Skip to main content
Log in

A fast display method for volumetric data

  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Presented is a fast display method for volumetric data sets, which involves a slicebased method for extracting potentially visible voxels to represent visible surfaces. For a given viewing direction, the number of visible voxels can be trimmed further by culling most of the voxels not visible from that direction. The entire 3D array of voxels is also present for invasive operations and direct access to interior structures. This approach has been integrated on a low-cost graphic engine as an interactive system for craniofacial surgical planning that is currently in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Artzy E, Frieder G, Herman GT (1981) The theory, design, implementation and evaluation of a three dimensional surface detection algorithm. Comput Graph Image Proc 15(1):1–24

    Article  Google Scholar 

  • Austin JD, Hook TV (1988) Medical image processing on an enhanced workstation. SPIE Mecical imaging II: image data management and display 914:1317–1324

    Google Scholar 

  • Cappelletti JD, Rosenfeld A (1989) Three-dimensional boundary following. Comput Vis Graph Image Proc 48:80–92

    Article  Google Scholar 

  • Chen LS, Herman GT, Reynolds RA, Udupa JK (1985) Surface shading in the Cuberille environment. IEEE Comput Graph Appl 5(12):33–43

    Google Scholar 

  • Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC (1988) Two algorithms for three-dimensional reconstruction of tomograms. Med Phys 15(3):320–327

    Article  Google Scholar 

  • Cohen D, Kaufman A (1990) Scan-conversion algorithms for linear and quadratic objects. In: Kaufman A (ed) Volume Visualization. IEEE, Los Alamitos pp 280–301

    Google Scholar 

  • Gordon D, Udupa, JK (1989) Fast surface tracking in threedimensional binary images. Comput Vis Graph Image Proc 45:196–214

    Article  Google Scholar 

  • Gravis A, Manson PN, Vannier MW, Rosenbaum A (1988) Post-traumatic orbit evaluation by three-dimensional surface reconstruction. Comput Med Imaging Graph 1:47–57

    Article  Google Scholar 

  • Herman GT, Liu HK (1978) Dynamic boundary surface detection. Comput Graph Image Pro 7:130–138

    Google Scholar 

  • Hoehne KH, Bernstein R (1986) Shading 3D-images from CT using grey-level gradients. IEEE Trans Med Imaging MI-5(1):45–57

    Google Scholar 

  • Kaufman A (1987) Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. Comput Graph 21(4):171–179

    MathSciNet  Google Scholar 

  • Kaufman A (1988) Efficient algorithms for 3D scan-converting polygons. Comput and Graph 12(2):213–219

    Article  Google Scholar 

  • Kaufman A (1990) Volume Visualization, IEEE Computer Society Press Totorial, Los Alamitos

    Google Scholar 

  • Kaufman A, Bakalash R, Cohen D (1990a) Viewing and rendering processor for a volume visualization system. In: Grimsdale RL, Strasser W (eds) Advances in Graphics Hardware IV. Springer, Berlin Heidelberg New York, pp 171–178

    Google Scholar 

  • Kaufman A, Yagel R, Cohen D (1990b) Intermixing surface and volume rendering. In: Hoehne KH, Fuchs H, Pizer SM (eds) 3D imaging in medicine. Algorithms, systems, applications. Springer-Verlag, Berlin Heidelberg New York, pp 217–227

    Google Scholar 

  • Kong TY, Rosenfeld A (1989) Digital topology: Introduction and survey. Comput Vis Graph Image Proc 48:357–393

    Article  Google Scholar 

  • Kuhlman JE, Fishman EK, Ney DR, Magid D (1988) Complex shoulder trauma: three dimensional CT imaging. Orthopedics 8(8):1561–1563

    Google Scholar 

  • Lafferty CM, Sartoris DJ, Tyson R, Resnick D, Kursunglu S, Pate D, Sutherland D (1986) Acetabular alterations in untreated congential dysplasia of the hip: computed tomography with multiplanar re-formation and three dimensional analysis. J Computer Assisted Tomography 10(1):84–91

    Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Google Scholar 

  • Pettigrew J, Roberts D, Riddle R, Udupa J, Collier D, Ram C (1985) Identification of an anteriorly displaced meniscus in vitro by means of 3-D image reconstruction. Oral Surg Oral Med Oral Pathol 59:535–542

    Google Scholar 

  • Tiede U, Hoehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Investigation of medical 3D-rendering algorithms. IEEE Comput Graph Appl 10(3):41–53

    Article  Google Scholar 

  • Toth BA, Ellis DS, Stewart WB (1988) Computer-designed prothesis for orbitocranial reconstruction. Plastic and Reconstructive Surgery 81(3):315–322

    Google Scholar 

  • Udupa JK, Odhner D (1990) Interactive surgical planning: high-speed object rendition and manipulation without specialized hardware. Proc Visualization in Biomedical Computing 1:330–335

    Google Scholar 

  • Udupa JK, Hung HM, Chen LS (1986) Interactive display of 3D medical objects. NATO ASI Series F 19:450–456

    Google Scholar 

  • Westover L (1990) Footprint evaluation for volume rendering. Comput Graph 24(4):367–376

    Google Scholar 

  • Zucker SW, Hummel RA (1981) A three dimensional edge operator. IEEE Trans Pattern Analysis and Machine Intelligence PAMI 3(3):324–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobierajski, L., Cohen, D., Kaufman, A. et al. A fast display method for volumetric data. The Visual Computer 10, 116–124 (1993). https://doi.org/10.1007/BF01901947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01901947

Key words

Navigation