Skip to main content
Log in

Chemical ideograms and molecular computer graphics

  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Molecular computer graphics (MCG) has become the indispensable complement of experimental chemical and biological tools and, in a way, will shape the evolution of these fields. This accelerated and popularized evolution takes root in the visual, even scenic, grasping of fundamental chemical concepts, perceived as veritable ideograms, which condense a vast amount of information with a few two- or threedimensional graphic symbols. With MCG one can carry out real computerized syntheses of chemical images. MCG is also an ideal tool through which to visualize the changes of a system as a function of time. This review article describes the potentials and advantages of structural MCG for visualizing the basic steps of important modelization concepts, particularly for handling on-line structures in information networks and in computer-assisted drug design (CADD) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-peters BG, Kennard O, Matherwell WDS, Rodgers JR, Watson DG (1979) The Cambridge crystallographic data center: computerbased search, retrieval, analysis and display of information. Acta Crystallogr Sect B 35:2331–2339

    Google Scholar 

  2. Attias R, (1983) DARC substitute search system: a new approach to chemical information. J Chem Inf Comput Sci 23:102–108

    Google Scholar 

  3. Bernardelli G, Combremont JJ, Roch M, Mottier D, Barras JP, Mentha Y, Weber J (1984) CAMM: a molecular modelling package using real time computer graphics. Acta Crystallogr Sect A 40:C439

    Google Scholar 

  4. Bonnet JC, Dubois JE (1979) The DARC pluridata system: the 13C NMR bank. Anal Chim Acta 112:245–252

    Google Scholar 

  5. Chang SK, Kunii TL (1981) Pictorial data base systems. IEEE 11:13–21

    Google Scholar 

  6. Clark DD, Schuster SM (1980) Microcomputer manipulation and graphic display of molecular structures. Comput Chem 4:75–78

    Google Scholar 

  7. Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558

    Google Scholar 

  8. Corey EJ, Wipke WT, Cramer III RD, Howe WJ (1972) Techniques for perception by a computer of synthetically significant structural features in complex molecules. J Am Chem Soc 94:431–439

    Google Scholar 

  9. Dubois JE (1974) DARC system in chemistry. In: Computer representation and manipulation of chemical information. Wipke WT, Heller S, Feldmann R, Hyde E. (eds) John Wiley, New York, pp 239–263

    Google Scholar 

  10. Dubois JE (1976) Ordered chromatic graph and limited environment concept. In: Balaban AT (ed) Chemical applications of graph theory, Academic Press, London, pp 330–376

    Google Scholar 

  11. Dubois JE (1983) Conceptual description of system transformations and reactions. In: Proceedings of 8th international CODATA conference. Glaeser North Holland, pp 155–166

  12. Dubois JE, Laurent D, Viellard H (1966) Système de documentation et d'automatisation des recherches de corrélations (DARC). Principes généraux. CR Acad Sci Paris 263C:764–768

    Google Scholar 

  13. Dubois JE, Couesnon T, Laurent D, Azema C, Saillard JC (1974) Système DARC: application des traitements graphiques en documentation automatique et en conception assistée en chimie. Automatisme 19:227–233

    Google Scholar 

  14. Feldmann JR (1983) Directions in macromolecular structure representation and display. In: Computer applications in chemistry. Elsevier, Amsterdam, pp 9–18

    Google Scholar 

  15. Foley J, Van Dam A (1981) Fundamentals of interactive computer graphics. Addison-Wesley, Reading

    Google Scholar 

  16. Gund P, Andose JD, Rhodes JB, Smith GM (1980) Threedimensional molecular modeling and drug design. Science 208:1425–1431

    PubMed  Google Scholar 

  17. Hansch C, Li R, Blaney JM, Langridge R (1982) Quantitative structure-activity relationships, x-ray cristallography and computer graphics in structure-activity analysis. J Med Chem 25:777–784

    Google Scholar 

  18. Jefford CW, Mareda J, Combremont JJ, Weber J (1984) Dynamic molecular modelling: the case of rearranging polycyclic C8 H +9 cation. Chimia 38:354–356

    Google Scholar 

  19. Kennard O, Watson DG, Town WG (1972) Cambridge crystallographic data center. 1. bibliographie file. J Chem Doc 12:14–19

    Google Scholar 

  20. Kunii TL, Tenebaum JM (1974) A relational database scheme for describing complex pictures with color and texture. In: Proceedings of the Second International Conference on Pattern Recognition, 310–316

  21. Langridge R (1980) Computer graphics in studies of molecular interactions. Chem Ind 21:475–477

    Google Scholar 

  22. Laurent D, Dubois JE (1973) Computer graphics and DARC system. In: Men machine communication in scientific data handling, CODATA Bull 15:24

  23. Lesk AM (1977) Macromolecular Marionettes. Comput Biol Med 7:113–129

    Google Scholar 

  24. Lesk AM (1984) Themes and contrasts in protein structures. Trends in Biochem Sci 6:

  25. Levinthal C (1966) Molecular model-building by computer. Sci Am 6:42–52

    Google Scholar 

  26. Max NL (1984) Computer representation of molecular surfaces. J Mol Graph 2:8–13

    Google Scholar 

  27. Morgan HL (1965) The generation of a unique machine description for chemical structures: a technique developed at chemical abstracts service. J Chem Doc 5:107–117

    Google Scholar 

  28. Quarendon P, Maylor CB, Richards WG (1984) Display of quantum mechanical properties on Van der Waals surfaces. J Mol Graph 2:8–13

    Google Scholar 

  29. Rhodes P (1985) Chemical structures On-line. Chem Br 21:53–58

    Google Scholar 

  30. Richards WG, Sackwild V (1982) Computer graphics in drug research. Chem Br 18:635–636

    Google Scholar 

  31. Roch M, Weber J, Goursot A, Pénigault E, Daul C (1984) Molecular electrostatics potentials from xa calculations: method and application to water and formamide. Chem Phys Lett 109:544–549

    Google Scholar 

  32. Roch M, Weber J, Williams AF (1984) Electronic structure and spectroscopic properties of chronium (V), molybdenium (VI), and niobium (V) tetraperoxide. Inorg Chem 23:45–71

    Google Scholar 

  33. Scrocco E, Tomasi J (1973) Electrostatic molecular potential as a tool for the interpretation of molecular properties. Top Curr Chem 42:95–170

    Google Scholar 

  34. Sobel Y, Dagane I, Carabédian M, Dubois JE (1985) Specific features of scientific data banks. Proceedings of the Ninth International CODATA Conference, Glaeser Jerusalem, (in press)

  35. Venkatachalam CM, Urry DW (1983) Theoretical conformational analysis of the gramicidin A transmembrane channel. I. Helix sense and energetics of head to head dimerization. J Com Chem 4:461–469

    Google Scholar 

  36. Vinter JG (1985) Molecular graphics for the medicinal chemist. Chem Br 21:32–38

    Google Scholar 

  37. Weber J, Roch J, Combremont JJ, Vogel P, Carrupt PA (1983) Dynamic representation of quantum chemical results using computer graphics: molecular rearrangements, art or science. J Mol Struct Theochem 93:189

    Google Scholar 

  38. Woodward RB, Hoffmann R (1970) Conservation of orbital symmetry. Verlag Chemie, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, J.E., Laurent, D. & Weber, J. Chemical ideograms and molecular computer graphics. The Visual Computer 1, 49–63 (1985). https://doi.org/10.1007/BF01901269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01901269

Key words

Navigation