
• 

.. 

c. 

.. 

'" 1 

. 
1 

G 

• 1 

..... 

t 

. " 

'., ~ '. 

1 i, .... 

.. 

\ 

J , Q 

» 1'· 

, 
\ 

: 

lIIDDEN-SURFACE REMO VAL L 

IN POL YHEDRAL-C~OSS-SECTIONS 
, 

by • ' . 
" Peter Egyed' " 

Sc~ool of Computer Science ... 
McGill University 

Montreal, Qztebec, Canada 
(, <V) July ~987 

.-. 

A thesis submitted J th~ 
l' Facu1~ of Graduare Studies and Re~earch 

in partial fulA11ment pt the requirements for the degree of 
'"---=- - -- • ~aster of Scien~ 

" 
© Petér Egyed 

, 

• .. 

' .. 

., 

) 



" 

,.;? 

',' , . 

, " 

h It ... ~ .. ,",,~ 

( , :. " .. ' ~, .. 
.. , .. (1.",1. ... ~ 

.. 

.. 
1, 

" 

0 

' . 

" .. ~ , • 
J .. 

, , 
, • • 

,1 1:. 

Abstract . 
" " 

.. .&t ~ ....... /.f'. ..: . ~. .. .~,~~"'(\. .. -
f' : ... ~t.~ • .. " 

.. ." ~,: f:- .... i·· . ~~ .. ' .. ,'" 
':1'~;~~" .. '.~.~~ \ 

~, lr'-~""j'J /: .,: • 
. r . . f>i~ ..,.~" 'rJ;' 1 \i<' ' • 

... 1 ........... ,....,.",iJ..~ '.~c-;-:_ • 
, '-' 4-- ~." ""r"'-' • ". ...; :"".,\ .. ;',,1" ' .• ;. :,,;1,~~'\." 

.. ". ,,; ri - .. , -t .. l, 

'~.' ;-,'(iItv .,. • ~~i 

".-- " • ~............ .;p-

. One, ~~ .. ~damental.~~b,lems in, computer graphies is determi:nng Whi~h portions of 
• "B~,#·:r..""· .. "! - \: .~ -

a scene a.fif·~i~ibt.ç from a glven viewing position. The problem is known as the hidden-line or 
.' . 

~ 
hiddeIÎ-sW:face problem depending on' whether edges or faces are. displayed. One approach to . ' 

the hidden-surface ptobletn involves assigIÙng priorities to the '~faces of a scene. A realistic 
.. "'- ' .. 

image is then rendered by displaying the face,~ with the resulting priority ordering. Although 

priOrl~ orderings have been researched, 'very little effort has gone inta the development of a 

J;.: 

mathematical theory .. In this paper'we develop a new formalism for describing priority ordé'r- . 
. '" 

, "". 
ings and propose effi~ient algorithms for dealing with a variety. of inputs. ~s weIl, ~e.present 

, -
-insertion and deletion algorithms for mainraining a priori~ ~r~ering in a dynamid envlronme~ 
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Un dës~problèmes fond'}mentàux dans le domaine des graphiques par,. çi~~af.e1l! est de 
'\ ,J l.rr~\ ',,/ f" .. . } 

déterminer l~s portions d'une scène qui sont visibles à partir d'un point-1ié Vue donné. Ce 
, ' 

problème est connu sous le nom de problème des lignes cachées ou de surface cachées, tout 

, 
dépendant si l'on présente à l'écran des arêtes ou des surfaces. Une des \ approches au 

pr~blème de surfaces Icachées consiste à attribuer des ~riorités aux faces d'une scène. Une 

image réaliste est ensuite obtenue en affkhant les faces p'ar ordre de pnorité. Bien que, cette 

méthode ait été étudIée, très peu d'efforts ont été fourrus pour développer ime théone '. . 
& ,,0 ~ 

mathématique~ Dans' cette thèse nous développons lm nouveau formalisme pour décnre les 

classements par priOI]té et proposons des algorithmes performants pour diverses classes de 

scènes. Egalement, nous présentons des algorithmes d'inSertion et d'~limination poùr. maintenir 

un classement par priorité dan,s un environnement dynamique . 
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Chapter 1 
. 1 

1 

Introductïon 
1 

\ 

When dlsplaying abjects, one of the most challenging problems encountered involves 
1· 

" removing the portions of the objects obscured ~\y others nearer ta the viewing position. I!-
" . , 

Depending on whether edges or faces are ~splaye~ the;, problem is commonly referred ta as 
~ li 

the hidden-/ine or hidden-surface problem. 

Due to the ~ariety Q/ applications, many ~ifferent' algorithms employing various" 

approaches have been .prop~sed. !n general, differences between the aIgorithms arise from 

different v'ariables such as, the complexity of the scene model, and, the required realism of the 

image. Despite their great diversi~, the algorithms all share one common characteristic: each' 
., 

performs sorne kind of geometric sorting. The use of geometric sorting stems from the need to 
~')' ... 

l' djstinguish those portions of the scene that are visible from those that are hiddeIl: Those parts .. 
" " that are hidden lie funher from the viewing position than the parts that obscure them. The. 

difficulty then, of the hidden-line and hidden-surface problems, arises from the complex nature 

• 
of orderings of objects in space. ' 

l' 
{ , 

Algonthms for hidden-lille and hidden-surface removaI can be broadly cIassified into two 

groups. lmage-space algorithms perform depth comparisons at each pixel of the display device. , . 
Their resulting time complexities are thùs dependent on the resolution of the display 6evice. 

, ~ 
Object-space ~gorithrns on the other hand, perform geometri~ comparisons directly on the 

objec~ ~n sorne abstract spa ct;., and so thelr time complexities are stric~y object dependent 

Much of the motivation for the development of hidden-lme and hidden-surface algorithms 
1 

stems from their ever increasing importance in computer graphies. As a result, a c6nsiderable 

c portion of the total research effort in the field has been guided by the practitioner' s viewpoint. , 

For an overview of the aIgo'rithms designed from this point of ;view see [1-4]. Only recently, 
, ' 1 

~. .I4f .... 

, ~ .. -' ' .. 
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" 'spurred by developm~ts in the new and fiourishing field of computatioaal geometry, has me 
- 0 ~ 

1 

theoretical nature of the problems begun to be investigated. \ 

The notion of visibility amongst geometric objects has been intensiv,ely investi~ated in 
1 ~ 

two ·,dimensions. Many different vanations on th~ hidden-line or visibility-polygon problem, 
- \ 

have been considerçd. El Gindy ana Avis [5], as weIl as, Lee [6J, each describe a linear and 

thus optimal algorithm for the case o~ a single po~Y'gdnal' object. An efficient algorithm for 

'"\ 
determining visibllity amongst a collection of disjoint polygons is proposed by Asano [7~. By 

restricti~g the input to' a single star-shaped polygon, RapMPort and Toussaint [81 are able io 
'. p' 

exhibit a very simple 'linear ilgorithm for the problem. Introduced -by 'A vis and Toussaint [9], 

J edge-visibility problerns consider polygonal visibility frOID an edge. The strong hidden-Une , 
,problem, which involves determining the region of a polygon visible from a specified edge, is . . . 

one such problem. Different solutions to the problem can be found in p'apers by L~e and Lin ' 

[10], El Gindy [11], Chazelle and G,uibas [12J, and Toussai~t [13]. Edelsbruriner et. al [14J 
. ' 

consider various visibilIty problems flssociated with scenes cdmposed of simple' convex objects. 

. " 

One invo1ves the mamtenance of a view during the insertion and deletion of objects, and tI:e 

, 
other considers frame-to-frame' coherence wrule walking around a scene. 

A vast amount of research in computational geometry has been devoted to, intersection 

problems. In arder ta display a three-dimensional image, thé scene must be projected onto the , 
viewing plane and any confhcts between components must be resolved. It is only natural· then, 

that the techniques disco~ered during the investigation of intersection problems be applied ta . , 

visibility problems in three dimensions. 

Many different solutions, having "varlous time and space requirements, have, been pro- "'" 

posed for the general hidden-li ne problem. In, arder to put the various results into perspective, 

let us frrst consider a few definitions. Let n denote the number of edges, in the scene and let k 

- 2 -. ' , 
1 \ 



, 

, 
, fi 

"'\ 
and r resp!!ctively denote the nu'mber of inters~ctions .of edges and the number of times an ' 

edge is contained gy a polygon, both in the viewing plane. Schmitt US] has demonstrated a 
" \ . . .... , 

worst-cas~ net?) lower bound for the problem. D\!vai [16] has establisned eci) time 

by presenting an optimal OCn2
) tIme aIgorithm. The algorithm requires O(n2) space a 

on existing Jbethods for computing line arrangements in the prane. Sorne output-sensitive - 'go-

-
rithms that depend on plane-sweep techniques also exist. Schmitt [15] presents such an, algQ-

rithm Wlth a worst-case runtime of O(r+(n+k)logn) and spa ce reqmrements of O(n+k). Also 

using th~'Pl,~.ne"swe~p paradign, IS an alg~nthn: propos~d by Gttmann;t al [17] th., requjres 

O(!I'f+k)lo )' time and O(nlogn) space. A modification to this al go ri thm., due to Nunru [18]" 

. , " 

,/" reduces the time requirements to O«n+k)logn) but also increases the space requirements to 
\. 

O«n+k)logn). Note tl';at these algorithms all require more than 0(;) time in the' worst case. 

By restricting 'the c1ass of input considerecr, other authors have ,obrained impro"\1 res~lts. Rap

papon [19] for exainple, presents a !inear aIgorirlun for the case of a single m~done slab. For . -
finitely-oriented sets of polygons, Guting and Ottmann [20] are able te obtain an algorithm 

which runs in O(nlogn+k) tIrne and require~' O(nlogn) space. 

1 

Sorne theoretical results have also been obtained in the area of hidden-surface rernoval. 

/ 
Schmitt [15] has dernonstrated ~ \vorst-case Q(n2) lower bound for the problern. As weU, 

Mckenna [21] has presented an optimal O(n2) rime algorithm thus establishing ~ 8(n2
) time 

bound. The' algoritpn requires OCt?) space and depend~ on existing techniques for computing 

line arrangements in the plane. One, method that shows great promise is the priority approflch. 
'i, 

-
This technique involves assigning depth priority nurnber' to the aces of a scene. The desired 

obscuring effect is then achieved by displaying the î es using the resulting priority or?ering. 

This type of procedure is commonly known as the painter' s aIgorithm. Suppose for a given 
~ 

/ 

viewinK position sorne face fI obscures another face f 2. This relàtionsJ:Ïp between the pair 

- 3 -
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must then. be correctly refiected by their assign~d priorities. Unfortunately, it is not alw~~s pos-
o .-

sible to compute priority orderings since cyclic"constraints may exist. On the other J1and, many 

scenes exhibit a rem~kable property in that it is possible to compute 'priority orderings for 
- • 1 

them before a viewing position is specified. This of course leads to significant u~e saVlngs. 
" . '1 \ 

during image' generation. Although severa! papers [22-26] have consldered various aspects of 

the problem, they fail ta deve!op any slgnincant theoretlcal insight into the problem. In con

trast, Yao [27] mvestigates the underlying mathematical nature of prionty orderings, and pro-

poses efficient algoriÙlms for a restricted class·of mput. For the class, Yao proves that for a . ., 
~ .. ~ . 

given view point the pnority ordering can be cornputed III O(nlogn) time using O(n) space As 

weIl, Yao demonstrates an B(n) bound for the reqUlred number of priority orderings. 

o ,----.<-- ...----- ~ 

The purpose of tlus thesls is to extend the work of Yao. In particular, we consider a new 

fotmalism for descnbing pnority orderings and present efficient algorithrns for deahng with a 
• C'j _., 

co , 

variety of inputs. As well, we propose algorithms for maintainmg a priority braering çluring a 

series of insertions and deletions. We now briefly describe the remainder of this thesls. In 

chqpter two, the class of scenes to -be considered is defined and sorne basic properties of the 
{ 

abjects comprising the scene are, deduced. A new formahsm for ?èscribmg priority orderings is 

introduced in chapter three. AIso, an exisqng algorithm due to Yao, and a modificatlon of the 

al gorithm , are presented for al .bclass of scenes that is predominantly two-dimenSlonal. In 

chapter four the most general class of scenes is cOllSldered. These scenes do not in general i. . " 

admit priority orderirlgs. To rernedy thrs situati(~m, different decompositions of ~e scene are 

proposed, and algorithms f~r ~olving the problem ar~ presented. Although fin?ing a rrunimum 

decomposition appears difficult, a heuristic is presented that uSis at most twice the minimum 

number of cuts. In chapter five, algorithms for maintaining a _priority ordering through a senes 

of insertions and deletions are developed. Finally> possible future' r~search is distussed in the 



• 

-
• , 

last chapter. 

~ ~ • .. 
,f 

, , 
).: 

, 

..Y l' 

" 

-"'! 

'~c , . 

• .. 
) , 

.. 

• .f 

1 

, 



..... 

i 

\ 

Chapter 2 

. \ The Scene 

The complexity of a two-didtensional scene is dependent on the class of abjects chosen ta 

represent the scene. In general, choosing, a class of abjects appropriate for a specIfie applica-

tion involves a Jrade-off between scene complexity and processing efficieney. We introduce in 

this chapter, a three-dimenslOnal scene of moderate complexity, whose two-dimensional proper-

ties afford an efficient solution to the hidden-s~ace I?roblem. 

In the sections of thls chapter, we first introduce sorne basic defiruuons ~d notation, then 

define the scene, and conclude by proving sorne properties of the scene. 

2.1. Basic Definitions 

As is standard in computational geometry, points are termed vernces, and pairs of points 

defining line segments are termed edges. A simple polygon P is a slillply connected subset of 

the plane whose boundary is a closed chain of edges linked by their ~ndpoints, with no two 

nonadjacent edges intersecung. We represent such polygons by a clockwise sequence of ver-
j.~~ 

tices, v li v2, ... , '\In' where each vertex VI is des~ribed by its cartesian coordinates (x" YI)' The 

sequence is assumed to be in sfandard form: i.e., the vertices are distinct and no three consecu-

,tive vertices, indices taken modulo n, àre collinear. A pair of consecutive vertices, say VI' "I+lt 

indices taken modulo n, termed the rail and head respectively, define the ,th edge and ill' 

represented by el' The se~ence el> ez, ... , e" of edges forms the boundary of a polygon P, is 
. .. 

denoted by bnd(P), and partitions the plane into \two open regions: one bounded, termed the 
\" 

interior of P ànd denoted by inr(p), and the othe~ unbounded, termed the exterior of P an4 

denoted by e.xt~P). 
; 

-6-
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2.2. Defining the Scene .. .. 

• 1 

• 

, t ~ 

A polyhedron is a soUd" bounded by si~ple poly,gons. termed faces, sa that each edge is .;~ \o~~ 
, • I~' 

shared by a pair of adjacent faces ariçl no two nonadjacent faces intersect. We define.-a scene:~ ç 

the cIass of input to be cokidered, as' a collection S = (PX 1. PX 2, .••• PXm ) of" nonintersecting . . , 

poly~edral-cross:sections. A polyhedral-cross-section is a polyhedron of restricted form that is 

enclosed by baselaces. simple , polygo~ and 

Pt = (VII, VI Z, "'. V, II ') that lie in paraIlel planes Z = Zb • and Z = ZI respectively, and aIso by a 
1 " ", t _ l , f 

l , 
collection FI =( (Ji l' fi2. "'f fin ) of simple polygons. termed lateral-faces, that connect Pb and 

PI' The base-faces Pb and Pl are named with the conv.ention Zr > zb "and termed the top and 
J '1 l , 

bottom base-face respectively. Note ~at a vertex Vi of a base-face is described by its planar 

. 
cartesian coordinates (XI" YI) and the plane % = ZI in which it lies. Given a three~dim~nsional 

abject G. let its projection onto' the x-y plane, termed the x-y projection. be denoted by G '. 

Pb, and Pt, are restricted so that either P;l ~ Pl; or Pl; ~ P;l' ÂÎternate symbolS~for~ the 

base-faces are derived ,from the containment relation: if P;I = Pt: ' then the minor base-face, 

. . 
denoted by Pm, is Pl • and. t1}& superio-" base-face. denoted by ps • is Pb,' otherwise Pm, is the 

""' , 1 1 1 
o 1 

properly contained base-fa~ and PSI is fu7 other. . For "simPl~city we~hall denote 

() 

~ 

int(Pj} n int(Pj} by r(P" Pi)' The placement of the polyhedral-cross-sections is restricted so ~ 
, " 

) 

that given, any pair PX" PX}, of S. if r(p; , p;") :;é 0 and zb < zb then Zl $ zb , i.e., if the x-
I J 'J 1 J 

y projections of two polyhedral-cross-sections intersect, then one lies abàve the other. A 

, 
pelyhedral-cross-section is composed of base-edges, those that form the base-faces, and 

. lateral-edges which together fonn the laternl=faces. Let Ll, êa binary operator on si~ple 

polygons, be defined sa t!Jft PI Ll Pj = Pi - int(fj)' A lateral-edge links a vertex of each of ' 

-P'"i and PSi' i.e., of the tYpe Vmlj,vsil' is denoted b>, ejJl' anq is restricted sa that, 
" ') 

·7· 
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denote the complexity of the scene, L IPbi 1 + IP'i 1 = Lnb, + nti , by n. 
/ • ;=1 ;=1 

2.3. Pr,operties of the Scene 

~ present in this section a theorem penaining to the two-dimensional properties ofoa 

1 • 

polyhedral-cross-section. In order ta prove the theorem we first propose several lemmas. Nôte , 
.. 

that the reader may skip the proofs without any 10ss of continuity. . ~ 

Lemma 2.1. A lateral-face fi of à polyhedr~:cross-section PX is eithef a tnangle bounded by 
:' 

1>..,. 4P' 
two l'ateral-edges and a base-edge, or a convex quadrilateral bounded by two lateral-edge.s and 

.. a pair of parallel base-edges, one from each of the base-faces. \ . 

Proof: Let Vb and V, be the subsets of the vertices of Pb and Pt respectively that crèfine fi' 

~ Consider the plane B in which fi lies and its.intersection 'Yith the parallel planes Bb ~d BI' 

. 
defined as Z = Zb and za= Z, respectively. The intersection betw~en a pair of parallel planes 

and a third plane not parallel.to the pair, is a pair of parallellines. With respect to 'the intersec-
• 

tian of B with Bb and B;, we denote the pair of parallellines by lb and I" Referring to figure 
""'-"'\ • 'iii. _ 

• 
2.1, sinœ, the vertices o"f Vb and V, lie in lb and I" ~d also since lb and I, are parallel, the 

vertices of each of Vb and y, are consecutive vertices of f;, and so must also be consecutive 

vertices of Pb and P", But the vertices of Pb and Pt are in standard form and 50 Wb l'~ 2 

and 1 Vt 1 S 2. In the case where Iii 1 = 3, fi is a triangle and 50 'each pair of vertices define 

... '1~\ \ ~ -

. an, edge,. \Vith the result tlJ.at fj is bounded by two lateral-edges l')Dd a base-edge. If on the • 
'il 1 \ _ ' ~ 

'. other hand Ifi 1 =~, then Vb and V, determine thé,pâiallellines lb an~ II and so fi is a con

vex quadrilateral bounded by two lateral-edges and a pair of parallel base-edges, one front each 

of the ,base-faces. Q.E.D. 

, 
. - 8 -
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" 
Corollary. There are O(n) lateral-faces in a scene. . - " 

, , 0... . 
J'roof: Each edge of a polyhedron is c~)Jl~mon to two faces. Since each lateral-fe,ce is hounded 

by one or two base-edges, and each" base-edge bounds the top or the bottom hase--face, the 

-<l 

number of lateral-faces is O(n), 

Define !.polygonal-chain C as a chain of convex polygonal faces in which each Iink in 

the chain is an edge common to two adjacent faces and no two nonadjacent faces intersect. 

. 
Lemma 2.2. The set F'= (/.1' f 2. "0' ft) of lateral-faces of a polyhedral-cross-section PX, 

form a closed polygonal-chain C Iinked by lateral-edges. 

, 
_Proof: We know thit each lateral-face fi is convex and bounded in part by two lateral-edges. .. (} ~ 

o ., 

As weU, e~ lateral-edge is shared by a pair of adjacent lateral-faces. Now, since the number 0 

o 0 
of faces in a polyhedron is finite, the lateral-faces form a c10sed chain e with the lateral-edges 

as the links. Finally, no two lateral-faces intersect unless t}{ey are adjacent faces, and so C is a 

closed pol~gal-chain. Q.E.D. 

Lemma 2.3. ,Given two lateral-faces /; - and fJ of a polyhedral-cross-section PX, 

, ~ 
r(fj, Il} = 0. 

Proof: Let C denote -the polygonal-chain of th: lateral-faces of PX. If nfi','1 1> ;é 0, then C' 

t> " / 

must be properly seIf-intersecting. However, if this is true, then either Pb or P, self-intersects, 

.or bnd(P~) (1 ut(P;);é 0, both of which Iead ta contradictions. Q:E.D. 

~' 

We are now ready ta prove the main result of this chapter in which the g~neral shape of 

a polyhedtal-cross-section PX is deduced. 

Theorem 2.1. The x-y projection of the set F of lateral-~aces of a polyhedral.cross-~ection 

PX, represents a convex non-overlapping decomposition of P; L1 P;". . . . 

• 9 -
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Proof: This follows directly from lemmas 2.1 - 2.3. Q.E.P. 

1 • • 

Referring to figure 2.2, consider the two-dimensional properties of a polyhedral~cross. 
Y.- •• ',' 

section as proved in the theorem of this chapter; that the lateral-faces are conve~ and tha~ their 

x-y projections decompose the difference between the x-y proJ\ctions of the superior and minor 
.. 

base-faces, are used extensively in the development of an efficient sofutio'n}o the hidden-
«:" 

surface prob!em. 
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Chapter 3 

Elementary S cene~ 

, " 

1 , 

, . 

In this chapter we ~Qnsider the priority approach to Jtiaden-surface. removaI with respect 
. ' '~~.~.~ ~.;; ~-' 

to scen~s tha~ although comprised of polyhedral-cross-sectloriS,- are predominantly two dirnen-

~iona1. The .~hedral-cross-sections of these scenes are restricted so that the set of top base- • 
C\- l " IL 

faces and the set of bottom base.fa~es each -lie in a' fixecÎ' z -plane and 'each pair of base-faces is L 
congruent. '.:fiJ'\,,'t ~~:' 

. '.~~r'-
In the ~st section of fuis chapter, we formaliz~ .the prob1em of computing priority order-

ings ror ~Stricted, class of scenes. In the second and last s~ction, we reÎJroduce, due to their 

importance with respect to this thesis, the results of Yao [27] on the priority appro<ft::h to 

, 

u 

hidden-surface removal. The algorithm proposed by Yao involves two passes of the data set: • 

, 

'~~~ .. the ~Sdetermines a partial ord~~ng 9f the faces of the scene ~d the second topologically-

\ 

\ . 

'. ' . - . 

. . 
sorts the ordering yielding a !inear ordering of the faces. In addition, we present a new formaI-

ism for describing priority ordenng~ which Ieads to a simple modification to Yao' s al gon thm, "-
o ~ 

eliminating the need tar the second pass. We have recently learned that this modIfication was 
j 

, 
independently discovered by Ottmann and Widmayer [28] witht"b the context of lipe segmt!nt , 

translation. We note however t'hat our method of proof, on wruch another chapter of fuis thesis 
... :.JI. 

~ . 
depends, is of a completely diffàent flavor than that of Ottmann and Widmayer. 

i 

3.1, . Problem Description 
\ . -
Consider a. scene S = (PX 1. PX2, .:., PXm ) of polyhedral-cross-sections. Refemng to 

fig-ùre -3.1, consider a class or, input restricted so that for each polyhedral-cross-section PX" 

• l!'.;. :. Pl;' Zb{ = Zb, and ~, = ZI where Zb a~d :lI are each a constant. Furthe;IDore, lateral-edges 

Hnk the similar 'vertices of each base-face. V\e shaH réfer to each polyhedral-cross-section_ PX; 

·12· 
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of such a scene, as a prism, Since Pb. = P.I.j 1 we refer ta each as~", 

( 

. 

-. 

Ta define a dominance relation between the, faces of a. scene, requires' that a viewing 
'-... 

model be chosen. We choose the parallel viewing model since it affords a simple ~alysis and 

is of practical importance i~ many applications, In the parallel model, refer ta figure 3.2, 

parallei rays emanate from 'an observer at infiruty and head towards The scene. The observer's , 

.' .·~vi~w is then completely detennined by the p~r of angles (~' $), 0 :::; 8 :::; 21t and -; :::; <l>:::; ~ ... 

formed I;>~ the, projections of a ray r onto th: x-y and x-z plahes respectively, 

, 
DefiDe 'the outw(lrd normal vector of a face as the umt nonn~ of the face directed away 

. 
from the interior of the polygon, Given an observer, each fape whose outward nonnal vector . , 

" . , 

has no component in the direction of the observer, is inVISIble, We c:Îll such' mvisible Laces, . --
back-faces, and describe the remaining potè'ntially visible facel as -visible, Having discarded the 

D " ~ 

back-faces, displaying th'e remaining vis~le faces ~iÙl a v~id pri~~ty ?rdering, results in a 
1- ".\ 

correctly rendered scene. 

Consider a scene S of pris ms and suppose $ ;é 0, then either all the top base-faces or all 
" 

the bottom base-faces are visIble, otP,erwise ijl = 0, and then no base-faces are visible. Any ray 

r that intersects a visIble base-face must do so before intersecting aDy visible lateral-fa"ce,.and 

aIso may Dot intersect any other visible base-fqce, Thus each of tfle visible base-faces has an 
• \ 1 -

. equal and highest priority. SoIvmg the hidden-surface problem for 11 scen~ of prisms, using a 

priority based approach, is then imatter of determining a valid priority OrdttPiDg for the visible \. , 

lateral-faces. Consider the cases in which ~ = 2E. or $ = lE., . The s;lution in these cases is 
22, 

trivial ~ince the lateral-faces are aIl back-faces. We assume therefore that -; < $ < ~. 
, , 

Let F be a set of faces: Define 'l'(F,.r) to be the partial ordering of the faces of F 

induced by their arder of intersection with a ray r. Let F = (f 11 12, ... , ln) be the lateraI.:? ' 
-, 

.-.+ .. 
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faces 'of S, Consider any ray r in a fixed direction (9, 0) that lies parallel ta and between thé .' . 
planes Z = Zb and z = Zt' Let R be the famil~~ of rays for which for each S ER, s' = r'. 

~ -

\ 

" -
Since for each ray S ER, 'f'(~ ~ ~) and 'f'(F ~ r) are consistent, tht problem of detex:nining a 

valiil priority ordering for the visible lateral-faces of F is independent of 4>. As a result, the 
~ , 

-. . 
problem can be further simplified: de,terÎnining the required ordering is equivalent to determin-

ing, in two dimensions, a valid priorlty ordering for the visible edges of F' = Cf;, 1 ~, ... ,1:) 
J . , .. ....... 

in ûie ,direction 9. A,s a matter of convenience, an edge of F' will be referred ta by' its 
o 

,correspônding face in F, 

" 

Consider a clocÏcwise vi~-inte~ ro = [p 1> -Pù, defined sa that 1 cO 1 is rnaxinUzed with . , . , , . 
-: '\ -" ' 

the..ocondition that if f, is visible- for any angle e e. ro, then l, is visible for aIl angles e E ro . • 

, Since a face li is visible over an interval of length 7t, the complete interval [0, 2n] is properly 
) . . 

divided infr.! at most n view-intervals, each of which contains O(n) faces in general. 

:"'110 

In the next section, two imponant results are, discussed: one, that there exists a static '"', 
, :;-. ,t , •• ' -. .~ ~~~:. ,: 

priority ordering f~r a scene of prisrns within any view-interval, and two, that rhi:s ordering can' ., : .. 

be cornputed quickly, 

3.2. ProblemSolution 
. . 

'. 

. 
We now present Yao's approach to cornpuiing priority orderings with sorne improve-

ments. While the worst-case complexity rernains the same, sorne simplifications to the algo~ 

riù'ml are obtained. The simplifications arise due to the introd'uctioJl of a new formalism for 

describing priority orderings. The new. orderings introduced will be used in subsequent 

chapters. 

Before ~ solution can be proposed, it is necessary ~o discuss the abstract representation of . ~ 

a scene, The problem of representing a scene S is easily resolved since it clearly suffices to· 
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represent S by S'and the bounding planes z = zb and Z = Z/. Each Polygon Pi of S' can be 

suitably represented by a doubly-linked-list of its verti~s . 

Given a scene S and a view-mterval co = [Pl> P2] we can, without loss of generality, 

rotare the scene so that the view-~nterval can be expressed as co = [0, P J. Let FCJ),. a subset of F, 

be the faces of the view-interval co. If for a view-interval co, a face Jl must be assigned a 

higher priorit)' th~ an face 'f" we say that Jl dominate~ J, and fenote the relationship ?y 
..... .. 

Jl dom J,. Referri.pg'to figure 3.3, c0nsttr ,an edge J, and define the region R, to include the . 
two half-Hnes deterinining its boundary, but exclu de the portIOn of Jt not Iying on the half-

tines. Suppose for view-jnterval (J) that f, dom f:, then f} must mtersect the region Ri' Of 
1 

the two vertices determining a face Il' the taïl is denoted by v, = (X'I' YI) and the head is 
• J 

denoted ~y vhi ~ (Xh,' Yh,)' Referring to figure 3.4, suptose I} dom fI' ~en either J, inter-

sects the half-line boundary of R, contaïning VI , or i.e does not; these cases are denored respec-. 
, 'tively by f, leftdpm f, and f} rightdom f, . 

Theorem 3.1. For any view-interval 'ffi =: [0, p] of a scene compo~d of prisms, there exists a - , , 

priority orc,iering on the faces of FCJ) eYao [27]). • 

Proof: Refemng 10 figure 3.5, cODSlder th~ following three ~acts: (i) the relation leftdpm is 

acycIic; (ü) if f, .rightdom JI' then. X" > x,,; t{iii) if fj leftdom J1 and J, rightdom he, then 
~ 

j 
~ -

f, dom J,,- Of the maximal faces with respect to leftdom, i.e" those tP.lit are not left-

. 
dominat~d, consider tl'le qpe whose tail has the largest x-coordinate and denote it by J ~, We 

. / ' "1 

will now show that f m is not dominated"by any other face. First, suppose that the tails of two 

• 1 • 

faces have the same x-coordinate, then one must left-dominate the 'other, conséquently f m is 
A • 

unique. Let J, dom J m' then since lm fs I?aximal ~ith respect to leftdom, f, rightdom J m' 

By fact (:), there exis~ noncyclic sequence 1 k: leftdom Il leftdom ... leltdom l, such that 
'" 
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J , 

~ima1 with respect to leftdom. Note, if li is ~ax.ima1 wi~ respect to leftdom th~n 
. , 

h = fi' Applying fact (iii) to the sequence repeatedly yields 1 k dorA lm. Now, since lm is 

'-

maximal with r~spect ta leftdom, 1 k rightdom f m' and by fact (ii), XII; > Xl,"' But f m was 

chosen 50 that, of 'the maximal elements with .. respect to leftdom, its tail had the largest x-

coordinate, thus .we have a contradiction. SiIlQe for any Foo there exists an element / m that is 

maximal with'respect ta dom, there exists a priority ordering on Foo. Q.E.D. 

Consider a relation ileftd~m, defined 50 that l, Ueftdom l, if and only .if 'f, left-
• 1. 

. . 
dominates fi immediately fro~ above, i.e., no face intersects the left half-line of R, below /j' 

A face i&, of course maximal with respect to leftdom if and qnly if it is maximal with respect to ' 

.~ 
iIeftdom. Suppose we add a face f max that 1eft-dominates all other faces, then f max is the only 

face maximal with respect to iZeftdont. Since each face, with the exception of / max' is immedi-

. 
ately left-dominated by only one face: the relation ile/tdom can be represented by i! tree T 

rooted by f m:lX#. Let T be arranged 50 that the children of anode f, those immediately left-

;; 
dominated by /. are ordered from left ta nght by the value of the x-coordinate of their tail. 

r ' l ' 

.-- Suppose the subtrees of a rree T, ordered from left ta right, are T 1> T 2, ... , Tr . Consider the 

following recursive definition of the left ta right postorder traversaI of T: list the nodes of 

\ TI' T 2' ... , Tr in postorder ail foll?wed by the root of T. Thus, if the children of a nodt: h, 

ordered from left ta right, are h 1> h 2, ._ .. , hs~ then in the postorder listing of T the Dodes 

h,l' h 2' ... , hs ' h appear in the given crder. 

- -
Theorem 3.2. The Jeft ta right postorder tr~versal of tJ1e tree T yields a priority ordering on 

, . 
Foo, which can, be opti~al1y caJculated in O(nlogn) time ~ing O(n) space . 

l "-

Proof: Let f be a face of Foo, then referring to figure 3.6, let Tf be the subtree of T in which 

the faces occurring before f in a Ieft ta right postorder traversai of T, have beëii eliminated. 

Also, let Lf be the left most patlf, from root to leaf, of Tf and note that the leaf of Lf is f. It 
1 -
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, 

is sufficient ta show, by theore~ 3.1, that gi vèn f and the faces of T - Tf' of the faces l}1axi- . 

mal with respect ta [iftdom, the tail of f bas the largest x-coordinate. Referring to fi~e 3.7, 

consider the partition of the faces in Foo induced by the ileftdom sequence represented by LI' 

Denote the partitioning !ine by Cf and note that Cf IS either piecewise !inear and' descends 

from leff ta right, or is vertical. Also, by the definition of ileftdom no two partitioning lmes 

may cross. Clearly then, given a face of t - Tf' either its tail lies left of Cf or it is a descen- ~ 

d~t of f in T. Therefor~-, given f and the' faces of T - Tf' f is maximal with respect ta left

dam, and of those faces that aie maximal with respect ta leftdom, the tail of f is rightmost. 

It now remains ta show that the postorder listing can be computed in O(nlogn) time. 
o 

Suppose' the faces are processed so that a fac;:e f and those faces immediately left-dominated 

. 
by f. f 10 f 2, ... , fic> ordered, by the x-coordinate of their tail, are encountered in ilie order 

f, fI' f 2' ... , h· This enables the construction ~f a doubly-hnked-list in which a face is 

" 
inserted before the face that irnmediately left-dominates it, achieving the desired suborder of 

The problem is solved wüh a plane sweep technique similar to that used oby B.entley and 

otbann [29]. Referring ta figure 3.8, consider a vertical line 1 through Vt , the tail of a face f, 

and its intersection with the elements of Foo. The face of FO) that intersects 1 directly above Vt, 

.imrnediately left-dominates f. Since no two faces intersect, the ordering of the intersections of 

the ,faces with [ as it is swept from left to right, changes only as an end point of a face is 

encountered. The ordering, as 1 is swept from leff: to right, can therefore be maintained in a 

balanced tree in which a face f is inserted ;vhen its tail is processed, and deleted when its 

head is processed. The face that immediately left-dominates f is found when f is inserted. 

Since the tails are encountered from left to right, a face f and f 1> f 2, ... , ik, those faces 0 , ... 

immediately left-dominated'py f. are,encountered in the arder f, f 1> f 2' ... , h âs desired. 

- 17 -
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In O(n) time the back-faces can be eliminated and the scene rotated so that 0) = [0, pl. 

Computational details concerning back-face elimination and scene rotation can be found in [3]. 
1 ? 

The end points can be sorted according '~o their x-coordinate, with special attention paid to 

points with the same x-coordmate, in O(nlogn) rime. Each insertion into" and each delerion 

from the balanced tree can be _ done in O(log,n) bme. In addltion, O(logn) time is reqUlred fol-

lowing each insertion in arder to determine which face immediately left-dominates the insened 

face. Thus the total time spent manipulatmg the balanced tree is O(nlogn). Smce each insertIon 

, 1 
I! ioto the doubly-lînked-list representing the pnority ordenng requires 0(1) time, its constructlon 

requires O(n) time. The priority ordering can therefore be determmed III O(nlogn) bme, and 
,~ 

since e.ch data structure use~has ~i;t) space requireroents, usmg O(n) space. - . 

. The optimality of the alO\orithm follows simply SInce sorting IS linear time transferable ta 

the priority ordering problern:' Consider a set X = (x l, x2' ., xn ) of n distinct integers. Of the 
~ . 

elements of X, let Xmax be the largest. Suppose we wlsh to son X III descending order. Refer-

ring to figure 3.9" map !!ach XI ta a horizontal line segment as foIIows: 

XI ~ [exp X max - XI)' (x max + 1, X max - xJ J. Clearly, the resllltIllg set of liqe segments has a 

unique pnority ordenng for the direction a = 0, and this ordenng corresponds to the sorted 

values of X:. Since the g:..qpsformations obviously require linear time, the algonthm is optImal. 

Q.E.D. 

A scene is said ta be k-regular if'number of view intervals is.k. In ·general, no two faces 

will be visible over the sarne interval of length 1t and so k = n, however, there exists scenes in 

which k <e:: n. By angular 'sorting, the k view-intervals can be ca1culated in O(nlogn) time. 

The k priority orderings, which are sufficient for ail views, and the corresponding k lists can 
q 

be calculated in O(knlogn) time and stored in O(kn) space. Displaying the scene from a given 

o view point (9, cp) requires an O(logk) time search to locate the required· view-interval, Oen) 
.r 

, - 18 -
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, time .to project the scene, and O(n) display commands to render an image. The compl.\tational 

paniculars regarding scene project!on and displaying can be found in .[3]. 
1 

ln the next chapter we extend the theory 50 far yveloped ta include more general classes 

') . o 1 

of scenes. In th~se. scenes the base,faces e no longer restricted ta two z-planes and ea\~h pair 

of base-faces are not necessarily congruent. 
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So fàr we have conside,red scenes qf polyh~dral-cross-sections whose two.:mmensional 
, 1 

properties afford an efficient folu'tion to the 'hidden-surface problem. These t\1.!o-dimensional 

properties resulted largely from the placement of the base-faces. In thi; chapter we examine 'a 

more generaI class of scenes, in ,which the placement of base-faces is not' 50 rigidly confined, 
" 

In general, these scenes do not admit priority orderings on their faees, i,e., the corresponding . ... 
leftdom relation is cyclic. To remedy this situation, a scene is decomposed so as to eliminate 

potential proble'm areas. ~ 

J 
. " ' 

ô; , , 

In tfiF t section of 'this chapter, we àiscuss nonoverlapping scenes, those' for whlch no 

" two x-Y' projections of superior base-fac~ intersect. For these scenes we consider vertical 

decompositions in arder ta avôid prablem situations. The most gener~l class of scenes is 

trdted irt ~e last section. These scenes require botft vertical and horizontal decompositi~ns to 

elirninàte p~tential problem areas. 

1 

~.1. Nonoverlapping Scenes 
~ 

Cansider a scene S = (PX l' PX2 • .... PXm ) of polyh~aI-cross-5ections and let 

,F == (j h f 2' ...• f,,) be the corresponding lateral-faces. R~striçt S 50' that far'· any pair , ' 

• PXj , p~J of palyhedraI-cross-sections, reps,'. PSj') = 0, Cali each polyhedral-cross-sèction of 

such a scene a column, . As rem~ked in the previous chapter, an observer's view-point in the 

paraI1~l viewing mo'del is completely determined by the pair of angles (e, cp), 0 :::; e :::; 21C and 

-=! <' '" < 2E. ' We assume .:!.< '" < 2E. since we will co.nsider the special cas,es in which 2 -'1'- 2" 2 '1' 2 

'" -1t '" 1t, '42 '1' = - or '1' = - In sectlon . , 
• 2 2 < 

• 25~' . 
, . 
, " 
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Unlike ~,n a scene 90mposed of prisms, tHe top and 'bottom base-faces of a scene c0ry.-
.. - \, {r ; 

structed from columns,do not necessarily lie in respective z-planes. Consequently, referring to • 
" ~ 

fi~e 4.1, for a fixe~ vietg position (0, $), the vrsi~le base-faces do not necessarily have. 

equal and Îtighest priority. Thus it is no lon~d sufficient to simply detennine a valid priority 

" " 
ordering for the ~et of lat~ral-faces. The question then is, is it even po)sible to compute a ,~ 

--- priority ordering fo~ fue éombi~ed set of lateral-fa~es and base-faces? ln general, the answcr is 

, no. Referring to figure 4.2, it is simple to construct a scel}e of colunms in which for ~ny vic*-

" ing position, there~exist a. base-face and lateral-face that detennine a cycle, i.e., nClther can 

have a higher priQnty than the other. Ta remedy tlus SItuation, we will inrro'duce a- vertlC:11 . 
decomposition of the scene which easily adapts ta the existing frarnework 1 

~ . 
It is of course desirable ~to render.the problem independent of <\l,--and hence reducc il t~ <t) 

two dimensions. Note however, that a lateral-face in general position may no t, for a fixcd valuc 

of e, be v[ble through the complete range of <\l, yet may, fot speClfi~ value; of C\l, be visiblc 

" . ~ 
through the .. entire range of a. -Clearly, tlus disquahfies from consl)cratlon any rnc'thod /1411 

computes a pnority ordering after the elimination of the back-façcs. lnstcad, we adopt a !>tr,l

tegy that computés a view-interval dependent total ordering of the faces In a scene Given a 

viewing position, tpe back-faces can then be quickly éliminated. 
~ ~ 

su+se each ntin~r base-face P m{' of S is triarigulated., Euler showed that a planar graph 

Il 

on n venices has O(n) edges and faces. Consequently, referring 10 figure 4.3, lhe dccompo\l-
- .( 

tion of the minor base-faces yields O(n) triangular-faces and induces a vertical decumpo!.llwll 

of S. Redefine,F = (j l' f 2' ... , f,,) ta include both the lateral-faces and tria~lar-faœ~ of S 

~, , 1 , 

Note that the. elements of F '= (j 1 ~ f 2' ... , f,,) are edges and coovelt polygoOli. and , 
, 1 ;'';t.: ~ 

r(j, , f}) = (2) fcit-âny pair f,. f, of F. 

1 

\ 
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Lemma 4.1. Any" priority ordering on me elements' of F~ for a fixed direction e, is ";;lid on 

the faces of F for every direction (e, 4». 
4 

Proof: Let.r be any ray with direction a in the x-y prane. Define R to be the farnHy of rays 

for wruch for each ray S ER, s' = r. In arder ta establish the required result, it is sufficient 

• ~" a. 1 • 1 

ta demonstrate that for any ray S ER, 'P(F. ... s) and 'l'(F , r) are consistent. Let f, be any 
. t • .. 

face of F, and s any Jay of R. Since f, is con~ex, s intersects f, and r imerseds f/ at most 

• once. Then, refemng to figure 4.4, sinse for any Rair f" fj of F, nf,';./;>-= 0, 'l'(F, s) and 

'l'CF', r) are consIstent. Q.E.D. 

AlI iliat remains, is to bring the superior bas~-facés into the argu~ent. Let F, be the sét 
. , 

of lateral-faces and triangular-faces of a column PX,. F,' defin~s a n.on-overlapping decompo-

sition of 'Ps;' in that F; = f:'. Srnce each non verti~al face of Fl is associated wit!'t a unique 

( . ( . 
component of the decomposition of Ps ~suffices ta compute a priority ordering solely on the 

• 0 • 

ln order to process a scene S, a sui table rep~sentation 'of each column of S is requfred. 

From such"a representation, the base-faces and lateral-faces must be immediately available. To . .. 
satisfy this conclltidn a planar ~~ph structure, l!lch as ~e doublY-COnnected-ed~e-list of Muller 

• • 
.• anq Preparata [30], is used. Note lhat due to vertical lateral-faces, the x-y projections of two 

. 1 . !IV 
edges may overlap. However, due to the superior and minor labels of the base-faces,. conflicts 

can be resolved and so a planar grap1;l structure is s~ll appropriate. The main compone9.t of 

the doubly"'-connected-tfdge-IiSt is the edge-node. There is a one-to-one correspondence 

between the edge-nodes and the edges of the graph. Bach edge-node consists of six' fields 

named Vit V 2• FI> F 2• PI' and P 2: The fields VI and V 2 ~ontain,the names of the head and 
\" 

~ 

tail of the edge respectively, effectively orienting the edge. Given this orientation, the fields FI 

, 

~d F 2 conpin the names of the faces which lie to the left and to the right of the edge 

- 27 -
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. . 
respectively. The field Plis a pointer to the edge-node containing the next edge about V 1 in 

-
the counterc1ockwise direction. P 2 is defined analogously. This r"epresentation is suitable since 

.1';,Ii 

for any edge it is possible to stan walking clockwise around elther of its adjacent faces: In 

. 
addition, each step of the walk involves only a constant amount of work, and so .the faces c:m • 

be retrieved in O(n) time. So that the lateral-faces and base-faces can be distinguished, a type 

indicator field is includetl with each edge-node. 

Before attempting to compute "a priority ordering on' F, it !s nt!c~ssary to triangulatç ti1t! 

minor base-faces of F. Since the triangulation of a minor base-face docs not effect tilC plan.lr-
• • t \ 

~ 

ity of the porresponding column, the c1oubly-connected-edge-list r~mains a' suitable repre~cnta-
," .~ 'r , 

, ,"·H, ' ~ 
,,~ .... ,,", . \. 

tion. So that.~~~~l~~faces can be distinguished, the type ind~cato~ of each edge-nouc 
.. .- "·"':.~IW:' ~ .. ,~, "':;'~~ 

" .l',., ,,""" ( 

~presenting a manglJ!.~~n etige is 'appl'8priately set. 
, ' , .. 

. " .' 
Lemma 4.2. The ~set' M ~ W ml' P mz' ... , Pm,.) of minor base-faces can be triangulated, and the . , 

corresponding doubly-~nnected-edge-lists updated, in O(~/ogn) bme using O(n) space .. 
, . " 

.; .. "" " . 
l'roof: Many algorithrns 1.'31-3.4] e,xist for triangulating a simple polygon in O(n/o8n) ume and 

'i 

0(, .. space. With respect to this thesis, these results are sufficient However. it should be men· 
'".!, . 

tioned that Tarjan and Van Wyk [35] have recently discovered an O(n/oglogn) rime algoriLhrn ' 
• 

Each minor base-face is' a simple polygon. Since there are O(n) venice~ determining the ln 
. . 

minor base-faces, the m minor base-faces ca~ be extracted from the doubly-connected:cd.le. 
• li ... (" 

l,ists in O(n) time, and subsequently triangûiatcd in O(n/ogn) Urne and O(n) space. Glven a Ii<.,ll 
\ ' 

of the O(n) triangulation edges, it remall1S to !'how mat the doubly-connectcd-ooge·lbt!l 'can hé 

qukkly updated. Conslder a mlOor basc-fJce Pm and the cOlTcsponding dout1ly·conneclcd 

edge-list. Allocate an edgc-node for each tnangulatlon edgc. and arbitrant)" dc~ignalc the heat..l 
. 

and tail. Refemng to figure 4.5, son the the triangulation edbe~ 50 that (or each vene" v ()f 

.b • 
Pm, the edges with v as an endPoi'nt are soned counlérclockwi~e between the bounding cdgclI 

.2S • 

• 



-. 
• 

, 

v 

e+ and é_ of Pm at v. From this information, in..çomtant time it is possible ta update the Pl 

and P2 fields oibany edge-no~ith Pm as a bordering face. WiÙl equal ease, the PI and P 2 . .. 
fields' of the new edge-nodes can be set. To update the FI and F 2 fields, the informatIon con-

tained in the Pl and P 2 fields is used. Consider a triangulation edge e. Referring to figure 4.6, 
- . ~ 

it is possible, in constant time, to determine the edges bounding the two triangles bordering e , 

.and su6'sequently update their FI and F 2 fields. The sort step dominates the updating pro
~ 

1 

cedure, and so, since there are O(n) triangulation edge.~, updating the doubly-connected-edge-
- ~ 

lists can be accomplished in O(nlogn) time using O(n) space. Q.E.D. 
, , 

'Ideally, the tteatrnent of conv-ex polygons, with respect to computing priority orderings, 
• -1 • 

would not differ fr~m. that for ~dges. We shall nqw show that, with only a few extra considera~ 
! q , 

tions, this is in fact true. Let P be a convex polygon. A tine 1 is a line of support of . the 

interior of Plies c0p1p1etely to 0ee side of l. A pair of vertices Vi' Vj of P is an antipodal 

pair if it admits parallel lines of support. CalI the 'edge e deter:mïned by an antipodal pair, a 
, ,-

shadow-edge. 

--
Lemma 43. _ Whe,n computing a priority ordering for a fixed direC, e., it suffices ta replace 

each polygon of F by an appropriate shadow-edge. J 
Proor: Referring to figure 4.7, consider ~e par~leI Ùnes 'of su~port of a polygon f/' of F: in 

the direction e, and let e ~ denote the corresponwng shadow-edge determined by the antipodal 

pair vJ ' vk' Since l,' is convex, e lies within f,', and, as remarked by Guibas and Yao [3Q], 

fi and e sweep the same area when translated in the directIon e. Futtherrnore, for any patr of 

faces fi. fI of oF, r(f,', Il'} = 0, and so "e, and el' the shadow-edges of f, ° and f , wÎth 
~ 

respect to e, do not intersect. However, e, alild el may overlap. Fortunately, this is not a 

problem since each face of F is either a triangle or a quadrilateral, and so in constant rime the 

ordering of f/ and 1/ with respect to e can be computed. Finally, since no edge and shadow-

- 29· 



• edge of F' intersect (overlap is handled as above), it suffices to replace each polygon of F' by . . 
its shadow-edge for the direction a. Q.E.D. 

" 

- 1 Lemma 4.4. The polygoM of F' have ben) shadow-edges, each valiçi thro~gh sorne range of 

.. 

at which can be computed in O(n) time. 

ProoC: Shamos [37] showed, fo~ a convex polygon P on n vertices. that the Oen) antipodal 

pairs of of P can be cdtnputed in O(n) rime. In addition, refemng to figure 4.8. each amipodal 

p~ deijnes a family of paralIel !ines of support through a cIockwise angular-inurval 

a. = [a}o ~2] and its reflection Oor = [at+1t, 0'2+1t]. Note that 1 CL 1 = 1 <Xr 1 <~. The resuh ùlen 
• 

follows sirnply since each antipodal pair defines a shadow-edge. and also sincc the P91ygons of 

F' ,are determined by a toatI of O(n) vertices. Q.E.D. 

For a scene S, there are then o.(n) ed~s and shadow-edges. Associated with each edgc 
1 

e are two nonoverlapping intervaIs of length 1t, reflecting the di!>tinct sides of e. The" vi1>lbllity 

of each side of e will be associated with the c,orresponding interval. Likewise. the [Wo 

angular-intervals ex and Oor of a shadow-edge e, define the visibility ,of the two sides of e Le~ 

• , 1 

E = (e 1. e2 • .... ell ) be the edges and shadow-edges of F. A view-intervai (j) = [Pt. P21. IS 

redefined so that 1 Cl) 1 is maximiz~d with the condition that if e, is visible for ;my angle 0 E Ù), 

~ . 
then ei is visible for all angles a e 00. The visibility of each edge' e, E E is defincd WHh . 
respect to two equal but opposite intervals.' As a result, each view-interval (J) := [p \. P21 has a' 

-
mirror image, co, = (Pl+1t, P2+1t]. Since a e 00 if and only if a+lt E 00" reversmg the priority 

.,. 

ordering determined for 00 yields a valid priority ordering for c.o,. Therefore. rlltJll~r than ~()n" 

'" ,sidering the complete interval [O. 21t], it is sufficient to dctermine priority ordcrings ()Vef the 

in~rv~ [0, lt]. Without 105s of generalîty. Scan be TOtated 80 th:u a .... icw·inlcrval 

Ca) = [p l' P2) can be expressed as c.o = (0, p J. Clearly. the IntcrvaJ [0, 7t] il prQpcrly divided 
• 

inta O(n) view-intervals. ea<:h of whlch conLilins 0(") edgc5. 



c Theorem 4.!. For any view-iriterval ro =; [0, p] of a scene composed from columns, there . -..-
exists ,a priority ordering on F' which can be oprimally calculated in O(nlogn) time and O(n) 

space. 
... 

Proof: The praof foÎlows directly from lernmas 4.1-4.4 and theorem 3.2. Q.E.D. 

" Given a k-regular scene cômposed of columns, the minor base-faces can be triangulared 
~ . 

. and the Jk view-intervals computed ,in O(rzlogn) ~me and O(n) space. 'The cox:espondmg k 

priority ordenngs can be determined in O(knlogn) rime and O(kn) space. In arder ta display the 

scene from a view-point (~, CP), the appropriate view-interval, which cap be computed in 

O(logk) time, must fust be determined. Next, in D(n) time, the back-faces can be eliminated 
• • 

l , ( 

and the scene prajected. Since each non vertical face has a portion of a major base-face associ-

ated with it, the relatlve ordering of the pair must be considered in the case where nei~er is a 

back-face. Suppose this is the case, thèir relative ordering will then b: arbiirary since otherwise 

a ray in the direction (9, CP) must intersect both, with the result lhat o,ne must be a back-face. 
~ , , 

Finally, O(n) display commands are needed to render an image. ~ote that if the b'ase-faces are 

confined to two z-pl;mes as in the pre'tious chapter, then the results simplify since the triangu-

. 
lation of the minor base-faces is not required. 

-
In the next section the most general class of scenes is considered. In these scenes the x-y 

<> • . 
~ projections of two polyhedral-cross-section may intersect 

'4.2. -General Scenes ... 
J, 

~ 

We now consider the most general ,class of scenes. Let S = (PX}. PX2, ... , PXm ) be a 

• scene of" polyhedral-cross-seètion~. The placement of the polyhedral-cross-sections !s restricted 

50 that given any pair PX,. PX), if r(p; . P; ) ;é 0 and Zb < -Zb ,_!ben ZI ~ Zb' This restric-
o • j • J ') 

Q 

tion limits the placement o~e polyhedral-cross-sections so that if the x-y projections of any 

\ 
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pair intersect, then there exists a z-plane which separates the pair. We now ask the following 

9 question: is'it possible to compute a priority ordering on the faèes of such a scene? In general, 

the answer is no. Referring ta figure 4'.9, Yao [27] showed that it is possible to construct 

scenes hi which for any viewing posiuon (8, ~), -; < <1> < ~, there exists a set of lateral-faces 

that determine a cycle. In order to avoid such a siruation, we introduce a horizontal decomposl-

tion of the scene. . 

1 • -~ ~ 
First consider the cases in which <1> = - and <1> = -. For any two lateral-faces 

. 2 2 .. 
'i 

f), fic e PX" nl;, f..;) = 0. Also, if given a pair of polyhedral-cross-sections PX" PX) fOI 

which r(p.r: ' Ps~) ;t: 0, then PX, arrd PX) are separable by a z-plane. Conséquently, if the top . ~, 

base-faces"are sontand renamed so that Zll ~ Zll ~ ••• ~ ZI".' then asM'gning each face of a 

po!yhedral-cross-section PX, th; priority ;, induces a priority ~rdering on the faces for <1> = ~. 
2 

A similar result holds for <1> =~. Since this process arnounts to simple soning, we will 
2 

"-~ ~ 
assume that - < 4> < -. 

2 2 

Consider partitioning space inta t + 1 horizontal s/abs with a series of t z-planc~ 

z ~ Z 1 < Z = Z2 < ... < z = Z/. Suppose a scene S is decomposed by such â' partitiolllng 

into t + 1 subscepes so that within each subscene f.(P1:, PI~ ) = 0 for any pair PX1 • PX, of 

polyhedral-cross-sections. Any ray r in a fixcd dln~cllOn (0, $) cimer pa'l~c", tluough a \Ingk 

slab ($ = 0) or traverses the slab'i in a fixcd order. In the ca.,e whcrc $ .-:: 0, r p.I ... .,C'> IllIoll)'h 

the slabs bottom-up intersecllOg the z-plane'l III the ortler Z = : l' : = : 2' .::-: z/. 'fllC ure! 

ering is simply reversed if <t> > O. ft ùlcrcforc ~Uf[ICC~ 10 procc~ ... and dl\play l!Je \lIh ... urIC'> 

• 
indepe.ldentl~ For each sub\ccnc the prionlY ordcnng'> arc cornpulcd a .. In ~('cl1()n ., t 

Rendering an image from a fixcd vicwing po<;llion (0, $). involvc,> dl~playing the !\uh",cc!lc\ 
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... 

c 

• 

\ 

individually based on the arder of intersection of a ray r in the direction @, $+1t)_with the 

corresponding slabs. Note that this strategy may decompose a scene even though no cycles are 

, present. 

. 
Detennining where ta cut a scene is a major consideration since it could adversely effect 

the complexüy of ~e scene. Minimizing the complexity of ·the scene, i.e., minimizing the 

number of lateral-faces cut by the z-planes, is a difficult problem. Instead, we concentrate on 
, 

minimlzing the number of cuts. A scene S is said ta be t-cuttable if t is the minimum number 

\f z-planes required 10 decorn,pose S so that wirhin·each subscene, no two x-y projectio;~/~ -
superior base-faces intersect. We-now present an algorithm that de composes a 'scene S as 

. 
required. The algqrithm determines at,most 2r z-planes and sa minimizes within a constant fac· 

., 
tor. 

The problem of deciding where to cut a scene is basicruly one of deterrnining two-

dimensional intersections. Given two polyhedral-cross·sections PX, and P-X} such that 

r(p; , P; );('0. and zb < Zb , the scene must be cut with sorne z-plane Z = ze' Zl ::; ze ::; Zb . 
1 J 'J ,l-- 1 j 

Suppose the scene is eut with a series of z-planes z = Z, , Z = z, , ... , z = Z, • Clearly, su ch a 
l '- 2 '" 

decomposition a1ways appropriately cuts the scene, and so t $ m. It is easy to realize scenes in 

which m cuts are necessary sim ply by stacking polyhedral-cross-sections one on top of . 
. another. Consider the x-y projection of a lscene. In the worst case as many as O(n2) intersec-

'-:7 .~ tions will exist between ,the ~~y projections of the superior base-fajs, a~o any algorithm-

• that computes. aIl the int,ersections will require O(n2) time in the worst case. Since at most 

)n) cuts are required to decompose a sct::1le, it would be advantageous to eli~inate the excess 

è 
from cons~deration. Consider a polyhedral-cross-section PXI and let 

Il = U 1 reps' , Ps') :;t 0 and zb < Zb}' AIso, let mini = min(zb)' jE-I" .clearly, cutting 
1 J 1 J J 

the scene ...with the z-plane Z = ze' Z'I ::; ze $ mini' eliminates the intersections above, and in 



G' , . " , 

• 

part due to, PXi • 
~ . 

-
\ 

The key to the quickness of our algoiithm will lie in its ability to locate the intersections 

between polyhedral-cross-sections in close proximity. The algorithm uses a divide-and-conquer 

scheme. During the divide phase, the scene is decomposed with a set of O(n) z-planes This I~ 

foIlowëd by the conquer phase which then ~ele'cts at most 21 of the z-plines. At the he art of 

the algorithm is intersection testing ..... cJetermining whether or not any pair of x-y projections of 

superior base-faces intersect In generai the superior base-faces are simple polygons. a c1ass of 

pqlygons which do not lend themselves to the existing, fast al gorithms. To remedy chis situa-

(' ~ 

~o.ç. we assume the superior base-faces have been decomposed. Consider the decomposiuon <?t 

o 
each superior base-face, induced by its lateral-faces and the triangulation of its mtnor base-face. 

') 

~xplained in section 4.1, su ch a decornposition requires O(n[ogn) time and 0(11) 'space to 

- compute, and yields O(n) components. Of the components, whi-ch are !ine segments, triangles, 

'. . .. . . "-
and convex quadrilaterals, the line segments are redundant with respect 10 the relevant intersec-

tion testing, and so ,are ignored. The plane!sweep algorithm of Shamos and Hoey [38J is used 

to detect intersectiqns. Glven a set of Il tIjangles and quadf<ilaterals, the algorithm can dClect 

whether any pair of objects intersectS in O(hlogll) time using O(n) space. Using this algorithm, 

a O-cuttahle scene could he quickly detected . 

• ' . Theorem 4.2. For any scene S that is f-cuuab/.e, a set of at most- 21 z-plan.es that properly 

decompose S, c"an be computed in O(n/ogn/ogm) time using O(n) space. 

-
Proof: FQr each'pblyhedral-cro~s-section PX" let I, and b, denote Zb and ·Z, rCl>pecuvely. and 

j 1 

let D j denote the set of components of the decomposltion of p$' Sort the I,' of and h,'.\ , 

separately, and rcname the polyhedral-cro<,<,-~cctlon<, so Ihat ~I ~ 12 ~ . . $ lm Mcrgc the 
\ . 

sorted sequences of I,' of and b, ' s u~ing the convention that If l, = bJ , Ihen in the ordcllI1g fi 

cornes before bJ • Cali the resultant sequence Q and appcnd ta il, as ilS boltommo1>t symboJ, 
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1.,. the dummy symbol to. Now each ~tersection cflD. be characterized as follows: su~e i < j: 
then 'i S hj and f"(Di. Dl' ,. 0. To complete ~ ~vir phase, CO;"id/ the. triple 

(Ji = (Qi, B~, Ti)' Qi is the subsequence of Q above ti_l' up to and including ti: B, ~d Ti, 
" . \ -

~ - which denote the bo~om and top se arch boundaries within Gi , are respectively set équal ta the (), 

first and last symbols of Q" Note that by the definition of 8: scene, each G, initially defines' a 

slab within which th~re are no intersections. 

At each Ieve~ of the conquer pq,ase adjacent pairs ~f G / s are merged, and any intersec-

tion between the pair is detected. If ~y intersection is detected, then a cut splitting the pair is 

introduced and any interseëtions straddling the eut ~e, eliminated: Let r denqte the number of 

G, 1 S at thé CUITent level of the conquer phase, thus initially r = m. ,At each level, for al~ odd 

i, 1 ;S; i ;S; r, let j = i+l. If i+l ;S; r then.G, and Gi +1 are merged into G
J

, otherwise Gi Îs 
- 2 

, simply renamed Gl' After each level, r is updated as follows: if t is odd r = r;l ,otherwise 

r-.!. ' - 2' 

.. 
" If at each level the intersections between the merged pairn, are detected and eliminated, 

'0 -

. 1 

then clearly the resulting set of cuts will approprlately decompose $. Once an intersection has 

been àetectea, and a cut made, it would be ..senseless ta search for intersections straddling the 

cut To prevent fuis from happening; when Gi and Gi+l are merged, only intersections between 

B, and Ti+1 will be considered. Note that from ,Bi ta the topmost symbol of.Qn and from th~ 
," , 

bottpmmost symbol of Qi+l to T'+l> there are'no intersections. Suppose tri and Gi+1 are about 

" 

to bè merged, then any intersection between the pair can be characterized as follows: if j < k 
, , 

o 

#' 'then tl E Qi, t/2! Bi' bic oE Q'+l' ble S THl , and r{Dj , DIe~ ;t: 0. Let Vi = U 1 tj E Sd Md 
,,-

let W j = U 1 bj E Si},. thèn detecting an inter:;ection involves deteniîining for any pair 

DJ' DIç' j e Yi and k E Wi+l> whether r(DJ' Die) ;t: 0. ) For, this purpose, we use the 
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, 
algorithm of Shamos and Hoey. If an intersection is detected. then cutting at Ij. the topmost 

. symbal of Qi. eliIIÎinates a11 intersections between GI and Gi+1• What remnins is ta merge G, 
o 

and GI +1 inta Gj • There are two cases to consider depending on whether or not an intersection 

i5 detected. In bo~ cases QJ i5 detennined by concatenating. Qi. and Q'+l' ~e.»rr7 to figure 

4.10, if an intersection is deteeted then TJ = T, and BJ = B'.+I' Note that if B" < T; then Qk 

has not been eut. Referring to figufe 4.11: consider the case in which an intersection is no! 
, 

de~,trcted. I~ B, < T j then TJ = Tj+l> otherwise T, = T,. On the other hand, if B'+1 < TH! then 

B; =: BI' otherwise' Bl = B'+I' 

Let us consider ~e complexity of the algonthm. The space requirements are clearly O(n), 

In the divide phase the running time is dQminated by the sontng, and so O(m/ogm) time i5 

required. Since at each level of 1h,;~nquer phase J; J merges occur, there are O([agm) lev· 

" 
els. At each level the intersectlon detection computations dommate the running lime. SlI1ce Ù1C 

sum of the number or components of the D, , S IS O~n). and since each component b con~ldcrcd 

at most twice, once for each of 'r, and b" the total time time spent detccting inter!>ection!> at . 
each leve! is O(nlogn). Therefore, the running time of the algonthm is O(n/ogn/vgrn). 

l' . , 
What remains to tie shoy/n is that at mott 2r cuts are made. Referring to fi~ 4.12, sup-

c • 

pose that while mer~ing G, and G;+l> an intersection is dete~ted. Let /' a~d le J < le, denotc 

the intersection pair, then tl E Qi and bic. E Q'+I' Also, let c é1enote the topmOSl symbol of 

Qi. Clearly, the line segment 1 = (t,. b0 must be cut. Choo~ing c acryieves UliS and ensurc:. 

al! intersections straddling c are eliminared, it does not howevcr guaraillee minimality. Let d 

der')te the number of cuts made. It is possible ~at an i~eCtian will 9C dc;eclcd betwe<!n CI, 

amf .... hat i5 below Gi , and between G.+1 and what is above Gi +l • Still rcfcrring to figure 4.12. 

let lb and l, denote Ihe lin~ segments that wauld nccd ta he eut. Clearly. 1 and lb 1 a~. 1 and 
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l, may overlap,-however, lb and l, J'ill not. Thus, if we consider :the sequence of d cuts in 

bottom-to-top arder, then of the carresixmding d segments, every second segment Îs non

ove;;'PPing. H~nce at least r; l cuts are required and 50 at' moat 2t cuts have been made. 

Q.E.D. r:' . ( . .. 
Given a t-cuttable scene~nor base-faces can be triangulated in O(nlogn) ti~e using 

" ... D(n) space. A set of at mos!; 2t cuts, whieh appropriàtely deeompose S, can be determined in 

'" . 
D(nlognlogm) time and O(n) spa~. Cutting a ~~hedral-cross-section PX is s~;isinee each 

of the resilltant objects has the same topalogy as\x. In arder to de termine whic{l' ;alYhedral-

cross-sections are cut, sort the cuts and denote the resulting list by C = (Cl' CZ, ... , Ct). Next, 

merge Q and C ,- ardering fi before cJ if ti = c;. Naw, scan the resultant lis t, inserting PXj 

into an active list when b, is encountered, and deleting it when f, is encountered. Funher, 

when Cl is encountered, ourpu"t it an<1.4be active list. There fore , the s~ene_ can be eut in 

O(tnHlogt) time and stored in O(tn) space. Let us say a scene is k-regular if the maximum . -
( 

number ~f view-intervals in any sIab, is k. In total, O(tnlogn) time and O(m) space ar~ 

required ta determine the O(kn) 'view-intervals. Thè carrespanding priority orderings can be .... 
computed in,O(tknlogn) time and stared in~n) space. In arder to dîsplay a scene fram a 

view-point (ë, $Ji. the ,appropn"âte vi"ew-intervaIs, which can be determi-,d in O(tlogk) time, 

must first be determined. Then in O(ln) rime the back-faces must be eliminated and the scene 

·projected. FinaIly, Oern) display cammands render an image. 

1 ~ 
In the next chapter we ~co.nsider the insertion and dJlerion of edges from priority order-

ings. These problems are a fundamental concern when maintaining dynamic scenes. 
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Chapter 5 

Dynamic Priority Orderings 

Up until now we have only considered starie scenes. In this chapter we examine the fun

\ 
damental problem encountered when.abjects are allawed ta be inserted inta and deleted from a , 

scene. The probl~m invalves updating a priarity ordering in order ta reftect the insertion or 

deletion of a face. Cansider a set F of faces (edges), a view-interval ro. and kt 
, . 

Fco = if h f 2, •.• , f,,) denote th.e faces of 00. As usual, we assume the Vlcw-tnterval ro = [p 1. p;;1 .. 

has been r0re,ted sa that Ct) = [0, pl. Suppose we add an extra face f max' which left-domtnZlIC' .( 

. 
all other faces, including any that will be insened. As shawn in section ~.2. the lleftdom rcl:!-

tian can be represented by a tree T which is rooted by f mu' _ In T,the chtldren of anode f 
1fJ~ 

are ordered from left to right by the value of the x-coordinate of theif tail. We know from 

~ 

theorem. 3.2 that the left to right pçstorder traversaI of T yields a prionry ordering on f"w. . \ 

Maintaining a correct pno~ty ordering through a series of insertions and deletions wiLl amounl 

ta updating 1'.. in order ta refiect the changes in the ileftdom relation. 

r In the first section of this chapter an ap ropriate data structure and search technique are 

introduced. The inseton problem is co 

the deletion problem iiinvesti ed. 

5.1. The Data Structure 

red in the second sectionland in the last section. 

. In order to represent a tree T, an appropriate dàta ~tructure Î$ required. For oyr p\,lrposes 

the leftmost-child, right-sibling representation [39) is adequate. The main' compone nt of t.hj~ 

repre~nution is the edge-node. Each edge-node consists or four fields who se mimes, which 'arc 
. 

first-chj{d, M:u-sib/ing, previous-sibling, and parent, describe lheir function. The main rt'a5on 
" 

for using .thiS representation is th, for a given edge-node./ , the edge-node which immediarely 

o • 
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left-dominates l , and tqose immediately left-dominated by l, can be quickly determined. Also, 

inserting into and deleting from T are simple operations. Finally, postorder and preorder traver

saIs of T, which are crucial in the maintenance of priority orderings, can be pefformed in O(~) , 
time. • ..! 

In sorne applications a large database is constructed before any general insertions or dele-
" 

tions are processed. In the se cases· it will often be beneficiaI, due to the 'time complexity of a 

single insertion, to consrruct T directly rather than considering the construction as a series of / 
/ 

insertions. Consider the algorithm proposed in theorem 3.2. Let" f be a face and let 

11> I2' .. , 1 k be the faèes, ordered from left to right, immediately left .. dominated by 1. Since 

the aIgorithm encounters these faces in the order f, Il, 12, ... , ik, we can, provided we store 

for each face its last cluld detected, use the algorithm ta construct T in O(nlogn) time using 

O(n) space. 

When a face is inserted or deleted. it is necessary ta rçconfigure T in or.der to reflect the 

changes in the ilefrdom relation. Ta do this quickly, T m~e systematically traversed,so that 

any changes in the ilefrdom relation can be reported in sorne orderly manner. iJ>r this purpos~, 
- 1 _ Po • 

we intro?uce a search of the space containing Foo, which corresponds to a combination 

preorder-postorder traversaI of T. Suppose th,9 subtrees of T, ordered frod left to right, are 

T 1> T;, ... , Tr • Consider the following recursive definition of the left to right prepostorder 

traversai of T: list the root of T, followed by the prepostorder listings of T 1> T 2, .. , T" aIl 

-~ " 

followed p~ the root of T. EaCh node of'T then is visited twice, once before its descendants, 
, 

and once after. Su ch a traversaI can be cornpleted In O(n) time. 

" Let I, be a face of Foo a~1et L, denote the path in T from the root to I, . _ As described 

in section 3.2, L, induces a partition of the faces in Foo. As weIl, C" the !ine representing the 

-' . 
partition, which we shaH call a chain, iS' either piecewise linear and descends from left ta right, 
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" or vertical. Referring to figure 5.1. let CI' denote the éhain which results"'\vhen Il and C, ate 
"tir 

combined. A chain is said to he monotone w~th respect to a direction e, if when travrs:3' it 

. l , 
yields a monotonically increasing projection onto a line in the direction e. Clearly, C, '1 and Ci 

\ 

are monotone with respect to the x-direction. Suppose we wish ta determine which face of F".) 
, 

immediately left-dorninates sorne face 1 with tail v,. To solve the prablern we mOthfy tIlt' 
, 

prepostorder traversai 50 that at every step it is detennined whether a particular intcrval of a 

face lies directly above VI' Let 1 he any face of Fw, and let f p and 1 lt f 2, .... Ile respectively 

-, denote, provided they exist, the parent and cruldren of f. Referring ta figure 5.2. we now '-1 _ _ 

\ 

modify the prepostorder traversai of T as follows: when f is first encountered. consider the 

interval of f p left of v,; during the second encounter, consider the interval of 1 right of V, . 
, l 

The two special cases must also be examined: if l = 1 max. then no interval is considered dur-

--, ~, 

ing the first encounter; if f is a leaf. then aIl of 1 is considered during the second encounter. 

To summ~ze. the intervaI(s) of f ISft of VI. are examined when Il.12 . .... ft. arc tirst 

encount~red. and the rernainder of 1 is ex~ined when 1 is encountered for the secon~ timr 

Lemma 5.1. The first face discovered during the'lnodified prepostorder traver.;al of T that lie~ 

directIy above VI' imrnediately left-dominates 1 . 

Proof: Clearly, ail portions of all faces are considered and so sorne solution will be found 
, 

Suppose the algorithm stopped when 1. was encountered. however the correct solution J x' wa ... 

Rot reponed. 'Referring to figure 5.3, the algorithrn Will have reponed clthcr J
l

• the parent of 

./' lî. or 1. itself. depending on whether it was the finit or second encountcr of J, If Il ','1.1\ 

reported. then V,. lies left of ç,. otherwise, VI. lies Jeft of C,', WJuchevcr the CJ'>C may be, 
1 

denote the chain by C. Now. C and Cx. do not cross, and. each IS monOlone wllh rc~pcct tu 

the x-<Jirection. Therefore, Cl: lies Jeft of C and sa the appropriare intcrval of lx. will aJrcady 

have been consldered. We -thus have a contradiction. Q.E.D. 



c 

( 

In the following .Sections, we consider the insertion and deletion problems in priority ord-' , 

erings. At the heart of the algorithrns that are proposed, is the modified prepostorder travers al 

described above. 

5.2. The Insertion Problem 

Consider the following problem: giv~n a tree T representing, the ileftdom relation on a set 
, , 

Fa;; = if l' 1 2~ ... , f,,) of faces, insert a new face 10 into FIJ) and update T in order to reflect the , 
) 411 

changes in the Ueftdom rëlation. To reaIize the changes, we must determlne the face I p that 

immediately Ieft-dominates 1, and the faces fi' 12, ... , 1 k, ordered from le~ to right, immed'i-

ately left-dominated by 1. \ 
~ proved in lemma 5.1, the modified prepostorder traversaI of T will compute Ip- As 

weIl, the traversaI examines the_intervaIs of f p from left to riglit, and so the position of 1 
-

amongst the children of I p can easily be determined. 

Ail that remains then is to calculate 1 l' f 2' ... , ft, preferably in their natural order. Once 

~uhd, removing f h f 2' ... , ft from their old positions in T is a simple matter. As weIl, note 

that the subtrees which they root do not change. Suppose the subtrees of a tree T, ordered 

from Ieft to right, are Tl- T 2' ... J Tr • Consider the following recursive definition of the Ieft to 

right preorder traversaI of T: Iist the root of T followed by the preorder listings of 

TI' T 2' ... , Tr • Thus, if the chlldren of a Dode h, or;dered from left to right, are hl' h 2' .. , hs 
:.> \ -

then in the preorder listing of T thé Dodes h, h lt h 2, ••• , hs appear in the given arder. Refer-

ring ta figure 5.4, deterrnining which faces are immediately Ieft-dominated by't is equivalent 

ta determining Jluch of the relevant vertical sections of the chains are eut by f. Let f be any 

face of Fa;; and let f p be the face that immediately left-dominates f. Suppose we modify the 

preorder traversaI of T sa that when 1 is encountered, we deterrnine, referring to figure 5.5, if 
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the vertical interval of C between v, and f p is eut by f. For the special case in which 

f = f JIW' no interval is examined. 
JC.. 

Lemma 5.2. The faces Il. f 2 •... , !Je, those immediately left·dominaœd by f, are discovered 
If 

in order f during the modified prepostorder traversal of T. .' s ' ) 

~ \. + 
. Proof: CIearly, all the relevant verticaI intervals are considere,,\: and so 1 1./2- .. ,.h will be 

ro~d. We n~ed ta show then thafif x" .< x,], then l, is found before Ir Sînce 1 does not .--' 

intersect any faces of FIJ» and also since eaçh chain is monotone wim respect to me x-direction. 

1 may intersect a given chain .at most once. Referring ta figure 5.6. XI < XI and so 1 cutS Ci 
• J 

Ieft of CJ with the result that l, will have been considered before Il' Q.E.D. 

. Since the face fi' 1;2 •... ,!Je are found in order. they cano be înserted as me children ~f f . 
\ 

" as rhey are found. Once the traversai is completed. f can rhen be\e.ned inta ilS proper posi· 

. tion amongst the children of 1 p • 

Th.eorem 5.1. The priority ~rderin~ on rhe 'faces of F. can be main,.i~ al a ,C6st of O( n) 

time pel' insertion. - ~ '-.. 
.. 
Proo(: The cost of updating T is dominated by the time ~equired ta execute the~modified 

\ 

prepostorder and preorder traversaIs on T. each of which requîTes O(n) time. Since detennîmng 

'p 
the resuiting pnority ordering amounts ta computing the postorder traversai of T. which iL\clf 

~ 
requires O(n) time. the priority ordering can be maInWmed at a cost of O(n) lIme per ih~Cl1ion 

Note that since the face to be inse't1ed may immediaiely left-domlnar.e 0(11) facl!~. any rnclhod 

which explicitly maintains th~ ileltdom relation will require O(n) lime ln the worst ca.,e. 

~.E.D. . ") , 

.1 

, 
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5.3. The Deletibn Problem .. 

Consider the following problem:,gi~en a' tree T. representing Ihe ileftdom relation on a 

set Foo = if l' 12! .. :, III) of faces, dele~e a face 1 froIll/oo and update T in order ta reftect the 

changes in' ileftdom relation. Suppose the faces in'lmediately left-dominated by 1 , ordéred from 

left ta right, are Il,12' ... , Ik' To update T requires that -we detennine for each li, . 

1 ~ i ~ k~/p: th~ face which immediaœly left-domina~s li when 1 is deleted. 

Removing 1 from T is a simple matter. As weIl, note ,that 'the subtrees rooted by "'" 

1 1> 12, ... ; Ù. will remain intact, and so can be ~moved before we sea~ch for i PI' 1 Pz' ... , Ipk ' 
,. • 1 - C .. 

~ Given II> 1 ::; i ~ k, ~e know, from }~mma 5.1-, that the modified prepostorder traversaI of T 

can be use~ to dete~e I p,. S~ppose that in the traversal/p, would be found beton~ I pJ ie 

are found in order during the modified prepostorder traversaI of T . 
... 

Proof: ~ need to show that I p, is found before f pj if x" < Xli' Extend a vertical half line 

. . 
upwards from

e 
each 'of Xl, and Xl,' den<?ong them by li and lj respectively. Since each cha~s 

. , 
, . 

mono.tone with respect ta' the x-directi9il' each of li and lj may cross a given chain at most 

once. Oearly, if CP1 !:;;; Cpj, then since l, Iies)eft of Ij , f p1 will have been considered before 

I p ' Otherwise, referrlng to figure 5.7, since no pair of chains.can cross, and aIso since li lies 
J ' 

left of IJ' CtP1 lie~ left of Cp, and sa the sarne result holds" Q.E.D. 

, . 
During the traversaI, the intervais of f p,' 1 ~ i $ k, .are con;;idered in order from Ieft to 

> 

right, and sa the position of fi amongst the children of'fPi,.catl: be easily determined. , '" 

, l' 
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Theorem 5.2. The priority ordering on the f ces of FOl can he maintained at a cast of O(n) 
~ ~ 

rime pel" deletioll. 

T"iJ , 
Proof: The cost of updating T is dominated 

" rime, the modi~ed prepostorderatraversal on 

ing ~emands only a postorder traversaI of T, 

t 

the time required to execute, at a cos,t of O(n) 

Since de~~ng the ~sulting Piiority order

hich also requires O(n) rime, the priority order-

ing can be maintained at a cost of O(n) ~me er deletion. Note that sin~e the face to be deleted 

may immedlutely left;dominate O(n) faces, y method which explicitly maintruns the ile/tion! 
~ , 

relation will require O(n) rime in the warst ca e. Q.E.D. 

1 

~ 
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J 
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Chapter 6 

Conclusion 

....... 
, 

.) .. 

'Se veral new results pertaining to. the priority approaeh to hidden~surfaee removal have , . 

,bee~ Ïlltroduced. In particular, a new formalism, in which priority orderings are described as 

• • 
4 trees, has been proposed. As 'well, efficient algorithms have been presented for solving the 

~ . 
hidélen-surface problem in various resmcted classes of polyhe~a. Note that with only' minor 

( . 
modifications, the algoxjthms pre.sentèd could be adapted'to inc'ude the degeneration of a minor 

base-face to an eqge or a venex. Finally, the maintenance of a priority ordering in a dynamic 

environment has bee~ inv:stigated, and efficient algorithms for the ~roblem have been intro-

duced. . )J .~ 
Future resear~h includes the development of, aIgorithms for more Jcomplex polyhedra. 

. ~. ,,~ 
Wim re!pect to this thesis, several areas could be investigated. We have considered decompos-

ing a scene in order to avoid potential problem areas. A better approach wouId eliminate only 

actual cycli';l constraints. Another consideration when decomposing, is minimizing the number 

of faces eut as ~pposed to simply minimizing the number of cuts. Lastly, of interest is 

wheth~r within sorne frame~ork different from that presented, there exists sublinear algorithms 

for the insertion and deletion problems. 

., 

b 
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