case where $\left|f_{i}\right|=3, f_{i}$ is a triangle and so each pair of vertices define an edge, with the result that f_{i} is bounded by two lateral-edges a base-edge. If on the other hand $\left|f_{i}\right|=4$, then V_{b} and V_{t} determine the parallel lines l_{b} and l_{t} and so f_{i} is a convex quadrilateral bounded by two lateral-edges and a pair of parallel base-edges, one from each of the base-faces. Q.E.D.

Corollary. There are $O(n)$ lateral-faces in a scene.
Proof: Each edge of a polyhedron is common to two faces. Since each lateral-face is bounded by one or two base-edges, and each base-edge bounds the top or the bottom base-face, the number of lateral-faces is $O(n)$.

Define a polygonal-chain C as a chain of convex polygonal faces in which each link in the chain is an edge common to two adjacent faces and no two nonadjacent faces intersect.

Lemma 2.2. The set $F^{\cdot}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ of lateral-faces of a polyhedral-cross-section $P X$, form a closed polygonal-chain C linked by lateral-edges.

Proof: We know that each lateral-face f_{i} is convex and bounded in part by two lateral-edges. As well, each lateral-edge is shared by a pair of adjacent lateral-faces. Now, since the number of faces in a polyhedron is finite, the lateral-faces form a closed chain C with the lateral-edges as the links. Finally, no two lateral-faces intersect unless they are adjacent faces, and so C is a closed polygonal-chain. Q.E.D.

Lemma 2.3. Given two lateral-faces f_{i} and f_{J} of a polyhedral-cross-section $P X$, $\Gamma\left(f_{i}^{\prime}, f_{j}^{\prime}\right)=\varnothing$.

Proof: Let C denote the polygonal-chain of the lateral-faces of $P X$. If $\Gamma\left(f_{i}^{\prime \prime}, f_{j}^{\prime}\right) \neq \varnothing$, then \mathcal{C}^{\prime} must be properly self-intersecting. However, if this is true, then either P_{b}^{\prime} or P_{t}^{\prime} self-intersects, .or $\operatorname{bnd}\left(P_{m}^{\prime}\right) \cap \operatorname{ext}\left(P_{s}^{\prime}\right) \neq \varnothing$, both of which lead to contradictions. Q.E.D.

We are now ready to prove the main result of this chapter in which the general shape of a polyhedral-cross-section $P X$ is deduced.

Theorem 2.1. The $x-y$ projection of the set F of lateral-faces of a polyhedral-cross-section $P X$, represents a convex non-overlapping decomposition of $P_{s}^{\prime} \Delta P_{m}^{\prime}$.

Proof: This follows directly from lemmas 2.1-2.3. Q.E.D.
Referring to figure 2.2 , consider the two-dimensional properties of a polyhedral-crosss. \because section as proved in the theorem of this chapter; that the lateral-faces are convex and that their $x-y$ projections decompose the difference between the $x-y$ projections of the superior and minor base-faces, are used extensively in the development of an efficient solution to the hiddensurface problem.

S

Chapter 3

Elementary Scenes

In this chapter we consider the priority approach to hidden-surface removal with respect to scenes that, although comprised of polyhedral-cross-sections; are predominantly two dimensional. The pforyhedral-cross-sections of these scenes are restricted so that the set of top basefaces and the set of bottom base-faces each lie in a fixed z-plane and each pair of base-faces is congruent.

In the first section of this chapter, we formalize the problem of computing priority orderings for a estricted, class of scenes. In the second and last section, we reproduce, due to their importance with respect to this thesis, the results of $Y a o$ [27] on the priority approach to hidden-surface removal. The algorithm proposed by Mao involves two passes of the data set: the first determines a partial ordering of the faces of the scene and the second topologically sorts the ordering yielding a linear ordering of the faces. In addition, we present a new formalism for describing priority ordenngs which leads to a simple modification to Yo's algonthm, ${ }^{*}$ eliminating the need for the second pass. We have recently learned that this modification was independently discovered by Ottmann and Widmayer [28] within the context of line segment translation. We note however that our method of proof, on which another chapter of this thesis depends, is of a completely different flavor than that of Ottmann and Widmayer. 1 f

3.1. Problem Description

Consider a scene $S=\left(P X_{1}, P X_{2}, \therefore, P X_{m}\right)$ of polyhedral-cross-sections. Referring to figure 3.1, consider a class of input restricted so that for each polyhedral-cross-section $\dot{P} X_{i}$, - $P_{. b_{1}}^{\prime}=P_{t_{1}}^{\prime}, z_{b_{i}}=z_{b}$, and $\bar{z}_{t_{1}}=z_{t}$ where z_{b} and z_{t} are each a constant. Furthermore, lateral-edges link the similar vertices of each base-face. We shall refer to each polyhedral-cross-section $P X_{i}$
of such a scene, as a prism. Since $P_{b_{1}}^{\prime}=P_{4_{4}}^{\prime}$, we refer to each as $\xi^{\prime} P_{i}$.
To define a dominance relation between the faces of a scene, requires'that a viewing model be chosen. We choose the parallel viewing model since it affords a simple analysis and is of practical importance in many applications. In the parallel model, refer to figure 3.2, parallel rays emanate from an observer at infinty and head towards the scene. The observer's -view is then completely determined by the pair of angles $(\theta, \phi), 0 \leq \theta \leq 2 \pi$ and $\frac{-\pi}{2} \leq \phi \leq \frac{\pi}{2}$, formed by the projections of a ray r onto the $x-y$ and $x-z$ planes respectively.

Define the outward normal vector of a face as the unt normal of the face directed away from the interior of the polygon. Given an observer, each face whose outward normal vector has no component in the direction of the observer, is invisible. We call such invisible faces, báck-faces, and describe the remaining potentially visible faces as visible. Having discarded the back-faces, displaying the remaining visible faces with a valid priority ordering, results in a correctly rendered scene.

Consider a scene S of $\overline{\text { prisms }}$ and suppose $\phi \neq 0$, then either all the top base-faces or all the bottom base-faces are visible, otherwise $\phi=0$, and then no base-faces are visible. Any ray r that intersects a visıble base-face must do so before intersecting any visible lateral-face, and also may not intersect any other visible base-face. Thus each of the visible base-faces has an equal and highest priority. Solving the hidden-surface problem for a scene of prisms, using a priority based approach, is then a matter of determining a valid priority ordesing for the visible lateral-faces. Consider the cases in which $\phi=\frac{-\pi}{2}$ or $\phi=\frac{\pi}{2}$. The solution in these cases is trivial since the lateral-faces are all back-faces. We assume therefore that $\frac{-\pi}{2}<\phi<\frac{\pi}{2}$.

Let F be a set of faces.' Define $\Psi(F, r)$ to be the partial ordering of the faces of F induced by their order of intersection with a ray r. Let $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be the lateral-
faces of S. Consider any ray r in a fixed direction $(\theta, 0)$ that lies parallel to and between the planes $z=z_{b}$ and $z=z_{t}$. Let R be the family of rays for which for each $s \in R, s^{\prime}=r^{\prime}$. Since for each ray $s \in R, \Psi(\underset{\sim}{,}, s)$ and $\Psi(F, r)$ are consistent, the problem of determining a valid priority ordering for the visible lateral-faces of F is independent of ϕ. As a result, the problem can be further simplified: deterimining the required ordering is equivalent to determining, in two dimensions, a valid priority ordering for the visible edges of $F^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right)$ in the direction θ. As a matter of convenience, an edge of F^{\prime} will be referred to by its correspónding face in F.

Consider a clockwise view-interatal $\omega=\left[\rho_{1}, \rho_{2}\right]$, defined so that $|\dot{\omega}|$ is maximized with the ${ }^{2}$ condition that if f_{t} is visible for any angle $\theta \in \omega$, then f_{t} is visible for all angles $\theta \in \omega$. 'Since a face f_{i} is visible over an interval of length π, the, complete interval $[0,2 \pi]$ is properily divided into at most n view-intervals, each of which contains $O(n)$ faces in general.

In the next section, two important results are discussed: one, that there exists a static priority ordering for a scene of prisms within any view-interval, and two, that this ordering can be computed quickly.

3.2. Problemr Solution

We now present Yao's approach to computing priority orderings with some improvements. While the worst-case complexity remains the same, some simplifications to the algorithm are obtained. The simplifications arise due to the introduction of a new formalism for describing priority orderings. The new. orderings introduced will be used in subsequent chapters.

Refore a solution can be proposed, it is necessary to discuss the abstract representation of a scene. The problem of representing a scene S is easily resolved since it clearly suffices to
represent S by S^{\prime} and the bounding planes $z=z_{b}$ and $z=z_{t}$. Each polygon P_{i} of S^{\prime} can be suitably represented by a doubly-linked-list of its vertices.

Given a scene S and a view-interval $\omega=\left[\rho_{1}, \rho_{2}\right]$ we can, without loss of generality, rotate the scene so that the view-interval can be expressed as $\omega=[0, \rho]$. Let F_{ω}, a subset of F, be the faces of the view-interval ω. If for a view-interval ω, a face f_{J} must be assigned a higher priority than an face f_{l}, we say that f_{J} dominates f_{l} and denote the relationship by f_{l} dom f_{t}. Referring to frgure 3.3, consizer än edge f_{t} and define the region R_{t} to include the two half-lines determining its boundary, but exclude the portion of f_{i}^{n} not lying on the halflines. Suppose for view-interval ω that f_{j} dom f_{i}, then f_{j} must intersect the region R_{i}. Of the two vertices determining a face f_{1}, the tail is denoted by $v_{t_{i}}=\left(x_{t_{i}}, y_{t_{b}}\right)$ and the head is denoted by $\nu_{h_{i}}=\left(x_{h_{2}}, y_{h_{1}}\right)$. Referring to figure 3.4, suppose f_{j} dom f_{1}, then either f_{j} intersects the half-line boundary of R_{t} containing v_{t}, or it does not; these cases are denoted respectively by f_{J} leftdom f_{1} and f_{J} rightdom f_{1}.

- Theorem 3.1. For any view-interval $\omega=[0, \rho]$ of a scene composed of prisms, there exists a priority ordering on the faces of F_{ω} (Yao [27]). "

Proof: Refernng to figure 3.5, consider the following three facts: (i) the relation leftdom is acyclic; (ii) if f_{l},rightdom f_{J}, then $x_{t_{t}}>x_{J_{l}}$; (iii) if f_{i} leftdom f_{J} and f_{J} rightdom f_{k}, then $f_{k} d o m f_{k}$ - Of the maximal faces with respect to lefidom, i.e., those that are not leftdominated, consider the one whose tail has the largest x -coordinate and denote it by f_{m}^{\cdot}. We will now show that f_{m} is not dominated by any other face. First, suppose that the tails of two faces have the same x -coordinate, then one must left-dominate the other, conséquently f_{m} is unique. Let f_{1} dom f_{m}, then since f_{m} is maximal with respect to leftdom, f_{i} rightdom f_{m}. By fact (i), there exists o noncyclic sequence f_{k} leftdom f_{j} leftdom \cdots leftdom f_{1} such that
${ }^{\prime} f_{k}$ is maximal with respect to leftdom. Note, if f_{i} is maximal with respect to leftdom then $f_{k}=f_{i}$. Applying fact (iii) to the sequence repeatedly yields f_{k} dom f_{m}. Now, since f_{m} is maximal with respect to leftdom, f_{k} rightdom f_{m}, and by fact (ii), $x_{t_{k}}>x_{t_{m}}$. But f_{m} was chosen so that, of the maximal elements with, respect to leftdom, its tail had the largest x coordinate, thus we have a contradiction. Singe for any F_{ω} there exists an element f_{m} that is maximal with respect to dom, there exists a priority ordering on F_{ω}. Q.E.D.
 dominates f_{i} immediately from above, i.e., no face intersects the left half-line of R_{t} below f_{j}. A face is of course maximal with respect to leftdom if and qnly if it is maximal with respect to ileftdom. Suppose we add a face $f_{\max }$ that left-dominates all other faces, then $f_{\max }$ is the only face maximal with respect to ileftdom. Since each face, with the exception of $f_{\text {max }}$, is immediately left-dominated by only one face, the relation ileftdom can be represented by tree T rooted by $f_{\text {max }}$. Let T be arranged so that the children of a node f, those immediately leftdominated by f, are ordered from left to nght by the value, of the x -coordinate of their tail.

- Suppose the subtrees of a tree T, ordered from left to right, are $T_{1}, T_{2}, \ldots, T_{r}$. Consider the following recursive definition of the left to right postorder traversal of T : list the nodes of , $T_{1}, T_{2}, \ldots, T_{r}$ in postorder all followed by the root of T. Thus, if the children of a node h, ordered from left to right, are $h_{1}, h_{2}, \ldots, h_{s}$, then in the postorder listing of T the nodes $h_{1}, h_{2}, \ldots, h_{s}, h$ appear in the given order.

Theorem 3.2. The left to right postorder traversal of the tree T yields a priority ordering on F_{ω}, which can be optistally calculated in $O(n \log n)$ time using $O(n)$ space.

Proof: Let f be a face of F_{ω}, then referring to figure 3.6 , let T_{f} be the subtree of T in which the faces occurring before f in a left to right postorder traversal of T, have been eliminated. Also, let L_{f} be the left most path, from root to leaf, of T_{f} and note that the leaf of L_{f} is f. It
is sufficient to show, by theorem 3.1, that given f and the faces of $T-T_{f}$, of the faces maxi- . mal with respect to leftdom, the tail of f has the largest x -coordinate. Referring to figme 3.7, consider the partition of the faces in \dot{F}_{ω} induced by the ileftdom sequence represented by L_{f}. Denote the partitioning line by C_{f} and note that C_{f} is either piecewise linear and descends from left to right, or is vertical. Also, by the definition of ilefidom no two partitioning lines may cross. Clearly then, given a face of $\vec{T}-T_{f}$, either its tail lies left of C_{f} or it is a descen- $\}$ dant of f in T. Therefore, given f and the faces of $T-T_{f}, f$ is maximal with respect to leftdom, and of those faces that are maximal with respect to leftdom, the tail of f is rightmost.

It now remains to show that the postorder listing can be computed in $O(n \log n)$ time. Suppose the faces are processed so that a face f and those faces immediately left-dominated by $f, f_{1}, f_{2}, \ldots, f_{k}$, ordered by the x-coordinate of their tail, are encountered in the order $f, f_{1}, f_{2}, \ldots, f_{k}$. This enables the construction фf a doubly-linked-list in which a face is inserted before the face that immediately left-dominates it, achieving the desired suborder of $f_{1}, f_{2}, \ldots, f_{k}, f$.

The problem is solved with a plane sweep technique similar to that used by Bentley and Otfmann [29]. Referring to figure 3.8, consider a vertical line l through v_{t}, the tail of a face f, and its intersection with the elements of F_{ω}. The face of F_{ω} that intersects l directly above v_{t}, immediately left-dominates f. Since no two faces intersect, the ordering of the intersections of the faces with l as it is swept from left to right, changes only as an end point of a face is encountered. The ordering, as l is swept from left to right, can therefore be maintained in a balanced tree in which a face f is inserted when its tail is processed, and deleted when its head is processed. The face that immediately left-dominates f is found when f is inserted. Since the tails are encountered from left to right, a face f and $f_{1}, f_{2}, \ldots, f_{k}$, those faces ${ }^{\circ}$ immediately left-dominated by f, are encountered in the order $f, f_{1}, f_{2}, \ldots, f_{k}$ as desired.

In $O(n)$ time the back-faces can be eliminated and the scene rotated so that $\omega=[0, \rho]$. Computational details concerning back-face elimination and scene rotation can be found in [3]. The end points can be sorted according to their x-coordinate, with special attention paid to points with the same x-coordnate, in $O(n \log n)$ time. Each insertion into and each deletion from the balanced tree can be done in $O(\log n)$ tume. In addition, $O(\log n)$ time is required following each insertion in order to determine which face immediately left-dominates the inserted face. Thus the total time spent manipulating the balanced tree is $O(n \log n)$. Since each insertion - into the doubly-linked-list representing the prority ordering requires $O(l)$ time, its construction requires $O(n)$ time. The priority ordering can therefore be determined in $O(n \log n)$ ame, and since each data structure used has $\oint(n)$ space requirements, using $O(n)$ space.

The optimality of the algorithm follows simply since sorting is linear time transferable to the priority ordering problem. Consider a set $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n distinct integers. Of the elements of X, let $x_{\max }$ be the largest. Suppose we wish to sort X in descending order. Referring to figure 3.9, map each x_{2} to a horizontal line segment as follows: $x_{1} \rightarrow\left[\left(x_{1}, x_{\max }-x_{t}\right),\left(x_{\max }+1, x_{\max }-x_{t}\right)\right]$. Clearly, the resylting set of line segments has a unique proority ordenng for the direction $\theta=0$, and this ordenng corresponds to the sorted values of X. Since the tansformations obviously require linear time, the algonthm is optımal. Q.E.D.

A scene is said to be k-regular if'number of view intervals is. k. In general, no two faces will be visible over the same interval of length π and so $k=n$, however, there exists scenes in - which $k \ll n$. By angular`sorting, the k view-intervals can be calculated in O (nlogn) time. The k priority orderings, which are sufficient for all views, and the corresponding k lists can be calculated in $O(k n l o g n)$ time and stored in $O(k n)$ space. Displaying the scene from a given - view point (θ, ϕ) requires an $O(\log k)$ time search to locate the required view-interval, $O(n)$
time to project the scene, and $O(n)$ display commands to render an image. The computational particulars regarding scene projection and displaying can be found in.[3]. s

In the next chapter we extend the theory so far developed to include more general classes of scenes. In the'se scenes the base-faces \}re no longer restricted to two z-planes and each pair of base-faces are not necessarily congruent.
(

figure 3.9
σ

Chapter 4

Complex Scenes

So far we have considered scenes of polyhedral-cross-sections whose two-dimensional properties afford an efficient polution to the hidden-surface problem. These two-dimensional properties resulted largely from the placement of the base-faces. In this chapter we examine a more general class of scenes, in which the placement of base-faces is not so rigidly confined. In general, these scenes do not admit priority orderings on their faces, i.e., the corresponding leftdom relation is cyclic. To remedy this situation, a scene is decomposed so as to eliminate porencial problem areas.

In the first section of this chapter, we discuss nonoverlapping scenes, those for which no two x - y projections of superior base-faces intersect. For these scenes we consider vertical decompositions in order to avoid problem situations. The most general class of scenes is treáted in the last section. These scenes require both vertical and horizontal decompositions to eliminate potential problem areas.

4.1. Nonoverlapping Scenes

Consider' a scene $S=\left(P X_{1}, P X_{2}, \ldots, P X_{m}\right)$ of polyhedral-cross-sections and let $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be the corresponding lateral-faces. Restrictt S so that for ${ }^{\circ}$ any pair $P X_{i}, P X_{j}$ of polyhedral-crosś-sections, $\Gamma\left(P_{s_{1}}^{\prime}, P_{s_{j}}^{\prime}\right)=\varnothing$. Call each polyhedral-cross-section of such a seene a column. As remarked in the previous chapter, an observer's view-point in the parallel viewing model is completely determined by the pair of angles $(\theta, \phi), 0 \leq \theta \leq 2 \pi$ and $\frac{-\pi}{2} \leq \phi \leq \frac{\pi}{2}$. We assume $\frac{-\pi}{2} .<\phi<\frac{\pi}{2}$ since we will consider the special cases in which $\phi=\frac{-\pi}{2}$ or $\phi=\frac{\pi}{2}$ in section 4.2.

Unlike in a scene composed of prisms, the top and bottom base-faces of a scene constructed from columns, do not necessarily lie in respective z-planes. Consequently, referring to . figure 4.1, for a fixed viepring position (θ, ϕ), the visible base-faces do not necessarily have equal and highest priority. Thus it is no longer' sufficient to simply determine a valid priority 1 ordering for the set of lateral-faces. The question then is, is it even possible to compute a priority ordering fot the combined set of lateral-faces and base-faces? In general, the answer is no. Referring to figure 4.2, it is simple to construct a scene of columns in which for iny vien ing position, there exist a base-face and lateral-face that determine a cycle, i.e., nether can have a higher prionty than the other. To remedy this situation, we will introduce a-verncal decomposition of the scene which easily adapts to the existing framework'

It is of course desirable to render the problem independent of ϕ, and hence reduce in to two dimensions. Note however, that a lateral-face in general position may not, for a fixed value of θ, be visible through the complete range of ϕ, yet may, for specific values of ϕ, be visible through the entire range of θ. Clearly, thus disqualfies from consigheration any method that computes a pnority ordering after the elimination of the back-faces. Instead, we adopt a strategy that computés a view-interval dependent total ordering of the faces in a scene Given a viewing position, the back-faces can then be quickly eliminated.

Supplose each minor base-face $P_{m_{r}}$ of S is triarigulated. Euler showed that a planar graph on n vertices has $O(n)$ edges and faces. Consequendy, referring to figure 4.3, the decomposttion of the minor base-faces yields $O(n)$ triangular-faces and induces a vertical decomposituon of S. Redefine $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ to include both the lateral faces and triangular-faces of S Note that the elements of ${ }^{\prime} F^{\prime}=\left(f_{1}^{\prime} ; f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right)$ are edges and convex polygons, and $\Gamma\left(f_{i}^{\prime}, f_{j}^{\prime}\right)=\varnothing$ fot any pair f_{1}, f_{j} of F.

Lemma 4.1. Any priority ordering on the elements of $F^{\prime \prime}$ for a fixed direction θ, is valid on the faces of F for every direction (θ, ϕ).

Proof: Let. r be any ray with direction θ in the x-y plane. Define R to be the family of rays for which for each ray $s \in R, s^{\prime}=r$. In order to establish the required result, it is sufficient to demonstrate that for any ray $s \in R, \Psi\left(F_{r}^{\prime} ;{ }^{\prime} s\right)$ and $\Psi\left(F^{\prime}, r\right)$ are consistent. Let f_{1}^{\prime} be any face of F, and s any ray of R. Since f_{i} is convex, s intersects f_{i} and r intersects f_{i}^{\prime} at most - once. Then, referring to figure 4.4 , since for any pair f_{i}, f_{j} of $F, \Gamma\left(f_{i}^{\prime}, f_{j}^{\prime}\right)=\varnothing, \Psi(F, s)$ and $\Psi\left(F^{\prime}, r\right)$ are consistent. Q.E.D.

All that remains, is to bring the superior base-faces into the argument. Let F_{1} be the set - , of lateral-faces and triangular-faces of a column $P X_{1} . \quad F_{1}^{\prime}$ defines a non-overlapping decomposition of ' $P_{s_{i}^{\prime}}^{\prime}$ in that $F_{i}^{\prime}=P_{s_{1}}^{\prime}$. Since each non vertical face of F_{i} is associated with a unique component of the decomposition of $P_{s_{i}}$, itfsuffices to compute a priority ordering solely on the faces of F^{\prime}.

In order to process a scene S, a suitable representation of each column of S is required. From such representation, the base-faces and lateral-faces must be immediately available. To satisfy this condition a planar graph structure, luch as the doubly-connected-edge-list of Muller and Preparata [30], is used. Note that due to vertical lateral-faces, the $x-y$ projections of two edges may overlap. However, due to the superior and minor labels of the base-faces,. conflicts can be resolved and so a planar graph structure is still appropriate. The main componegt of the doubly-connected-edge-list is the edge-node. There is a one-to-one correspondence between the edge-nodes and the edges of the graph. Each edge-node consists of six fields named $V_{1}, V_{2}, F_{1}, F_{2}, P_{1}$, and P_{2}. The fields V_{1} and V_{2} contain, the names of the head and tail of the edge respectively, effectively orienting the edge. Given this orientation, the fields F_{1} and F_{2} contain the names of the faces which lie to the left and to the right of the edge
respectively. The field P_{1} is a pointer to the edge-node containing the next edge about V_{1} in the counterclockwise direction. P_{2} is defined analogously. This representation is suitable since for any edge it is possible to start walking clockwise around ether of its adjacent faces. In addition, each step of the walk involves only a constant amount of work, and so the faces can be retrieved in $O(n)$ time. So that the lateral-faces and base-faces can be distinguished, a type indicator field is includet with each edge-node.

Before attempting to compute a priority ordering on' F, it is necessary to triangulate the minor base-faces of F. Since the triangulation of a minor base-face does, not effect the planarity of the corresponding column, the doubly-connected-edge-list remains a suitable representation. So that the atind anifr-faces can be distinguished, the type indicator of each edge-node representing a trianguigition edge is appropriately set.

Lemma 4.2. The set $M \stackrel{!}{=}\left(P_{m_{1}}, P_{m_{2}}, \ldots, P_{m_{m}}\right)$ of minor base-faces can be triangulated, and the corresponding doubly-connected-edge-lists updated, in $O(\hat{n} \log n)$ tume using $O(n)$ space. : .. Proof: Many algorithms [31-34] exist for triangulating a simple polygon in $O(n \log n)$ time and $O(n)$ space. With respect to this thesis, these results are sufficient. However, it should be mentioned that Tarjan and Van Wyk [35] hàve recently discovered an $O(n \log \log n)$ time algorithm. Each minor base-face is' a simple polygon. Since there are $O(n)$ vertices determining the m minor base-faces, the m minor base-faces can be extracted from the doubly-connected-cye. lists in $O(n)$ time, and subsequently triangúlated in $O(n \log n)$ ume and $O(n)$ space. Given a list of the $O(n)$ triangulation edges, it remarns to show that the doubly-connected-edge-lists can be quickly updated. Consider a minor base-face P_{m} and the corresponding doutly-connected edge-list. Allocate an edge-node for each triangulation edge, and arbitranly designite the head and tail. Referming to figure 4.5, sort the the trangulation edges so that for each verrex v of P_{m}, the edges with v as an endpoint are sonted counterclockwise between the bounding edges
e_{+}and \dot{e}_{-}of P_{m} at v. From this information, inconstant time it is possible to update the P_{1} and P_{2} fields of any edge-node with P_{m} as a bordering face. With equal ease, the P_{1} and P_{2} fields of the new edge-modes can be set. To update the F_{1} and F_{2} fields, the information contained in the P_{1} and P_{2} fields is used. Consider a triangulation edge e. Referring to figure 4.6, it is possible, in constant time, to determine the edges bounding the two triangles bordering e .and suEfsequently update their F_{1} and F_{2} fields. The sort step dominates the updating procedure, and so, since there are $O(n)$ triangulation edges, updating the doubly-connected-edgelists can be accomplished in $O(n \log n)$ time using $O(n)$ space. Q.E.D.
'Ideally, the treament of convex polygons, with respect to computing priority orderings, would not differ from that for edges. We shall now show that, with only a few extra considerations, this is in fact true. Let P be a convex polygon. A line l is a line of support of P if the interior of P lies completely to one side of l. A pair of vertices v_{i}, v_{j} of P is an antipodal pair if it admits parallel lines of support. Call the edge e determined by an antipodal pair, a shadow-edge.

Lemma 4.3. When computing a priority ordering for a fixed direction θ, it suffices to replace each polygon of F^{\prime} by an appropriate shadow-edge.

Proof: Referring to figure 4.7, consider the parallel lines' of support of a polygon f_{i}^{\prime} of F^{\prime} ' in the direction θ, and let e. denote the corresponding shadow-edge determined by the antipodal -k pair v_{j}, v_{k}. Since f_{t}^{\prime} is convex, e lies within f_{i}^{\prime}, and, as remarked by Guibas and Yao [36], f_{i}^{\prime} and e sweep the same area when translated in the direction θ. Furthermore, for any parr of faces f_{i}, f_{J} of $F, \Gamma\left(f_{i}^{\prime}, f_{j}^{\prime}\right)=\varnothing$, and so e_{i} and e_{j}, the shadow-edges of f_{i} and f_{J} with respect to θ, do not intersect. However, e_{1} and e_{j} may overlap. Fortunately, this is not a problem since each face of F is either a triangle or a quadrilateral, and so in constant time the ordering of f_{i}^{\prime} and f_{j}^{\prime} with respect to θ can be computed. Finally, since no edge and shadow-
edge of F^{\prime} intersect (overlap is handled as above), it suffices to replace each polygon of F^{\prime} by its shadow-edge for the direction θ. Q.E.D.

Lemma 4.4. The polygons of F^{\prime} have ${ }^{\circ}(n)$ shadow-edges, each valid through some range of θ, which can be computed in $O(n)$ time.

Proof: Shamos [37] showed, for a convex polygon P on n vertices, that the $O(n)$ antipodal pairs of of P can be computed in $O(n)$ time. In addition, referning to figure 4.8, each antinodal pair defines a family of parallel lines of support through a clockwise angular-interval $\alpha=\left[\sigma_{1}, \sigma_{2}\right]$ and its reflection $\alpha_{r}=\left[\sigma_{1}+\pi, \sigma_{2}+\pi\right]$. Note that $|\alpha|=\left|\alpha_{r}\right|<\frac{1}{\pi}$. The result then follows simply since each antipodal pair defines a shadow-edge, and also since the polygons of F^{\prime}, are determined by a toatl of $O(n)$ vertices. Q.E.D.

For a scene S, there are then $O(n)$ edges and shadow-edges. Associated with each edge e are two nonoverlapping intervals of length π, reflecting the distinct sides of e. The visibulity of each side of e will be associated with the corresponding interval. Likewise, the two angular-intervals α and α_{r} of a shadow-edge e, define the visibility of the two sides of e Lek $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be the edges and shadow-edges of F^{\prime}. A view-interval $\omega=\left\{\rho_{1}, \rho_{2}\right]^{\prime}$, is redefined so that $|\omega|$ is maximized with the condition that if e_{1} is visible for any angle $0 є \omega$, then e_{i} is visible for all angles $\theta \in \dot{\omega}$. The visibility of each edge $e_{1} \in E$ is defined with respect to two equal but opposite intervals.' As a result, each view-interval $\omega=\left\{\rho_{1}, \rho_{2}\right\}$ has a mirror image $\omega_{r}=\left[\rho_{1}+\pi, \rho_{2}+\pi\right]$. Since $\theta \in \omega$ if and only if $\theta+\pi \in \omega_{r}$, reversing the priority ordering determined for ω yields a valid priority ordering for ω_{r}. Therefore, rather than considering the complete interval $[0,2 \pi]$, it is sufficient to determine priority orderings over the interval $[0, \pi]$. Without loss of generality, S can be rotated so that a view-interval $\omega=\left[\rho_{1}, \rho_{2}\right]$ can be expressed as $\omega=[0, \rho]$. Clearly, the interval $[0, \pi]$ is properly divided into $O(n)$ view-intervals, each of which contains $O(n)$ edges.

Theorem 4.1. For any view-interval $\omega=[0, \rho]$ of a scene composed from columns, there exists a priority ordering on F^{\prime} which can be optimally calculated in $O(n l o g n)$ time and $O(n)$ space.

Proof: The proof foilows directly from lemmas 4.1-4.4 and theorem 3,2. Q.E.D.
Given a k-regular scene composed of columns, the minor base-faces can be triangulated and the ${ }_{j} k$ view-intervals computed in $O(n \log n)$ time and $O(n)$ space. 'The corresponding k priority ordenngs can be determined in $O(k n \operatorname{logn})$ time and $O(k n)$ space. In order to display the scene from a view-point (θ, ϕ), the appropriate view-interval, which can be computed in $O(\log k)$ time, must first be determined. Next, in $O(n)$ time, the back-faces can be eliminated and the scene projected. Since each non vertical face has a portion of a major base-face associated with it, the relanve ordering of the pair must be considered in the case where neither is a back-face. Suppose this is the case, thęir relative ordering will then be arbirrary since otherwise a ray in the direction (θ, ϕ) must intersect both, with the result that one must be a back-face. ! Finally, $O(n)$ display commands are needed to render an image. Note that if the base-faces are confined to two z-planes as in the previous chapter, then the results simplify since the triangulation of the minor base-faces is not required.

In the next section the most general class of scenes is considered. In these scenes the $x-y$ * - projections of two polyhedral-cross-section may intersect.

4.2. General Scenes

We now consider the most general class of scenes. Let $S={ }^{\circ}\left(P X_{1}, P X_{2}, \ldots, P X_{m}\right)$ be a scene of polyhedral-cross-sections. The placement of the polyhedral-cross-sections is restricted so that given any pair $P X_{i}, P X_{j}$, if $\Gamma\left(P_{s_{i}}^{\prime}, P_{s_{j}}^{\prime}\right) \neq \varnothing$ and $z_{b_{i}}<\cdot z_{b_{j}}$, then $z_{t_{1}} \leq z_{b_{j}}$. This restriction limits the placement of the polyhedral-cross-sections so that if the $x-y$ projections of any
pair intersect, then there exists a z-plane which separates the pair. We now ask the following question: is it possible to compute a priority ordering on the faces of such a scene? In general, the answer is no. Referring to figure 4.9, Yao [27] showed that it is possible to construct scenes in which for any viewing position $(\theta, \phi), \frac{-\pi}{2}<\phi<\frac{\pi}{2}$, there exists a set of lateral-faces that determine a cycle. In order to avoid such a situation, we introduce a horizontal decomposttion of the scene. .

First consider the cases in which $\phi=\frac{-\pi}{2}$ and $\phi=\frac{\pi}{2}$. For any two lateral-faces $f_{J}, f_{k} \in P X_{i}, \Gamma\left(f_{J}^{\prime}, f_{k}^{\prime}\right)=\varnothing$. Also, if given a pair of polyhedral-cross-sections $P X_{i}, P X_{j}$ for which $\Gamma\left(P_{s_{1}}^{\prime}, P_{s_{j}}^{\prime}\right) \neq \varnothing$, then $P X_{1}$ and $P X$, are separable by a z-plane. Consequenty, if the top, base-faces ${ }_{4}$ are sorted and renamed so that $z_{t_{1}} \leq z_{t_{2}} \leq \cdots \leq i_{t_{m}}$, then assigning each face of a polyhedral-cross-section $P X_{i}$ the priority i, induces a priority ordering on the faces for $\phi=\frac{\pi}{2}$.

A similar result holds for $\phi=\frac{-\pi}{2}$. Since this process amounts to simple soring, we will assume that $\frac{-\pi}{2}<\phi<\frac{\pi}{2}$.

Consider partitioning space into $t+1$ horizontal slabs with a series of $t z$-planes \downarrow $z \doteq z_{1}<z=z_{2}<\cdots<z=z_{t}$. Suppose a scene S is decomposed by such a partitionng, into $t+1$ subscenes so that within each subscene $\Gamma\left(P_{s_{i}}^{\prime}, P_{s_{j}}^{\prime}\right)=\varnothing$ for any parr $P X_{1}, P X_{j}$ of polyhedral-cross-sections. Any ray r in a fixed direction ($0, \phi$) either passes though a smple slab $(\phi=0)$ or traverses the slabs in a fixed order. In the case where $\phi<0, r$ passes thouph the slabs bottom-up intersectung the z-planes in the order $z=z_{1}, z=z_{2}, \quad, z=z_{1}$. The ord ering is simply reversed if $\phi>0$. It therefore suffices to process and doplay the subsernes independentlg. For each subscene the prionty orderings are computed as in sectuon 41 Rendering an image from a fixed viewing position ($0, \phi$), involves displaying the subscenes
individually based on the order of intersection of a ray r in the direction $(\theta, \phi+\pi)$ with the corresponding slabs. Note that this strategy may decompose a scene even though no cycles are - present.

Determining where to cut a scene is a major consideration since it could adversely effect the complexity of the scene. Minimizing the complexity of the scene, i.e., minimizing the - number of lateral-faces cut by the z-planes, is a difficult problem. Instead, we concentrate on minimızing the number of cuts. A scene S is said to be t-cuttable if t is the minimum number _ of z-planes required to decompose S so that within"each subscene, no two x-y projections superior base-faces intersect. We-now present an algorithm that decomposes a scene S as required. The algorithm determines at-most $2 t^{\circ} \mathrm{z}$-planes and so minimizes within a constant factor.

The problem of deciding where to cut a scene is basically one of determining twodimensional intersections. Given two polyhedral-cross-sections $P X_{1}$ and $P X_{J}$ such that $\Gamma\left(P_{s_{i}}^{\prime}, P_{s_{j}}^{\prime}\right) / \overline{\neq}$ and $z_{b_{i}}<z_{b_{j}}$, the scene gnust be cut with some z-plane $z=z_{c}, z_{t_{j}} \leq z_{c} \leq z_{b_{j}}$. Suppose the scene is cut with a series of z-planes $z=z_{t_{1}}, z=z_{t_{2}}, \ldots, z=z_{t_{m}}$. Clearly, such a - decomposition always appropriately cuts the scene, and so $t \leq m$. It is easy to realize scenes in which m cuts are necessary simply by stacking polyhedral-cross-sections one on top of -another. Consider the $x-y$ projection of a scene. In the worst case as many as $O\left(n^{2}\right)$ intersections will exist between the x-y projections of the superior base-facfs, ant so any algorithmthat computes, all the intersections will require $O\left(n^{2}\right)$ time in the worst case. Since at most (n) cuts are required to decompose a scene, it would be advantageous to eliminate the excess from consideration. Consider a polyhedral-cross-section $P X_{t}$ and let $I_{t}=\left\{j \mid \Gamma\left(P_{s_{t}}^{\prime}, P_{s_{j}}^{\prime}\right) \neq \varnothing\right.$ and $\left.z_{b_{i}}<z_{b_{j}}\right\}$. Also, let $\min _{t}=\min \left(z_{b_{j}}\right), j \in \cdot I_{t}$. Clearly, cutting the scene with the z-plane $z=z_{c}, z_{i} \leq z_{c} \leq \min _{t}$, eliminates the intersections above, and in
part due to, $P X_{i}$.
The key to the quickness of our algorithm will lie in its ability to locate the intersections between polyhedral-cross-sections in close proximity. The algorithm uses a divide-and-conquer scheme. During the divide phase, the scene is decomposed with a set of $O(n) z$-planes This is followèd by the conquer phase which then selects at most $2 t$ of the z-planes. At the heart of the algorithm is intersection testing, determining whether or not any pair of $x-y$ projections of superior base-faces intersect. In general the superior base-faces are simple polygons, a class of polygons which do not lend themselves to the existing, fast algorithms. To remedy this situation we assume the superior base-faces have been decomposed. Consider the decomposition of each superior base-face, induced by its lateral-faces and the triangulation of its minor base-face. Asexplained in section 4.1, such a decomposition requires $O(n \log n)$ time and $O(n)$ space to - compute, and yields $O(n)$ components. Of the components, which are line segments, triangles, and convex quadrilaterals, the line segments are redundant with respect to the relevant intersection testing, and so are ignored. The plane'sweep algorithm of Shamos and Hoey [38] is used to detect intersectigns. Given a set of n triangles and quadrilaterals, the algorithm can detect whether any pair of object intersects in $O(n \log n)$ time using $O(n)$ space. Using this algorithm, a 0 -cuttable scene could be quickly detected.
\therefore Theorem 4.2. For any scene S that is t-cuttable, a set of at most $2 t$ z-planes that properly decompose S, can be computed in $O($ nlognlogm $)$ time using $O(n)$ space.

Proof: For each'polỷhedral-cross-section $P X_{1}$, let t_{1} and b_{1} denote $z_{b_{1}}$ and $z_{t_{1}}$ respectuvely, and let D_{i} denote the set of components of the decomposition of $P_{s_{i}}$. Sort the t_{1} 's and b_{1} 's separately, and rename the polyhedral-cross-sectoons so that $t_{1} \leq t_{2} \leq \cdot \leq t_{m}$ Merge the sored sequences of t_{1}^{\prime} 's and $b_{1}^{\prime} s$ using the convention that if $t_{1}=b_{1}$, then in the ordennt t_{1} comes before b_{j}. Call the resultant sequence Q and append to it, as its bottommost symbol,
the dummy symbol t_{0}. Now each intersection can be characterized as follows: suppose $i<j$, then $t_{i} \leq b_{j}$ and $\Gamma\left(D_{i}, D_{j}\right) \neq \varnothing$. To complete the divide phase, consider the, triple $G_{i}=\left(Q_{i}, B_{i}, T_{i}\right) . Q_{i}$ is the subsequence of Q above t_{i-1}, up to and including $t_{i} . B_{i}$ and T_{i}, which denote the bottom and top search boundaries within G_{i}, are respectively set equal to the first and last symbols of Q_{i}. Note that by the definition of a scene, each G_{l} initially defines a slab within which there are no intersections.

At each levelo of the conquer phase adjacent pairs of G_{i} 's are merged, and any intersection between the pair is detected. If any intersection is detected, then a cut splitting the pair is introduced and any intersections straddling the cut are eliminated.' Let r denote the number of G_{\imath} 's at the current level of the conquer phase, thus initially $r=m$. At each level, for all odd $i, 1 \leq i \leq r$, let $j=\frac{i+1}{2}$. If $i+1 \leq r$, then G_{i} and G_{i+1} are merged into G_{j}, otherwise G_{i} is simply renamed G_{j}. After each level, r is updated as follows: if r is odd $r=\frac{r+1}{2}$, otherwise $r=\frac{r}{2}$.

If at each level the intersections between the merged pairs are detected and eliminated, then clearly the resulting set of cuts will appropriately decompose \mathcal{S}. Once an intersection has been detected, and a cut made, it would besenseless to search for intersections straddling the cut. To prevent this from happening; when G_{i} and G_{i+1} are merged, only intersections between - B_{i} and T_{i+1} will be considered. Note that from B_{i} to the topmost symbol of Q_{i}, and from the bottommost symbol of Q_{i+1} to T_{i+1}, there are no intersections. Suppose G_{i} and G_{i+1} are about to be merged, then any intersection between the pair can be characterized as follows: if $j<k$ then $t_{j} \in Q_{i}, t_{j} \geq B_{i}, b_{k} \in Q_{i+1}, b_{k} \leq T_{t+1}$, and $\Gamma\left(D_{j}, D_{k}\right) \neq \varnothing$. Let $V_{i}=\left\{j \mid t_{j} \in S_{i}\right\}$ and let $W_{i}=\left\{j \mid b_{j} \in S_{i}\right\}$, then detecting an intersection involves determining for any pair $D_{j}, D_{k}, j \dot{e} V_{i}$ and $k \in W_{i+1}$, whether $\Gamma\left(D_{j}, D_{k}\right) \neq \varnothing$. ' For, this purpose, we use the
algorithm of Shamos and Hoey. If an intersection is detected, then cutting at t_{j}, the topmost symbol of Q_{i}, eliminates all intersections between G_{i} and G_{i+1}. What remains is to merge G_{1} and G_{t+1} into G_{j}. There are two cases to consider depending on whether or not an intersection is detected. In both cases Q_{j} is determined by concatenating Q_{i} and Q_{t+1}. Referring to figure 4.10, if an intersection is detected then $T_{j}=T_{i}$ and $B_{j}=B_{\iota_{k}+1}$. Note that if $B_{k}<T_{k}^{e}$ then Q_{k} has not been cut. Referring to figure 4.11 , consider the case in which an intersection is not detected. If $B_{i}<T_{i}$ then $T_{J}=T_{i+1}$, otherwise $T_{J}=T_{i}$. On the other hand, if $B_{i+1}<T_{i+1}$ then $B_{j}=B_{i}$, otherwise $B_{j}=B_{i+1}$.

Let us consider the complexity of the algonthm. The space requirements are clearly $O(n)$. In the divide phase the running time is dominated by the sorung, and so O (nlogm) time is required. Since at each level of the conquer phase $\left\lfloor\frac{r}{2}\right\rfloor$ merges occur, there are $O(\log m) \mathrm{lev}$ els. At each level the intersection detection computations dominate the running time. Sunce the sum of the number of components of the $D_{a}^{\prime} s$ is $O(n)$, and since each component is considered at most twice, once for each of t_{1} and b_{1}, the total time time spent detecting intersections at each level is $O(n \log n)$. Therefore, the running time of the algorithmi is $O(n \operatorname{lognlog} m)$.

What remains to be shown is that at most $2 t$ cuts are made. Referring to figure 4.12, suppose that while merging G_{i} and G_{i+1}, an intersection is detected. Let j and $k_{k} j<k$, denote the intersection pair, then t, Q_{i} and $b_{k} \in Q_{t+1}$. Also, let c denote the topmost symbol of Q_{i}. Clearly, the line segment $l=\left(t_{j}, b_{k}\right)$ must be cut. Choosing c achieves this and ensures all intersections straddling c are eliminated, it does not however guarantee minimality. Let d derote the number of cuts made. It is possible that an intersection will be detected between G_{1} and what is below G_{i}, and between G_{i+1} and what is above G_{i+1}. Still referring to figure 4.12. let l_{b} and l_{t} denote the line segments that would need to be cut. Clearly, l and l_{b}, and, l and
l_{t} may overlap, however, l_{b} and l_{t} will not. Thus, if we consider the sequence of d cuts in bottom-to-top order, then of the corresponding d segments, every second segment is nonoverlapping. Hence at least $\left\lceil\frac{d}{2}\right\rceil$ cuts are required and so at most $2 t$ cuts have been made. Q.E.D.

Given a t-cuttable scene, the minor base-faces can be triangulated in $O(n \operatorname{logn})$ time using $O($ nlognlogm $)$ time and $O(n)$ space. Cutting a polehedral-cross-section $P X$ is simply since each of the resultant objects has the same topology as PX. In order to determine which polyhedral-cross-sections are cut, sort the cuts and denote the resulting list by $C=\left(c_{1}, c_{2}, \ldots, c_{t}\right)$. Next, merge Q and C, ordering t_{i} before c_{j} if $t_{i}=c_{j}$. Now, scan the resultant list, inserting $P X_{i}$ into an active list when b_{1} is encountered, and deleting it when t_{t} is encountered. Further, when c_{1} is encountered, output it and active list. Therefore, the scene can be cut in $O(t n+t l o g t)$ time and stored in $O(t n)$ space. Let us say a scene is k-regular if the maximum number of view-intervals in any slab, is k. In total, $O($ tnlogn $)$ time and $O($ tn $)$ space are required to determine the $O(k n)$ view-intervals. The corresponding priority orderings can be computed in $O(t k n \operatorname{logn})$ time and stored in $\mathcal{M}(k n)$ space. In order to display a scene from a view-point $(\bar{\theta}, \bar{\phi})$, the appropriate view-intervals, which can be determined in $\dot{O}(t \log k)$ time, must first be determined. Then in $O(t n)$ time the back-faces must be eliminated and the scene projected. Finally, $O(t n)$ display commands render an image.

In the next chapter we consider the insertion and deletion of edges from priority orderings. These problems are a fundamental concern when maintaining dynamic scenes.
－

\leftarrow

\because

Up until now we have only considered static scenes. In this chapter we examine the fundamental problem encountered when objects are allowed to be inserted into and deleted from a scene. The problem involves updating a priority ordering in order to reflect the inserion or deletion of a face. Consider a set F of faces (edges), a view-interval ω, and let $F_{\omega}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ denote the faces of ω. As usual, we assume the view-interval $\omega=\left\lceil\rho_{1}, \rho_{2}\right\rceil$ has been rotated so that $\omega=[0, \rho]$. Suppose we add an extra face $f_{\text {max }}$, which left-dominates, all other faces, including any that will be inserted. As shown in section 3.2, the aleftam reliation can be represented by a tree T which is rooted by $f_{\max }, \ln T$, the children of a node f are ordered from left to right by the value of the x-coordinate of their tail. We know from theorem. 3.2 that the left to right pestorder traversal of T yields a prionty ordering on F_{w}. Maintaining a correct pnority ordering through a series of insertions and deletions will amount to updating T_{-}in order to reflect the changes in the ileftdom relation.

In the first section of this chapter an appropriate data structure and search technique are introduced. The inserion problem is considered in the second section_(and in the last section, the deletion problem is investigued.

5.1. The Data Structure

In order to represent a tree T, an appropriate data structure is required. For our purposes the leftmost-child, right-sibling representation [39] is adequate. The main component of this representation is the edge-node. Each edge-node consists of four fields whose names, which are first-child, next-sibling, previous-sibling, and parent, describe their function. The main reason for using this representation is that for a given edge-node, f, the edge-node which immediately
left-dominates f, and those immediately left-dominated by f, can be quickly determined. Also, inserting into and deleting from T are simple operations. Finally, postorder and preorder traversals of T, which are crucial in the maintenance of priority orderings, can be petformed in $O(n)$ time.

In some applications a large database is constructed before any general insertions or deletions are processed. In these cases it will often be beneficial, due to the time complexity of a single insertion, to construct T directly rather than considering the construction as a series of, insertions. Consider the algorithm proposed in theorem 3.2. Let f be a face and let $f_{1}, f_{2}, \ldots, f_{k}$ be the faces, ordered from left to right, immediately left dominated by f. Since the algorithm encounters these faces in the order $f, f_{1}, f_{2}, \ldots, f_{k}$, we can, provided we store for each face its last child detected, use the algorithm to construct T in $O(n \log n)$ time using $O(n)$ space.

When a face is inserted or deleted it is necessary to reconfigure T in order to reflect the changes in the ilefidom relation. To do this quickly, T muks be systematically traversed so that any changes in the ileftdom relation can be reported in some orderly manner. Fgr this purpose, we introduce a search of the space containing F_{ω}, which corresponds to a combination preorder-postorder traversal of T. Suppose the subtrees of T, ordered from' left to right, are $T_{1}, T_{2}^{*}, \ldots, T_{r}$. Consider the following recursive definition of the left to right prepostorder traversal of T : list the root of T, followed by the prepostorder listings of $T_{1}, T_{2}, . ., T_{r}$, all followed by the root of T. Each node of $\cdot T$ then is visited twice, once before its descendants, and once after. Such a traversal can be completed in $O(n)$ time.

Let f_{1} be a face of F_{ω} ang let L_{1} denote the path in T from the root to f_{1}. As described in section 3.2, L_{1} induces a partition of the faces in F_{ω}. As well, C_{b}, the line representing the partition, which we shall call a chain, is either piecewise linear and descends from left to right,
or vertical. Referring to figure 5.1, let C_{1}^{\prime} denote the chain which results when f_{i} and C_{1} are combined. A chain is said to be monotone with respect to a direction θ, if when travgrsed, it yields a monotonically increasing projection onto a line in the direction θ. Clearly, C_{1} and C_{i}^{\prime} are monotone with respect to the x -direction. Suppose we wish to determine which face of F_{ω} immediately left-dominates some face f with tail v_{t}. To solve the problem we modify the prepostorder traversal so that at every step it is determined whether a particular interval of a face lies directly above v_{t}. Let f be any face of F_{ω}, and let f_{p} and $f_{1}, f_{2}, \ldots, f_{k}$ respectively . denote, provided they exist, the parent and chuldren of f. Referring to figure 5.2, we now modify the prepostorder traversal of T as follows: when f is first encountered, consider the interval of f_{p} left of v_{t}; during the second encounter, consider the interval of f right of $v_{t_{k}}$. The two special cases must also be examined: if $f^{\prime}=f_{\text {max }}$, then no interval is considered during the first encounter; if f is a leaf, then all of f is considered during the second encounter. To summarize, the interval(s) of f left of $v_{t_{k}}$ are examined when $f_{1}, f_{2}, \ldots, f_{k}$ are first encountered, and the remainder of f is examined when f is encountered for the second time.

Lemma 5.1. The first face discovered during the modified prepostorder traversal of T that lies directly above ν_{t}, immediately left-dominates f.

Proof: Clearly, all portions of all faces are considered and so some solution will be found Suppose the algorithm stopped when f_{1} was encountered, however the correct solution f_{x}, was not reported. 'Referring to figure 5.3, the algorithm will have reported ether f, the parent of f_{i}, or f_{i} itself, depending on whether it was the first or second encounter of f_{1} If f, was reported, then $v_{t_{r}}$ lies left of C_{1}, otherwise, $v_{t_{x}}$ lies left of $C_{1}{ }^{\circ}$. Whechever the case may be, f denote the chain by C. Now, C and C_{x} do not cross, and, each is monotone with respect to the x -cirection. Therefore, C_{x} lies left of C and so the appropriate interval of f_{x} will already have been considered. We thus have a contradiction. Q.E.D.

In the following sections, we consider the insertion and deletion problems in priority orderings. At the heart of the algorithms that are proposed, is the modified prepostorder traversal described above.

5.2. The Insertion Problem

Consider the following problem: given a tree T representing the ileftdom relation on a set $F_{\omega}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of faces, insert a new face $f \circ$ into F_{ω} and update T in order to reflect the changes in the ileftdom relation. To realize the changes, we must determine the face f_{p} that immediately left-dominates f, and the faces $f_{1}, f_{2}, \ldots, f_{k}$, ordered from left to right, immediately left-dominated by f.

As proved in lemma 5.1 , the modified prepostorder traversal of T will compute f_{p}. As 0 well, the traversal examines the_intervals of f_{p} from left to right, and so the position of f amongst the children of f_{p} can easily be determined.

All that remains then is to calculate $f_{1}, f_{2}, \ldots, f_{k}$, preferably in their natural order. Once found, removing $f_{1}, f_{2}, \ldots, f_{k}$ from their old positions in T is a simple matter. As well, note that the subtrees which they root do not change. Suppose the subtrees of a tree T, ordered from left to right, are $T_{1}, T_{2}, \ldots, T_{r}$. Consider the following recursive definition of the left to right preorder traversal of T : list the root of T followed by the preorder listings of $T_{1}, T_{2}, \ldots, T_{r}$. Thus, if the chuldren of a node h, ordered from left to right, are $h_{1}, h_{2}, \ldots, h_{s}$ then in the preorder listing of T the nodes $h, h_{1}, h_{2}, \ldots, h_{s}$ appear in the given order. Referring to figure 5.4 , determining which faces are immediately left-dominated by f is equivalent l to determining which of the relevant vertical sections of the chains are cut by f. Let f be any face of F_{ω} and let f_{p} be the face that immediately left-dominates f. Suppose we modify the preorder traversal of T so that when f is encountered, we determine, referring to figure 5.5 , if
the vertical interval of C between v_{t} and f_{p} is cut by f. For the special case in which $f=f_{\text {max }}$, no interval is examined.

Lemma 5.2. The faces $f_{1}, f_{2}, \ldots, f_{k}$, those immediately left-dominated by f, are discovered in order'during the modified prepostorder traversal of T.

- Proof: Clearly, all the relevant vertical intervals are considered, and so $f_{1}, f_{2}^{*}, \ldots, f_{k}$ will be found. We need to show then that if $x_{t_{1}}<x_{t_{j}}$, then f_{1} is found before f_{J}. Since f does not intersect any faces of F_{ω}, and also since each chain is monotone with respect to the x-direction, f may intersect a given chain at most once. Referring to figure 5.6, $x_{t_{i}}<x_{i_{j}}$ and so f cuts C_{i} left of C_{j} with the result that f_{1} will have been considered before f_{j}. Q.E.D.
. Since the face $f_{1}, f_{2}^{\prime}, \ldots, f_{k}$ are found in order, they can be inserted as the children of f. as they are found. Once the traversal is completed, f can then beinserted into its proper position amongst the children of f_{p}.

Theorem 5.1. The priority ordering) on the faces of F_{ω} can be maintained at a cost of $O(n)$ time per insertion.

Proof: The cost of updating T is dominated by the time fequired to execute the-modified prepostorder and preorder traversals on T, each of which requires $O(n)$ time. Since determinung the resulting pnority ordering amounts to computing the postorder traversal of T, which itself requires $O(n)$ time, the priority ordering can be mantaned at a cost of $O(n)$ tume per insertion Note that since the face to be insetted may immediaiely left-dominate $O(n)$ faces, any method which explicitly maintains the ileftdom relation will require $O(n)$ time in the worst case. ל.E.p.

5.3. The Deletion Problem

Consider the following problem: given a tree T, representing the ileftdom relation on a set $F_{\omega}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of faces, delete a face f from F_{i} and update T in order to reflect the changes in' ileftdom relation. Suppose the faces immediately left-dominated by f, ordered from left to right, are $f_{1}, f_{2}, \ldots, f_{k}$. To update T requires that we determine for each f_{i}, $1 \leq i \leq k\} f_{p_{i}}^{\prime}$ the face which immediately left-dominates f_{i} when f is deleted.

Removing f from T is a simple matter. As well, note that the subtrees rooted by $*$ $f_{1}, f_{2}, \ldots, f_{k}$ will remain intact, and so can be fremoved before we search for $f_{p_{1}}, f_{p_{2}}, \ldots, f_{p_{k}}$. - Given $f_{1}, 1 \leq i \leq k$, we know, from lemma 5.1, that the modified prepostorder traversal of T can be used to determine $f_{p_{i}}$. Suppose that in the traversal $f_{p_{t}}$ would be found before $f_{p_{j}}$ if $x_{t_{1}}<x_{t_{j}}$: Then a single traversal is sufficient to compute $f_{p_{1}}, f_{p_{2}}, \ldots, f_{p_{k}}$.

Lemma 5.3. The faces $f_{p_{1}}, f_{p_{2}} ; \cdots, f_{p_{k}}$, those immetiately left-dominated by $f_{1}, f_{2}, \ldots, f_{k}$, are found in order during the modified prepostorder traversal of T.

Proof: need to show that $f_{p_{1}}$ is found before $f_{p_{j}}$ if $x_{t_{1}}<x_{t_{j}}$. Extend a vertical half line upwards from each of $x_{t_{i}}$ and $x_{t_{j}}$, denoting them by l_{i} and l_{j} respectively. Since each chain is monotone with respect to the x-direction, each of l_{i} and l_{j} may cross a given chain at most once. Clearly, if $C_{p_{i}} \subseteq C_{p_{j}}$, then since l_{i} lies left of $l_{j}, f_{p_{i}}$ will have been considered before $f_{p_{j}}$. Otherwise, referting to figure 5.7, since no pair of chains can cross, and also since l_{i} lies left of $l_{j}, C_{p_{1}}$ lies left of $C_{p_{j}}$ and so the same result holds. Q.E.D.

During the traversal, the intervals of $f_{p_{1}}, 1 \leq i \leq k$, are considered in order from left to \therefore right, and so the position of f_{i} amongst the children of $-f_{p_{i}}$, can be easily determined.

Theorem 5.2. The priority ordering on the faces of F_{ω} can be maintained at a cost of $O(n)$ time per deletion.

Proof: The cost of updating T is dominated by the time required to execute, at a cost of $O(n)$ time, the modified prepostorderstraversal on T. Since detefming the resulting priority ordering demands only a postorder traversal of T, which also requires $O(n)$ time, the priority ordering can be maintained at a cost of $O(n)$ time per deletion. Note that since the face to be deleted may immedately left-dominate $O(n)$ faces, any method which explicitly, maintans the ileffdom. relation will require $O(n)$ time in the worst case. Q.E.D.

figure 5.6
e. \quad.

Chapter 6

Conclusion

*

Several new results pertaining to the priority approach to hidden-surface removal have been introduced. In particular, a new formalism, in which priority orderings are described as .trees, has been proposed. As ** well, efficient algorithms have been presented for solving the hidden-surface problem in various restricted classes of polyhedra. Note that with only minor modifications, the algorithms presented could be adapted'to include the degeneration of a minor base-face to an edge or a vertex. Finally, the maintenance of a priority ordering in a dynamic environment has been investigated, and efficient algorithms for the froblem have been intro-
duced.

Future research includes the development of. algorithms for more 'complex polyhedra. With respect to this thesis, several areas could be investigated. We have considered decomposing a scene in order to avoid potential problem areas. A better approach would eliminate only actual cyclio constraints. Another consideration when decomposing, is minimizing the number of faces cut as opposed to simply minimizing the number of cuts. Lastly, of interest is whether within some framework different from that presented, there exists sublinear algorithms for the insertion and deletion problems.

References

[1] I.E. Sutherland, R.F. Spproull and R.A. Schumaker, A characterization of ten hiddensurface algorithms, Computing Surveys 6 (1974), 1-55.
[2] J.G. Griffiths, Bibliography of hidden-line and hidden-surface algorithms, Computer, Aided Design 10, No. 3 (1978), 203-206.
[3] W. Newman and R. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill, New York, 1979.
[4] J.D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, AddisonWesley, Reading, 1982.
[5] H. El Gindy and D. Avis, A linear algorithm for computang the visibluty polygon from a point, Journal of Algonthms 2 (1981), 186-197.
[6] D.T. Leé, Visibilıty of a simple polygon, Computer Vision, Graphcs, and Image Processing 22 (1983), 201-221.
[7]. T. Asano, Efficient algorthms for finding the visibility polygon from a polygonal region with holes, Tech. Rept., Osaka Electro-Communication University, 1985.
[8] D. Rappaport and G.T. Toussaint, A simple linear hidden-line algorithm for star-shaped polygons, Tech. Rept: TR-SOCS-83.23, McGIll University, 1983.
[9] D. Avis and G.T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge, IEEE Transactions on Computers C-30, No. 12 (1981), 910-914.
[10] D.T. Lee and A. Lin, Computing the visibility polygon from an edge, Tech. Rept. Northwestern University, 1984.

[11] H. El Gindy, Hierarchical decomposition of polygons with applications, Ph.D. thesis, - - McGill University, 1985.
[12] B. Chazelle and L.J. Guibas, Visibility and intersection probleqs in plane geometry, Proc. ACM Symposium on Computational Geometry (1985), 135-146.
[13] G.T. Toussaint, An O(nloglogn) algorithm for solving the strong hidden-line problem in a simple polygon, Pattern Recognition Letters 4, No. 6 (1986), 449-451.
[14] H. Edelsbrunner, M.H. Overmars and D. Wood, Graphics in flatland, in Advances in Computing Research 1 (1983), F.P. Preparata, ed., 35-49.
[15] A. Schmitt, Time and space bounds for hidden-line and hidden-surface algorithms, Proc. Eurographics' 81 (1981), 43-56.
[16] F. Devai, Quadratic bounds for hidden-line elimination, Proc. ACM Symposium on Computational Geometry (1986), 269-275.
[17] T. Ottmann, P Widmayer and D. Wood, A worst-case efficient algorithm for hidden-line elimination, International Journal of Computer Mathematics 18 (1985), 93-119.
[18] O. Nurmi, A fast, line-sweep algorithm for hidden-line elimination, BIT 25 (1985), 466472.
[19] D. Rappaport, Eliminating hidden lines-from monotone slabs, Proc. 20th Allerton Conference on Communication, Control, and Computing, (1982), 43-52.
[20] R.H. Guting and T. Ottmann, New algorithms for special cases of the hidden-line elimination problem, Tech. Rept. 184, University of Dortmund, 1984.
[21] M. McKenna, Worst-case optimal hidden-surface removal, Tech. Rept., The Johns Hop- . kins University, 1986.
[22] R.A. Schumaker, B. Brand, M Gilliland and W. Sharp, Study for applying computergenerated images to visual simulation, Tech. Rept. AFHRL-TR-69-14, U.S. Air Force - Human Resources Lab, 1969.
[23] M.E. Newell, R.G. Newell and T.L. Sancha, A new approath to the shaded picturc problem, Proc. ACM National Conference (1972), 443.
[24] W.R. Franklin and H.R. Lewis, 3-d graphic display of discrete spatial data by prism maps, Proc. ACM Siggraph'78 (1978), 70-75.
[25] H. Fuchs, Z.M. Kedem and B.F. Naylor, On visible surface generation by a priori tree structures, Computer Graphics 14 (1980), 124-133.
[26] H. Hubschman and S.W. Zucker, Frame-to-frame coherence and the hidden-surface computation, Computer Graphics 15 (1981), 45-54.
, [27] F.F. Yao, On the priority approach to hidden-surface algorithms, Proc. 21st Annual IEEE Symposium on the Foundations of Computer Science (1980), 301-307.
[28] T. Otmann and P. Widmayer, On translating a set of line segments, Computer Vision, Graphics, and Image Processing 24 (1983), 382-389.
[29] J. Bentley and T. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Transactions on Computers C-28, No. 9 (1979), 643-647.
[30] D.E. Muller and F.P. Preparata, Finding the intersection of two convex polyhedra, . Theoretical Computer Science 7 (1978), 217-236.
[31] B. Chazelle, A theorem on polygon cutting with applications, Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science (1982), 339-349.
[32] E. Chazelle and J. Incerpi, Triangulating a polygon by divide-and-conquer, Proc. 21st Annual Allerton Conference on Communication, Control, and Computing (1983), 447.
456.
e
[33] M.R. Garey, D.S. Johnson; F.P. Preparata and R.E. Tarjan, Triangulating a simple polygon, Information Processing Letters 7 (1978); 175-179.
[34] S. Hertel and K. Mehihorn, Fast triangulation of simple polygons, Proc. Conference on

- Foundations of Computing Theory (1983), 207-218.
[35] R.E. Tarjan and C.J. Van Wyk, An O (nloglogn) algorithm for triangulating a simple polygon, SIAM Joumal on Computing, to appear.

1
[36] L.J. Guibas and F.F Yao, On translating a set of rectangles, Proc. 12th Åmual ACM Symposium on Theory of Computing (1980), 154-157.:
[37] M.I. Shamos, Computational Geometry, Ph.D thesis, Yale University, 1977.
[38] M.I. Shamos and D. Hoey, Geometric intersection problems, Proc. 17th Annual- IEEE Symposium on Foundations of Computer Science (1976), 208-215.
[39] A.V Aho, J.H. Hopcroft and J.D. Ullmann, Data Structures and Algorithms, AddisonWesley, Reading, 1983.

