Skip to main content
Log in

Collision avoidance for nonrigid objects

  • Published:
Zeitschrift für Operations-Research Aims and scope Submit manuscript

Summary

The path existence problem and the collision detection problem for time-varying objects in a geometric scene are discussed. For a large class of spherical nonrigid objects, exact solutions of the path existence problem are developed based on decomposition techniques and graph traversal. For the collision detection problem of a single moving circle in the plane, efficient data structures are presented for linear/circular and polynomial paths.

Zusammenfassung

Gegenstand der Arbeit ist das Wegexistenzproblem und das Kollisionserkennungsproblem für zeitveränderliche Objekte in einer geometrischen Szene. Für eine große Klasse kugelförmiger nichtstarrer Objekte werden exakte Lösungen des Wegexistenzproblems entwickelt, die Zerlegungstechniken und Graphendurchlaufungen einsetzten. Ferner werden effiziente Datenstrukturen für das Kollisionserkennungsproblem eines Kreises in der Ebene vorgestellt, der sich auf linear/zirkulären oder polynomiellen Wegen in einer Szene fester Kreise bewegt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badler NI, Smoliar SW (1979) Digital representation of human movement. ACM Computing Surveys 11:19–38

    Article  Google Scholar 

  • Bentley JL, Ottmann T (1979) Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers 28:643–647

    Article  MATH  Google Scholar 

  • Blume C, Jakob W (1983) Programming languages for industrial manipulators (in German). Vogel-Verlag, Würzburg

    Google Scholar 

  • Böhm W, Farin G, Kahmann J (1985) A survey on curve and surface methods in CAGD. CAGD 1:1–60

    MATH  Google Scholar 

  • Brooks RA (1983) Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man and Cybernetics, pp 190–197

  • Brooks RA, Lozano-Perez T (1983) A subdivision algorithm in configuration space for findpath with rotation. IJCAI 00:799–806

    Google Scholar 

  • Chazelle B (1985) Fast searching in a real algebraic manifold with applications to geometric complexity. CAAP '85:145–156

  • Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Fortune S (1986) A sweepline algorithm for Voronoi diagrams. 2. ACM Symposium on Computational Geometry, pp 313–322

  • Haussler D, Welzl E (1986) Epsilon-nets and simplex range queries. Discrete Computational Geometry 2:127–151

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft J, Joseph D, Whitesides S (1984) Movement problems for 2-dimensional linkage. SIAM Journal on Computing 13:610–629

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft J, Joseph D, Whitesides S (1985) On the movement of robot arms in 2-dimensional bounded regions. SIAM Journal on Computing 14:315–333

    Article  MathSciNet  MATH  Google Scholar 

  • Kedem K, Sharir M (1985) An efficient algorithm for planning collisionfree translational motion of a convex polygonal object in 2-dimensional scene amidst polygonal obstacles. 1. ACM Symposium on Computational Geometry, pp 75–80

  • Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. CACM 22:560–570

    Article  Google Scholar 

  • Magnenat-Thalmann N, Thalmann D (1985) Computer animation: theory and practice. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Mehlhorn K (1984) Data structures and algorithms III. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • O'Dunlaing C, Sharir M, Yap CK (1983) Retraction: a new approach to motion-planning. ACM Symposium on the Theory of Computing, pp 207–220

  • Preparata F, Shamos MI (1985) Computational geometry: an introduction. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Reif JH (1979) Complexity of the mover's problem and generalizations. IEEE FOCS, pp 421–427

  • Sarnak N, Tarjan RH (1986) Planar point location using persistent search trees. Communications ACM 29:669–678

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz JT, Sharir M (1983) On the piano movers problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4:298–351

    Article  MathSciNet  MATH  Google Scholar 

  • Sharir M, Shorr A (1984) On shortest paths in polyhedral spaces. ACM STOC, pp 144–153

  • Wu YF, Widmayer P, Schlag MDF, Wong CK (1985) Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles. IBM Research Report RC 11039(#49019)1/4/85

  • Yao AC, Yao FF (1985) A general approach to d-dimensional geometric queries. ACM STOC, pp 163–168

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work was partially supported by DFG (Mu744/1-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramowski, S., Müller, H. Collision avoidance for nonrigid objects. Zeitschrift für Operations Research 32, 165–186 (1988). https://doi.org/10.1007/BF01928919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01928919

Key words

Navigation