
UC Irvine
ICS Technical Reports

Title
Using topological sweep to extract the boundaries of regions in maps represented by region
quadtrees

Permalink
https://escholarship.org/uc/item/0gf4z6dg

Authors
Dillencourt, Michael B.
Samet, Hanan

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gf4z6dg
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Using Topological Sweep To Extract the Boundaries of Regions
~ in Maps Represented by Region Quadtree~

Michael B. Dillencour~
Department of Informatibn and Computer Science

University of California
Irvine, California

Hanan Samet 2

Computer Science Department
University of Maryland
College Park, Maryland

Technical Report 91-01
January, 1991

Abstract

A variant of the plane sweep paradigm known as topological sweep is adapted to solve
geometric problems involving two-dimensional regions when the underlying representa­
tion is a region quadtree. The utility of this technique is illustrated by showing how it
can be used to extract the boundaries of a map in 0 (M) space and 0 (Ma(M)) time,
where M is the number of quad tree blocks in the map, and a(·) is the (extremely slowly
growing) inverse of Ackerman's function. The algorithm works for maps that contain
multiple regions as well as holes. The algorithm makes use of active objects (in the form
of regions) and an active border. It keeps track of the current position in the active bor­
der so that at each step no search is necessary. The algorithm represents a considerable
improvement over a previous approach whose worst-case execution time is proportional
to the product of the number of blocks in the map and the resolution of the quad tree (i.e.,
the maximum level of decomposition). The algorithm works for many different quadtree
representations including those where the quadtree is stored in external storage.

Keywords and Phrases: computational geometry, topological sweep, plane sweep,
region representation, boundary extraction, active borders, region quadtrees, computer
graphics, image processing, geographic information systems

1The support of the Committee on Research of the University of California, Irvine is gratefully
acknowledged.

2The support of the National Science Foundation under Grant IRI-88-02457 is gratefully
acknowledged.

z_

097
C3
nD. -ll

.) ;

1 Introduction

Efficient processing of geometric data is an important issue in computational geometry,
computer graphics, image processing, ge?graphic information systems, VLSI design, etc.
The algorithms and problems frequently depend on the nature of the data and, most
importantly, on its representation. One of the most popular problem-solving paradigms
is that of plane sweep [3, 10, 20, 21, 27]. It attacks the problem in two stages. The first
stage organizes the data using techniques such as sorting (e.g., rectangle problems [9]),
arrangements [11], quadtrees [25], etc. The second stage sweeps a line or a topological
equivalent through the result of the first stage, and performs the operation in a more
restricted setting (e.g., on a subset of the data).

By organizing the data in the first stage, we are often able to reduce the necessary
computation by a dramatic amount since the irrelevant data can be pruned from the
search space. In applications involving geometric data, the search space can be large on
account of its size (i.e., the area spanned by it). In such a case, the physical organization
of the data may also play an important role in evaluating the efficiency of the solution.
For example, if the data is stored in external storage (e.g., on disk), then we want to
pursue a solution strategy that minimizes page faults. This means that the organization
of the data imposed by stage one should be tightly coupled to the algorithm used in
stage two. Thus in the case of two-dimensional regions, an algorithm that computes a
geometric property by following the boundary or connectivity of the region (which may
be arbitrary) is less attractive than one that computes it by exploiting properties of the
space in which the region lies.

This distinction is frequently made in the characterization of computer graphics al­
gorithms. In this case, it is one of distinguishing between object space and image space
algorithms (e.g., [31]). For example, consider the task of labeling the connected compo­
nents of an image (e.g., [7]). This can be done using a seed-filling approach (e.g., [22])
or a predetermined approach (e.g., [23, 26, 7]). The former traces connectivity through
the entire image, while the latter systematically processes all adjacencies between sim­
ilarly colored image elements and propagates equivalences via the use of techniques for
processing equivalence classes such as the union-find algorithm [33].

In this paper we focus on two-dimensional region data. Our domain is a collection
of regions whose borders are rectilinear. The regions may also contain holes. Such
data arises frequently in automated cartography (e.g., a map of counties or states). We
assume that the regions are represented by a region quad tree (e.g., [27]). This is a :flexible
representation which is based on sorting geometric data according to their relationship
with the space that they occupy. We will show how to adapt a variant of the plane
sweep paradigm known as a topological sweep to solve problems in this domain. We
illustrate the utility of this technique by using it to extract the boundaries of a map in
O(Ma(M)) time where Mis the number of quadtree blocks in the map, and a(·) is the
(extremely slowly growing) inverse of Ackerman's function. The algorithm represents a

1

considerable improvement over a previous approach proposed in [8], which extracts the
boundary of each region by using boundary-following techniques. The worst-case cost of
applying the algorithm of [8] to the entire map region is proportional to the product of
the number of blocks in the map and the resolution of the quadtree (i.e., the maximum
level of decomposition). The techniques can also be adapted to maps whose boundaries
need not be rectilinear, provided the map is represented appropriately. For example,
they can be applied to polygonal data stored in a PM quadtree[30].

The rest of this paper is organized as follows. Section 2 contains a discussion of the
plane sweep paradigm and shows how its relative, the topological sweep, can be adapted
to quadtrees. Section 3 discusses the problem of boundary extraction in quadtrees and
reviews prior approaches as well as giving an overview of our algorithm. Sections 4 and
5 describe the data structures and the new algorithm, while Section 6 and 7 discuss
the correctness of the algorithm and give an analysis of its space and execution time
requirements. Section 8 shows how memory can be conserved, and Section 9 contains
concluding remarks as well as directions for future research. The appendix contains
pseudo-code for the algorithm.

2 Topological Sweep and Region Quadtrees

Plane sweep is one of the basic paradigms of computational geometry [3, 10, 20, 21, 27].
This technique consists of sweeping a straight line (called the sweep line) across the plane
through a collection of objects. Without loss of generality, we may assume that a vertical
line is being swept from left to right. At certain points, called halting points, a partial
solution is computed. After the last halting point is encountered, a complete solution
is available. A halting point usually corresponds to the first or last intersection of the
sweep line with one of the objects.

The plane sweep technique requires maintaining two sets of data. The first set consists
of the set of halting points, organized so that they are encountered in the appropriate
order. Usually this set is maintained as a list of x-coordinate values sorted in ascending
order. The second set consists of the set of active objects-Le., those objects intersected
by the current position of the sweep line. The set of active objects is updated at each
halting point.

Generally, plane sweep algorithms consist of two phases: a sort phase, in which
the halting points are sorted, and a sweep phase, in which the actual plane sweep is
performed. Because sorting is involved, a plane-sweep computation involving n objects
requires at least D(nlogn) processing time. In some applications (e.g., computing a
convex hull, reglilarizing a polygonal map [18]), the sweep phase requires time linear (or
almost linear) in n, so the total processing time is dominated by the sort phase.

In fact, under certain circumstances, a variant of plane sweep that eliminates the
sort phase can be applied. In such a case, the sort phase is replaced by another process

2

which may be of a lower, equal, or greater complexity. Even when the cost is greater, the
process Il!ay still be of interest if the preprocessing is amortized over many operations.

This variant, termed topological sweep in [11], can be applied when an appropriate
combinatorial structure among the input objects is available. In topological sweep, the
sweep line is a simple (i.e., non-self-intersecting) curve which need not be a straight line.
By using the combinatorial structure to guide the sweep, the sort phase may be elimi­
nated. In [11], topological sweep is used to compute certain properties of arrangements
of lines and hyperplanes.

Some of the first problems to be systematically attacked by plane sweep methods
involved the computation of certain properties of collections of rectangles with sides
parallel to the axes. Among the properties that can be computed using this approach
are the total area [5], intersections [6, 9, 19], and maximum clique in the intersection
graph (17]. In the most general formulation of these problems, rectangles are allowed to
overlap. Under these circumstances, the sort phase cannot be avoided. Indeed, it can be
shown using the methods of [4] that these problems have n(nlogn) lower bounds in the
algebraic decision tree model (also see [21]).

The situation changes when further restrictions are placed on the rectangles. In
particular, in many image processing and geographic information systems (GIS) appli­
cations, the image space (i.e., map) is partitioned into a collection of nonoverlapping
rectangles that span the image space. Algorithms for computing properties of the image
may then proceed by performing a topological sweep of the image. The sweep line is
a connected sequence of horizontal and vertical segments, and the adjacency relations
among rectangles are used to guide the sweep.

The importance of topological sweep methods is especially apparent when the image
is stored using a hierarchical representation based on a regular decomposition, such as
the bintree and the region quad tree (e.g., [27]). The region quadtree decomposes a map
into quadrants. Each quadrant that is not homogeneous (i.e., whose pixels do not all
have the same associated values) is further decomposed. The result is a hierarchical
decomposition of the map into disjoint homogeneous squares, or blocks, of different sizes.
The decomposition is often stored as a tree, in which each internal (non-leaf) node has
four children.

The block decomposition induced by the region quadtree of Figure 1 is illustrated
in Figure 2. The blocks are numbered according to the order in which they would be
visited when the quadtree is scanned using a NW, NE, sw, SE scanning order.

If the children of each node are ordered consistently, then a listing of the leaf nodes
in a preorder traversal (or equivalently postorder since the nonleaf nodes are ignored)
corresponds to a valid topological sweep of the image space. For example, if the nodes
are in NW, NE, sw, SE order, then at any instant during the sweep, the sweep line is
a "staircase" moving from southeast to northwest. It should be clear that the simple
curve that forms the "staircase" is topologically equivalent to a line. The staircase is

3

termed the active border. The set of active objects consists of the active quad tree blocks
which are the blocks that are adjacent to the staircase in the sense that their boundaries
coincide with the staircase or are adjacent to blocks whose boundaries have been scanned
in their entirety. Alternatively, the active objects could also be viewed as the regions
whose quadtree blocks are active. The correct interpretation depends on the application.
These analogies underlie algorithms based on "active border methods" [25, 28, 29].

3 Boundary Extraction in Region Quadtrees

Boundary extraction is a form of raster-to-vector conversion. It can serve as the first
step of a number of operations that a geographic information system (GIS) may want
to perform, such as computing a buffer zone of a given width about a region boundary,
drawing a map on a vector device (such as a plotter), or fitting a spline to the boundary
of a region.

To see this problem at its simplest, consider an image or map in the form of an array
of image elements (termed pixels). Assume that each pixel has a value associated with
it, which might be a country, primary crop, etc., depending on the type of map. This
value is called the color of the pixel. A region consists of a set of contiguous pixels, each
of which is associated with the same value. For -example, the map shown in Figure 1
consists of five regions, labeled A, B, C, D, and E.

The boundary of a region can be expressed in several different ways. In this paper,
the boundary is expressed as a sequence of vertices. For example, the boundary of
region A in Figure 1, starting at the upper left corner and proceeding clockwise around
the boundary (i.e., with the image to the right), consists of the sequence

{(0,0),(12,0),(12,4),(8,4),(8,9),(6,9),(6,6),(4,6),(4,8),(2,8),(2,6),(0,6)}.

Of course, other representations of the boundary (e.g., chain codes [12]) are also possible,
and the algorithms of this paper can be readily adapted to produce them.

We are interested in boundary extraction in an image where the regions are repre­
sented using a region quadtree. An algorithm for extracting the boundary of a single
region in a (pointer-based) region quadtree appears in [8J. The algorithm of [8] works
by following the boundary of the region through the quadtree. This algorithm could be
adapted to deal with multiple regions by applying it to each region. Holes may also pose a
problem in the sense that the extension of the algorithm does not yield a correspondence
between holes and the containing regions without additional processing.

The algorithm of [8) is similar to a seed-filling polygon coloring algorithm. It traverses
the image in some order until finding a boundary (i.e., an adjacency between two region
with a different color). Having found such an adjacency, it then proceeds to follow the
border. The border is followed using neighbor finding techniques [24, 26). The algorithm
does not require any storage beyond that needed to hold the image. The execution time

4

of this algorithm is proportional to the product of the total perimeter of the regions
and the average cost of locating a neighbor. The average neighbor-location cost may
be as high as the resolution of the image, although for image models that capture the
properties of real-world data, the average cost of neighbor-finding is independent of the
resolution (i.e., maximum level of decomposition) of the image [24). It is well-known
that the number of blocks in a quadtree representation of a region is proportional to its
perimeter [14, 15). Thus the algorithm of [8), in practice, exhibits execution time that
is proportional to the number of blocks in the image. However, its worst-case time is
proportional to the product of the number of blocks in the image and the resolution.
An additional drawback of this algorithm is that the image elements that comprise the
border may not necessarily be stored next to each other. This will result in page faults
if the image is not entirely in main memory.

In contrast, the solution that we present processes the adjacencies in the image in
a predetermined order. In particular, it makes a single pass over the image by using a
topological sweep in the form of a traversal of the blocks comprising the quad tree in the
order NW, NE, sw, SE. The key data structure is a set of active regions, which represent
the regions that meet the sweep line. Associated with each region is a partial boundary,
consisting of one or more simple closed curves (termed cycles). The partial boundary
represents the algorithm's best current guess at the boundary of the region, based on the
information it has seen up to now.

One cycle, always present, represents the outer boundary of the region. Some portions
of this cycle, called chains, represent portions of the boundary that are known to belong
to the boundary (because the block on the other side has been visited and is known to be
of a different color). Other portions, called bridges, represent portions of the boundary
that may or may not belong to the boundary (their status is unclear because the block
on the other side has not yet been visited.) The remaining cycles, if present, represent
"holes" in the region.

When a new quadtree block is visited, its adjacencies in the western and northern
directions are examined. Each adjacency between two blocks of different colors causes
bridges to be replaced by portions of chains. In addition, it may be that such an adjacency
causes one of the regions to become inactive, in which case its boundary is written to
the output file and it is removed from the active region data structure. An adjacency
between two blocks of the same color may result in two regions being merged, a hole
being detected, or neither of these two possibilities occurring. A simple test, described
more fully in Section 5.3, distinguishes among these three cases.

The key to the success of this algorithm is that the nature of the sweep and the asso­
ciated data structures ensure that when a block is visited, we know its containing region,
and thus assigning holes to the right region is easy. In addition, there is no computational
overhead in locating the appropriate spot in the active border when processing a block.
This enables us to avoid the log n cost factor often associated with the sweep phase
of algorithms based on plane-sweep. The fact that equivalences among regions must be

5

processed results in the a(M) overhead which, while undesirable from a theoretical point
of view, is undetectable in practice.

The new algorithm requires additional storage for the active border which is on the
order of the width of the image, as well as the partial boundaries of the regions. This
storage is less than the storage required to hold the entire image. Thus if enough storage
is available to permit the previous algorithm to run efficiently (i.e., enough to hold the
entire image), the new algorithm will also perform well. If smaller amounts of storage are
available (so that the entire image cannot fit in memory at once), the previous algorithm
[8] (because of its nonsequential access to portions of the image) will cause many more
page faults while reading the image. The new algorithm can be altered to run in less
memory, at some cost in processing speed; such an approach is outlined in Section 8.

Another very important property of the new algorithm is that it works with many
different quadtree representations. Although the region quadtree was originally devised
as a means of saving space, this is not always so. In particular, the space required for
storing pointers from a node to its sons may be significant. This is especially true in a
dynamic environment (in contrast to a static one). Of greater importance is the fact that
when the quadtree is represented in external storage, processing pointer chains (e.g., as
in neighbor finding which forms the heart of the algorithm in [8]) can be time consuming
due to the presence of page faults. Consequently, there has been considerable interest in
pointerless quadtree representations and in efficient algorithms for processing them.

Two approaches to pointerless quadtree representations have been proposed. In the
first approach, the image is treated as an ordered collection of leaf nodes. Each leaf is
represented by a locational code corresponding to a sequence of directional codes that
locate the leaf along a path from the root of the tree [1, 13]. In the second approach,
the image is represented as a preorder traversal of the nodes of its quadtree [16, 32].
This approach is termed a DF-expression (DF standing for depth-first) in [16]. In this
representation, the symbol "G" represents a gray node (i.e., a block that is subdivided
further), and any other symbol represents a leaf node corresponding to a homogeneous
block of the indicated color. For example, the DF-expression representing the quadtree
shown in Figure 2 is

GG11G1121G1121G12G3332G3232G2G2G11222211GG3233G3232G32222,

where we assume that regions A and F have color 1; regions B, C, and E have color 2;
and region D has color 3. A pointerless quadtree can be viewed abstractly as a sequential
file that supports the single operation GET. Repeated calls to this operation produce,
in sequence, the nodes of the tree. The algorithm that we present works for all of
these representations although our pseudocode and description assume the DF-expression
representation.

6

4 The Data Structures

Our algorithm visits the blocks of the quadtree in NW, NE, sw, SE scanning order. It
maintains two basic data structures: an active border [28], and a set of active regions.
The active border is represented by a list of records of type activeborderelement, and
each active region is represented by a collection of records of type region, as described
below. We first describe what the data structures represent and how they interact, and
then we describe their implementations (i.e., the record structure).

4.1 The Active Border

The active border represents the border between those quadtree blocks that have been
processed and those that have not. The elements of the active border form a "staircase"
of vertical and horizontal edges, moving from southwest to northeast, as shown in Fig­
ure 3(a). Initially, the active border consists of the north and west borders of the image.
When the algorithm terminates, the active border consists of the south and east borders
of the entire image. The set of active border elements is implemented as a doubly linked
list of records of type activeborderelement, ordered from southwest to northeast.

4.2 The Active Regions

An active quadtree block is a block that has been processed but is adjacent to at least
one block that has not been processed. Because of the order in which the blocks of
the quadtree are processed, a quadtree block is active if some portion of its eastern or
southern boundary is an active border edge. An active region is a region (i.e., a contiguous
set of blocks of the same color) that contains an active quadtree block. For example,
consider Figure 3(a), which illustrates the active border of Figure 2 after block 13 has
been processed. There are seven active blocks: 5, 6, 9, 10, 11, 12, and 13. There are
five active regions. One of the active regions contains the quadtree blocks 1, 2, 3, 4, 6,
7, 8, 10, and 11. The remaining 4 regions each consist of a single quadtree block: 5, 9,
13, and 12. Two of the active regions-the region consisting of block 5 and the region
consisting of block 9-will subsequently be merged into a single region.

The partial boundary of a region describes the boundary of the region as known at the
current point in the scan. It consists of a list of cycles. One cycle, called the principal
cycle, corresponds to the outer boundary of the region. The remaining cycles, which
correspond to the boundaries of holes, are called auxiliary cycles. Each cycle consists of
a collection of boundary elements. Each boundary element may be either a bridge or a
chain. A chain is a contiguous set of edges that are known to form part of the boundary
of the region. A bridge is an edge that coincides with a portion of the active border and
forms part of the boundary of that portion of the region that has already been scanned.

7

Notice that the principal cycle may consist of both bridges and chains, but the auxiliary
cycles consist only of chains.

As an example of these concepts, consider Figure 3(b), which illustrates the partial
boundaries of the regions that are active at the time depicted in Figure 3(a) (i.e., after
block 13 of Figure 2 has been processed). The heavy lines represent the chains, and the
light lines represent the bridges. The partial boundary of region A at this point in the
scan consists of a single cycle, which in turn consists of the following boundary elements:

1. the chain {(2, 8), (2, 6), (0, 6), (0, 0), (12, 0), (12, 4)};

2. the bridge from (12, 4) to (10, 4);

3. the chain {(10, 4), (8, 4), (8, 6)};

4. the bridge from (8, 6) to (8, 8);

5. the bridge from (8, 8) to (6, 8);

6. the chain { (6, 8), (6, 6), (4, 6), (4, 8)};

7. the bridge from (4, 8) to (2, 8).

The partial boundaries of the remaining four regions, which have much simpler structure,
are also illustrated in Figure 3(b).

Auxiliary cycles are necessary because of regions that have holes. For example, in
Figure 2, after block 37 has been processed the partial boundary of Region D consists of
two cycles, the principal cycle and a single auxiliary cycle. The auxiliary cycle represents
the boundary of the hole resulting from the existence of region E. It consists of the chain
{(12, 10), (12, 6), (10, 6), (10, 10), (12, 10)}. Notice that the chain is ordered so that that
the region D is to its right.

The active regions are represented by a collection of records of type region. The
records of this type are partitioned into equivalence classes, and each active region is
represented by an equivalence class. When two regions are merged into a single region
(for example, when block 22 is processed in Figure 2), the corresponding equivalence
classes are merged (i.e., one consisting of block 9 and one consisting of blocks 5 and
21). The equivalence classes are maintained using the well-known UNION-FIND algorithm
for disjoint set union [2]. This algorithm implements the equivalence classes as trees in
which nodes are linked to their fathers (but not to their sons). Thus each active region
is represented by a tree of records of type region. The partial boundary of a region is
associated with the root of the tree of records of type region that represents the region.
This record is called the primary record associated with the region.

8

4.3 The Record Structures

We now describe the record formats in more detail. Skeletal pseudocode definitions of
the record structures are given in Table 1. Regions are represented by records of type
region. Such a record has seven fields, REGCOLOR, FATHER, COUNT, BORDERCOUNT,
PRINCIPALCYCLE, AUXCYCLEFRONT, and AUXCYCLEREAR These seven fields can be de­
composed into three groups: color, data to support the union-find process, and partial
boundary information. Let r be a record of type region. REGCOLOR contains the color
associated with the region.

FATHER, COUNT, and BORDERCOUNT support the union-find process which makes
use of a tree structure where nodes are linked to their fathers but not to their sons.
FATHER(r) points to r's father, COUNT(r) is the number of proper descendants of r, and
BORDERCOUNT(r) is the number of elements of the active border that referencer. The
COUNT field supports the weight balancing that needs to be done in order for union-find
to achieve its execution-time bounds. In particular, when two regions are merged, the
COUNT field is use to determine which of the two records of type region at the roots
of the two trees becomes the root of the new combined tree. Together, the COUNT and
BORDERCOUNT fields are used to determine when records of type region may be safely
reused: r may be reused if COUNT(r) = 0 and BORDERCOUNT(r) = O.

A region consists of a principal cycle and a set of auxiliary cycles. The elements of the
partial boundary of a region can be parts of any of these cycles. The partial boundary
of a region is represented by the three fields PRINCIPALCYCLE, AUXCYCLEFRONT, and
AUXCYCLEREAR. PRINCIPALCYCLE points to a boundary element in the circular list of
boundary elements that comprise the principal cycle. The auxiliary cycles are maintained
as a linked list with AUXCYCLEFRONT and AUXCYCLEREAR pointing to its front and rear'
respectively.

A list of auxiliary cycles is represented by a record of type cyclelist with two
fields, FIRSTBOUNDARYELEMENT and NEXTCYCLE. FIRSTBOUNDARYELEMENT points to
a boundary element in the circular list of records of type boundaryelement that com­
prise the cycle. NEXTCYCLE points to the next cycle in the list.

Each boundary element is represented by a record of type boundaryelement. Such
a record always has the two fields FLINK and PLINK. It also has either two additional
fields fields FRONT and REAR if it corresponds to a chain, or one additional field REG if it
corresponds to a bridge. Let e be a record of type boundaryelement. FLINK and PLINK
are pointers to the successor and predecessor of e in the circular list of boundary elements
comprising the cycle to which e belongs. If e corresponds to a bridge, then it contains
an additional field, REG, which points to a record of type region in the tree of records
representing the region to whose boundary e belongs. If e corresponds to a chain, then
it contains two pointers, FRONT and REAR, to the front and rear of a singly-linked list
of records containing the vertices that comprise the chain. Both front and rear pointers
are used because new vertices may be added to either the front or the rear of the chain.

9

type region is record
color REGCOLOR;

pointer region FATHER;

integer COUNT, BORDERCOUNT;

pointer boundaryelement PRINCIPALCYCLE;

pointer cyclelist AUXCYCLEFRONT ,AUXCYCLEREAR;

end record;

type cyclelist is record
pointer cyclelist NEXTCYCLE;

pointer boundaryelement FIRSTBOUNDARYELEMENT;

end record;

type boundaryelement is record
pointer boundaryelement FLINK, PLINK;

case ELEMENTTYPE: (BRIDGETYPE, CHAINTYPE) is
CHAINTYPE: pointer chain FRONT, REAR;

BRIDGETYPE: pointer region REG;

end case;
end record;

type chain is record
pointer vertex DATA;

pointer chain NEXT;

end record;

type vertex is record
integer X,Y;

end record;

type activeborderelement is record
pointer activeborderelement NEXT, PREV;

integer LEN;

Boolean HORIZONTAL;

pointer boundaryelement DATA;

end record;

Table 1: Definitions of the data structures

10

The list is singly linked because vertices are never deleted from the middle of a chain.

The chain of vertices com prising a boundary element is represented by a record of type
chain with two fields DATA and NEXT. DATA is a pointer to the record corresponding to
the vertex and NEXT points to the next record in the chain. Each vertex is represented by
a record of type vertex with two fields x and Y corresponding to the x and y coordinate
values of the vertex, respectively.

Elements of the active border are represented by records of type activeborderelement.
Such a record has five fields, NEXT, PREY' LEN' HORIZONTAL, and DATA. Let e be a
pointer to a record of type activeborderelement. NEXT and PREY are link fields that
support the doubly-linked list of elements, ordered from southwest to northeast. LEN(e)
contains the length of e. HORIZONTAL(e) is a Boolean value that is true if e is horizontal,
and false if e is vertical. Being an element of the active border, e is a bridge in the par­
tial boundary of the region immediately to the left of e (if e is vertical) or immediately
above e (if e is horizontal), and DATA(e) points to the boundaryelement record for this
bridge.

5 Algorithm

The boundary extraction algorithm assumes a D F-expression representation of a quad tree.
It processes each quadtree block exactly once. The main routine is the recursive pro­
cedure TRAVERSE. The parameters to TRAVERSE enable it to locate the appropriate
element in the active border and to keep track of the size and location of the current
quadtree block. When TRAVERSE encounters a leaf block P, it calls PROCESSLEAFBLOCK

to process P. Procedure PROCESSLEAFBLOCK, in turn, calls PROCESSBORDERELEMENT

to process each active border element that is adjacent to P.

In the following discussion, it is important to remember that the entire quadtree
does not exist at any one time. Instead, only the active border and current region
structures exist. The quadtree is processed one block at a time. Each time TRAVERSE

is invoked, it gets the next element from the DF-expression by calling the function GET.

If the corresponding quadtree block, say P, is gray, TRAVERSE calls itself recursively
to process each of the four sub-blocks of P. Otherwise, P is a leaf block, in which
case PROCESSLEAFBLOCK is called. Variables XLEFT, YTOP, and SIZE keep track of the
position of the upper-left corner and the size of block P.

We describe the algorithm in several stages. First, we describe how procedures
TRAVERSE and PROCESSLEAFBLOCK are able to find the appropriate entries in the active
border list (Section 5.1). We then describe how these two routines process each quadtree
block (Section 5.2). Next, we describe how PROCESSBORDERELEMENT processes each
active border element (Section 5.3). In Section 5.4 we describe one of the primitive
operations of the boundary extraction algorithm, namely adding an edge to a chain.
A complete specification of the algorithm, in the form of pseudocode for the high-level

11

routines and informal descriptions of the lower level routines, is presented in the two
appendices.

5.1 Keeping Track of Position in the Active Border List

Whenever a leaf block is processed, the portion of the active border that is adjacent to
the block must be located. This is accomplished as follows. When TRAVERSE is called, it
is passed a pointer to the uppermost active border element along the left border of the
block about to be processed (UPPER.LEFT). When TRAVERSE calls PROCESSLEAFBLOCK,

it passes this pointer. By following PR.EV and NEXT links, PROCESSLEAFBLOCK can find
all active border elements adjacent to the block in 0(1) time per element.

Whenever TRAVERSE and PROCESSLEAFBLOCK are called, they return two pointers,
UPPER.RIGHT and PREVLOWERLEFT. UPPER.RIGHT is the uppermost active border ele­
ment along the right border of the processed block, after it has been processed and the
active border has been updated. PREVLOWERLEFT is the predecessor, in the active bor­
der element list, of the first element that is adjacent to the processed block. For example,
when PROCESSLEAFBLOCK is called to process block 31 in Figure 2, UPPERLEFT points to
the active border element separating block 31 from block 24. After PROCESSLEAFBLOCK

completes, UPPER.RIGHT and PREVLOWERLEFT point, respectively, to the active border
elements separating block 31 from block 32 and block 28 from block 33. As another
example, let P be the gray block whose sons are the leaf blocks 39, 40, 41, and 42. After
TRAVERSE is finished processing block P, PREVLOWERLEFT points to the bottom border
of block 30, and UPPER.RIGHT points to the active border elements separating block 40
from block 43.

With these definitions, it is easily seen that the following four relations hold for any
gray block P.

1. UPPERLEFT(Nw(P)) = UPPERLEFT(P)

2. UPPERLEFT(NE(P)) = UPPERRIGHT(Nw(P))

3. UPPERLEFT(sw(P)) = PREVLOWERLEFT(Nw(P))

4. UPPERLEFT(sE(P)) = UPPERRIGHT(sw(P))

These relations, in turn, imply that the correct value of UPPERLEFT is always passed to
each invocation of TRAVERSE and PROCESSLEAFBLOCK.

5.2 Processing Blocks

Procedures TRAVERSE and PROCESSLEAFBLOCK combine to process each block as follows.
First, TRAVERSE checks whether either the left or top border of the block is properly

12

contained in an active border element. This situation can arise if the block is smaller than
its western or northern neighbor. For example, in Figure 2 when block 3 is processed, its
top border is properly contained in an active border element, namely the entire bottom
border of block 1. If this situation occurs, the left and/or top border element is split as
many times as necessary to achieve the desired size. If the block is a gray block, then
TRAVERSE is called recursively, for each of the four sons. If the block is a leaf block,
PROCESSLEAFBLOCK is called.

PROCESSLEAFBLOCK processes a leaf block P by first walking down the left side of
P until it finds LOWERLEFT, the lowermost active border element adjacent to the left
border of P. Next, it calls ALLOCATENEWREGION to allocate a new region descriptor
CURREG corresponding to the region to which P belongs. The region descriptor returned
by ALLOCATENEWREGION has a border consisting of three bridges: the east border of
P, the south border of P, and a third bridge, CURBRIDGE. CURBRIDGE represents the
portion of the west and north border of P that has not yet been processed.

Next, PROCESSLEAFBLOCK processes the active border elements along the west and
north border of P, following NEXT links (i.e., moving upwards along the west border, then
eastward along the north border). This is done with two loops, one for the west border
and one for the north border. PROCESSLEAFBLOCK calls PROCESSBORDERELEMENT to
process each active border element. Note that the western border could also have been
processed simultaneously with the previous step that located LOWERLEFT. However, this
would have made PROCESSBORDERELEMENT more complicated. PROCESSBORDERELEMENT'

described in Section 5.3, ensures that the following properties hold:

(Pl) The variable CURREG points to the root of the tree of records of type region
representing the region containing P. This record is called the primary record
associated with the region.

(P2) The variable CURBRIDGE points to a bridge corresponding to that portion of the
north and west border of P that has not yet been visited. Initially, this bridge
corresponds to the entire north and west border. When P has been processed in
its entirety, the bridge is null and must be deleted.

(P3) The partial boundary of an active region consists of a collection of cycles. More
precisely, it is the boundary of the scanned portion of the region. Some edges of the
partial boundary are on the boundary of the scanned portion of the image; these
edges are bridges. The remaining edges of the partial boundary belong to chains.

(P4) The primary record associated with a region (together with its corresponding
pointers) contains a complete description of the partial boundary of the region.

(P5) For any record r of type region, the fields COUNT(r) and BORDERCOUNT(r) con­
tain, respectively, the number of descendants of r (in the appropriate union-find
tree) and the number of activeborderelement records whose BRIDGEPTR field
references a bridge that in turn points to r.

13

(P6) The principal cycle of an active region may contain both bridges and chains. Let
r be the primary record associated with a region. If either COUNT(r) > 0 or
BORDERCOUNT(r) > 0, then the principal cycle of the region contains at least one
bridge. Otherwise (i.e., if COUNT(r) = 0 and BORDERCOUNT(r) = 0), the principal
cycle consists only of a chain (and hence the boundary of the region is ready for
output). Note that COUNT(r) can be nonzero when BORDERCOUNT(r) = 0. Such a
situation arises when two regions, r and s, have been merged into r, and the active
border elements that refer to s still exist. When a merge occurs, we don't update
all entries of the active border, as this would be too time consuming.

(P7) Any auxiliary cycle of an active region consists only of chains. In other words,
auxiliary cycles contain no bridges.

After the last call to PROCESSBORDERELEMENT' CURB RIDGE corresponds to a null bound­
ary element, as the entire northern and western boundaries of P have been processed.
Hence CURBRIDGE can be deleted from the principle cycle of the region containing P.
Finally, UPDATEACTIVECHAIN is called to delete from the active border those active bor­
der elements that have been processed in this invocation of PROCESSBLOCK (i.e., those
along the western and north borders of P) and to replace them with two new active
border elements, representing the southern and eastern borders of P.

5 .3 Processing Border Elements

PROCESSBORDERELEMENT processes one border element. Throughout this section, as­
sume PROCESSBORDERELEMENT has been called to process the border element e, that
PROCESSLEAFBLOCK is processing block P, and that Q is the block on the opposite
side of e from P. To simplify the following explanation, we introduce some terminology,
corresponding to variables in the code. The "current region" (CURREG) is the region con­
taining P (note Property (Pl) in Section 5.2). The "neighbor region" (NEIGHBORREG)

is the region containing Q. The "neighbor bridge" (NEIGHBORBRIDGE) is the bridge that
forms the part of the neighbor regions 's partial boundary corresponding to the active
border element e.

The are four cases, illustrated in Figure 4. The left half of each figure shows the
situation before the border element e is processed, and the right half shows the situation
after e is processed. In each case, the current bridge (CURBRIDGE) is labeled c, and
the neighbor bridge is labeled n. Notice that in the code, some processing common to
cases (b)-(d) is performed after the processing for the individual cases.

Case (a): P and Q are not the same color. In this case, the boundary of the neighbor
region must be updated to reflect the fact that the border between P and Q is part of its
boundary (i.e., part of a chain). A similar update must be made to the boundary of the
current region. This is done by two calls to NEWCHAINEDGE, discussed in Section 5.4, be­
low. After this is done, the routine CHECKFOROUTPUT is called to determine whether the

14

neighbor region's boundary is complete. (This can be determined by checking whether
the two fields COUNT(NEIGHBORREG) and BORDERCOUNT(NEIGHBORREG) are both 0.)
If so, the boundary of the neighbor region can be written to the output file, and all the
storage used by the neighbor region and its cycles can be reclaimed.

Case (b): P and Q are the same color, but they do not belong to the same region.
In this case, the current region and the neighbor region must be merged. This merging
is done in two phases. First, the "union" portion of the standard union-find algorithm
is executed. Next, the partial boundaries of the two regions are merged. This requires
appending the auxiliary cycle list of the "losing" region (the one that did not become
the root) to the auxiliary cycle list of the "winning" region. It also requires readjusting
pointers to combine the two principal cycles, and deleting the neighbor bridge from the
border of the (newly combined) region.

Case (c): P and Q already belong to the same region (i.e., the neighbor region and the
current region are the same region) and a new auxiliary cycle has not been detected. This
case is characterized by CURBRIDGE being immediately followed by NEIGHBORBRIDGE in
a traversal of the partial boundary of CURREG. In this case, all that is necessary is to
delete NEIGHBORBRIDGE from the partial boundary of CURREG.

Case (d): P and Q already belong to the same region (i.e., the neighbor region and the
current region are the same region) and a new auxiliary cycle has been detected. In this
case, a new auxiliary cycle is formed by "pinching off" the portion of the principal cycle
between NEIGHBORBRIDGE and CURBRIDGE.

5.4 Adding Edges to Chains

Edges are added to chains by the procedure NEWCHAINEDGE. The goal of efficient use
of storage, both in program memory and in the output file, dictates that chains must be
stored in an efficient manner. For this reason, chains are coalesced as follows. When a
new edge is placed at the beginning (respectively, end) of a chain, if the new edge and
the first (respectively, last) edge on the chain are both horizontal or vertical, then the
first (respectively, last) vertex on the chain is replaced, otherwise a new vertex is added
to the chain. Similar considerations apply when two chains are merged.

For example, consider Figure 2. Immediately before block 15 is processed, one of the
chains in the boundary of region A is the chain

{(2,8),(2,6),(0,6),(0,0),(12,0),(12,4),(8,4),(8,6)}.

When block 15 is processed, the procedure NEWCHAINEDGE is called to add the edge
from (8, 6) to (8, 8) to this chain. Because this new edge and the last edge on the chain
(from (8, 4) to (8, 6)) are both vertical, it is unnecessary to add a new vertex to the chain.
Instead, the last vertex, (8, 6), can simply be replaced with the vertex (8, 4). In essence,
rather than storing the two edges from (8, 4) to (8, 6) and from (8, 6) to (8, 8), we coalesce

15

these two edges to form a single edge from (8, 4) to (8, 8) and store the coalesced edge
instead.

The skeletal code for NEWCHAINEDGE appears at the end of Appendix A. When a new
edge is added, we know its predecessor and successor along the cycle to which it is being
added. If these are both chains, then the new edge will cause the two adjacent chains
to be merged via a call to MERGECHAINS. If either the successor or the predecessor (but
not both) is a chain, UPDATECHAIN is called to add the new edge to that chain. In all
these cases, we coalesce if possible, as indicated above. Finally, if neither the successor
nor the predecessor is a chain, then we call ADDCHAIN to create a new chain consisting
of a single edge.

6 Correctness of the Algorithm

The correctness of the algorithm follows from the fact that the properties (Pl)-(P7) are
preserved by each call to PROCESSLEAFBLOCK. We first sketch an informal proof that
these properties are correct. (Pl) and (P4) follow because, when two region records are
merged in PROCESSLEAFBLOCK, CURREG is assigned to the root of the newly merged tree
and the partial boundaries are immediately merged. (P2) and (P3) can be verified by
straightforward induction arguments, which we omit. (P6) follows because every active
border element is associated with some region. Indeed, if r is the primary record of
type region associated with a region, any active border element associated with that
region is either associated directly with r (in which case BORDERCOUNT(r) > 0) or with
some descendant of r (in which case, it follows that r has at least one descendant, so
COUNT(r) > 0). (P7) follows from (P3), since once a "hole" is identified, all blocks inside
it (and all their neighbors) have been visited, so none of the edges on the boundary of
the hole can be on the boundary of the scanned portion of the image (which means they
cannot be bridges). Finally, (P5) can be proved by induction, as it is preserved at each
place in the code where the union-find structure is altered or the values of the COUNT

and BORDERCOUNT fields are modified.

The correctness of the algorithm can now be seen as follows. By (P4), the partial
boundary of each region, as maintained in the primary record region, is correct. By (P6),
the check described in CHECKFOROUTPUT for determining when a region's boundary is
complete is correct. By (P5), when this check is performed, the requisite fields (COUNT

and BORDERCOUNT) have been correctly maintained. Hence each region's boundary is
correctly maintained and is written to the output file when it is available.

7 Analysis of the Algorithm

The total time required by the algorithm is O(Ma(M)), where M is the number of
quad tree blocks and a(·) is the (extremely slowly-growing) inverse of Ackerman's func-

16

tion. This bound follows from the following, easily-verified facts:

1. There are O(M) calls to TRAVERSE and exactly M calls to PROCESSLEAFBLOCK.

2. The number of calls to PROCESSBORDERELEMENT (and the total number of iter­
ations of the while loop in PROCESSLEAFBLOCK, over all calls) is O(M). (This
follows because each block has 4 edges, so the total number of active border ele­
ments that are created during an entire run of the algorithm is at most 4M).

3. The total cost of all the union-find processing is O(Ma(M)). This is because both
weight-balancing and path-compression are used [2, 33].

While the 0(a(M)) overhead is undetectable in practice, it is an interesting theoreti­
cal question whether it can be eliminated. By using the age-balancing strategy described
in [7] this overhead can be eliminated for pixel arrays scanned in raster order, but it is
open whether the same strategy works for quadtrees.

One of the novel features of our algorithm is that TRAVERSE keeps track of the current
position in the active border, so there is never any need to search the active border for
the border of a block. By avoiding this search, we eliminate the potential log N factor in
the time-complexity that would result from a more naive storage method. An alternative
approach to maintaining the active border is presented in [28]; this approach uses two
arrays of size N to keep track of the active border in an N x N image. By contrast,
our approach stores the active border using an amount of memory proportional to the
number of active border elements. Our approach is superior because the number of active
border elements in an N x N image can never exceed 2N, and in practice it is often much
less. Our approach to representing the boundary is similar to the approach for bintrees
proposed in [29].

The storage requirements of our algorithm are bounded by the sum of three factors,
namely the costs of storing the active border elements, the active regions (i.e., all the
records of type region), and the partial boundaries. As mentioned above, the cost of
storing the active border is proportional to the number of active border edges, which is
at most 2N in an N x N image and may be significantly less. The maximum number
of regions active at any one time is never more than the number of blocks in the active
border. The storage required by the partial boundaries is never more than the cost of
storing the entire region. Thus, if the algorithm of [8] has enough storage to operate
efficiently, our algorithm does also. In the next section, we address the question of what
to do if the partial boundaries do not all fit in primary storage. (Notice that in this
case, the algorithm of [8] would be forced to swap portions of the quadtree to external
storage and would then generate many page faults due to the nonsequential way in which
it accesses quadtree blocks.)

17

8 Conserving Memory

In the worst case, the storage required by the partial boundaries of active regions may
be proportional to the number of blocks in the entire quadtree. An example is shown
in Figure 5. Nevertheless, the algorithm can be made to run in less than O(M) space,
where M is the number of quadtree blocks, by adopting the following approach.

Only the first two ;md last two vertices of a chain are relevant to the determination
of how to coalesce when adding edges to a chain. (Two vertices are necessary because
we need to know whether the first or last edge is horizontal or vertical.) Thus long
chains may be written (swapped) to an auxiliary file, provided the first two vertices and
last two vertices are kept in memory. If this is done, then it is necessary to keep a
pointer to the beginning and end of the swapped chain. This can be done by adding a
new variant type to the boundaryelement record. When a chain is swapped to the
auxiliary file, the boundaryelement record corresponding to that chain is modified to
represent a swapped chain, and all the vertex records associated with the portion of the
chain that has been swapped may be reused. When a region boundary is output, each
swapped chain in the boundary causes a seek operation and some additional reading from
the auxiliary file. Thus primary storage cost is reduced, at the cost of some additional
input/output.

To implement this strategy, it is useful to have one additional field, CHAINLENGTH,

in the CHAIN variant of the boundaryelement record, This field indicates the number
of vertices in the chain, and makes it easy to detect long chains. It is perhaps worth
noting that with careful implementation, the CHAINLENGTH field may be added without
lengthening the boundaryelement record. This is because it is never actually necessary
to follow the PLINK field of a chain. Thus the definition of the boundaryelement record
may be modified so that the PLINK field is only associated with the BRIDGE variant.
However, if this modification is made, then the code in Appendix A must be modified so
that PLINK links are followed or set only when the boundaryelement record is indeed
a bridge.

The above technique suggests the following strategy. Let K be the total amount
of available memory. As long as memory usage remains well below K, simply run the
algorithm. If memory usage gets within some critical value (say 90% of K), start swap­
ping out long chains. The threshold value for a "long chain" and the exact definition
of the critical value will depend on the characteristics of the hardware. This approach
permits large images to be processed, although performance will degrade somewhat as
the number of chains that have been swapped out increases.

18

9 Concluding Remarks

We have shown how to adapt a variant of the plane sweep paradigm known as topological
sweep to solve geometric problems involving two-dimensional regions when the underlying
representation is a region quadtree. The utility of this technique was illustrated by
showing how it can be used to extract the boundaries of a map in O(M) space and
O(Ma(M)) time, where Mis the number of quadtree blocks in the map, and a(-) is
the (extremely slowly growing) inverse of Ackerman's function. The algorithm works
for maps that contain multiple regions as well as holes. The algorithm represents a
considerable improvement over a previous approach, based on boundary-following, which
processes regions one at a time and whose worst-case execution time is proportional to
the product of the number of blocks in the map and the resolution of the quadtree (i.e.,
the maximum level of decomposition). The algorithm works for many different quad tree
representations including those where the quadtree is stored in external storage.

Directions for future work include the relaxation of the restriction that the boundaries
be rectilinear, as is the case when the map is represented as a PM quadtree [Same85].
Other applications include its use with quadtree representations of other types of geo­
metric data such as rectangles, points, lines, and even three-dimensional regions. It is
an open question whether the algorithm can be improved to get rid of the a(M) factor
in the algorithm's execution time.

References

[1] D. J. Abel and J. L. Smith. A data structure and algorithm based on a linear key for
a rectangle retrieval problem. Computer Vision, Graphics, and Image Processing,
24(1):1-13, October 1983.

[2] A. V. Aho, J.E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[3] H. S. Baird. Fast algorithms for LSI artwork analysis. Journal of Design Automation
& Fault-Tolerant Computing, 2:179-209, 1978.

[4] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the Fif­
teenth Annual ACM Symposium on the Theory of Computing, pages 80-86, Boston,
MA, April 1983.

[5] J. L. Bentley. Algorithms for Klee's rectangle problems. Unpublished Manuscript,
Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, 1977.

[6] J. L. Bentley and D. Wood. An optimal worst case algorithm for reporting in­
tersections of rectangles. IEEE Transactions on Computers, 29(7):571-576, July
1980.

19

[7) M. B. Dillencourt, H. Samet, and M. Tamminen. A general approach to connected­
component labeling for arbitrary image representations. To appear in Journal of
the ACM.

[8] C. R. Dyer, A. Rosenfeld, and H. Samet. Region representation: Boundary codes
from quadtrees. Communications of the ACM, 23(3):171-179, March 1980.

[9] H. Edelsbrunner. A new approach to rectangle intersections: part I. International
Journal of Computer Mathematics, 13(3-4):209-219, 1983.

[10] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1987.

[11] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. In
Proceedings of the Eighteenth Annual A CM Symposium on the Theory of Computing,
pages 389-403, Berkeley, CA, May 1986.

[12] H. Freeman. Computer processing of line-drawing images. ACM Computing Surveys,
6(1):57-97, March 1974.

[13] I. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905-910, December 1982.

[14] G. M. Hunter. Efficient computation and data structures for graphics. PhD thesis,
Princeton University, Princeton, NJ, 1978.

[15] G. M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1(2):145-153, April
1979.

[16] E. Kawaguchi, T. Endo, and J. Matsunaga. Depth-first picture expression viewed
from digital picture processing. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 5(4):373-384, July 1983.

[17] D. T. Lee. Maximum clique problem ofrectangle graphs. In F. P. Preparata, editor,
Computational Geometry, pages 91-107. JAI Press, Greenwich, CT, 1983. Advances
in Computing Research, Volume 1.

[18] D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its
applications. SIAM Journal on Computing, 6(3):594-606, September 1977.

[19] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257-
276, May 1985.

[20] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms for intersecting geometric
figures. Communications of the ACM, 25(10):739-747, October 1982.

[21] F. P. Preparata and M. I. Shamas. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

20

[22) D. F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill, New York,
1985.

[23] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press, New York,
NY, second edition, 1982.

[24] H. Samet. Neighbor finding techniques for images represented by quadtrees. Com­
puter Graphics and Image Processing, 18(1):37-57, January 1982.

[25] H. Samet. Hierarchical representations of collections of small rectangles. ACM
Computing Surveys, 20(2):271-309, December 1988.

[26] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[27] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

[28] H. Samet and M. Tamminen. Computing geometric properties of images repre­
sented by linear quadtrees. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7(3):229-240, March 1985.

[29] H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 10(4):579-586, July 1988.

[30] H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM
Transactions on Graphics, 4(3):182-222, July 1985.

[31] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of ten
hidden-surface algorithms. ACM Computing Surveys, 6(1):1-55, March 1974.

[32] M. Tamminen. Encoding pixel trees. Computer Graphics, Vision, and Image Pro­
cessing, 28(1):44-57, October 1984.

[33] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215-225, April 1975.

21

Appendix A: The boundary extraction algorithm

recursive procedure TRAVERSE (UPPERLEFT 'UPPERRIG HT ,PREVLOWERLEFT ,XLEFT ,YTOP ,SIZE);
/*Recursive routine to extract all region boundaries in a quadtree stored as a DF-expression. On input,

UPPERLEFT is the uppermost activeborderelement along the left border of the current quadtree
block. On output, UPPERRIGHT is the uppermost activeborderelement along the right border, and
PREVLOWERLEFT is the immediate predecessor of the lowermost activeborderelement along the left
border of the current quad tree block. XLEFT, YTOP, and SIZE describe the current quad tree block's
location and extent. * /

value pointer activeborderelement UPPERLEFT;
reference pointer activeborderelement UPPERRIGHT, PREVLOWERLEFT;
value integer XLEFT, YTOP, SIZE;
pointer activeborderelement PLL,UR,DUMMY; /*local variables*/
color BLOCKCOLOR;
begin /* TRAVERSE * /

if LEN(UPPERLEFT) >SIZE then SPLIT(UPPERLEFT,SIZE);
if LEN(NEXT(UPPERLEFT)) >SIZE then SPLIT(NEXT(UPPERLEFT),SIZE);
BLOCKCOLOR :=GET();
if BLOCKCOLOR ='GRAY' then begin

TRAVERSE(UPPERLEFT,UR,PLL,XLEFT,YTOP,SIZE/2); /*NW son*/
TRAVERSE(UR,UPPERRIGHT,DUMMY,XLEFT + SIZE/2,YTOP,SIZE/2); /*NE son * /
TRAVERSE(PLL,UR,PREVLOWERLEFT,XLEFT,YTOP + SIZE/2,SIZE/2); /*SW son*/
TRAVERSE(UR,DUMMY,DUMMY,XLEFT + SIZE/2,YTOP + SIZE/2,sizE/2); /* SE son*/
end

else
PROCESSLEAFBLOCK (UPPERLEFT, UPPERRIGHT ,PREVLOWERLEFT ,XLEFT ,YTOP ,SIZE,BLOCKCOLOR);

end/* TRAVERSE*/;

procedure PROCESSLEAFBLOCK(UPPERLEFT,UPPERRIGHT,PREVLOWERLEFT,XLEFT,YTOP,SIZE,BLOCKCOLOR);
/* Process a single leaf block, exploring all its adjacencies by first working down along the west border and

then from left to right along the north border. BLOCKCOLOR is the color of the leaf block, otherwise
parameter definitions are as in TRAVERSE. * /

value pointer activeborderelement UPPERLEFT;
reference pointer activeborderelement UPPERRIGHT, PREVLOWERLEFT;
value integer XLEFT, YTOP) SIZE;
value color BLOCKCOLOR;
integer X,Y;
pointer region CURREG;
pointer boundaryelement CURBRIDGE, LOWBRIDGE;
pointer activeborderelement E,LOWERLEFT;
begin/* PROCESSLEAFBLOCK * /

E := UPPERLEFT;
Y := YTOP + LEN(E); X := XLEFT;
while y < YTOP + SIZE do begin

E := PREV(E);
Y := Y + LEN(E);
end;

PREVLOWERLEFT := PREV(E);
LOWERLEFT := Ej
ALLOCATENEWREGION(XLEFT,YTOP,SIZE,BLOCKCOLOR,CURREG,CURBRIDGE,LOWBRIDGE);
repeat

PROCESSBORDERELEMENT(E,CURBRIDGE,CURREG,X,Y,X,Y-LEN(E));
Y := Y - LEN(E);
E := NEXT(E);

until y = YTOP;
repeat

22

PROCESSBORDERELEMENT(E ,CURBRIDG E,CURREG ,X, Y ,X + LEN(E) ,Y);

X := X + LEN(E);

if x < XLEFT + SIZE then E := NEXT(E);

until x = XLEFT + SIZE;

UPDATEACTIVEBORDER (LOWERLEFT ,E ,LOWBRID GE, UPPERRIG HT ,SIZE);

BORDERCOUNT(CURREG) := BORDERCOUNT(CURREG) + 2;
FLINK(PLJNK(CURBRIDGE)) := FLINK(CURBRIDGE);

PLINK(FLINK(CURBRIDGE)) := PLINK(CURBRIDGE);

FREE(CURBRIDGE);

end/* PROCESSLEAFBLOCK * /;

procedure PROCESSBORDERELEMENT(E,CURBRIDGE,CURREG,X,Y,NEWX,NEWY);

/* Process one border element. CURREG is the surviving region descriptor associated with the block being
processed. * /

reference pointer activeborderelement E;
reference pointer boundaryelement CORBRIDGE;

reference pointer region CURREG;

reference integer X,Y,NEWX,NEWY;

pointer boundaryelement NE!GHBORBRIDGE;

pointer region NEIGHBORREG;

begin /* PROCESSBORDERELEMENT * /
NEIGHBORBRIDGE := DATA(E);

NEIGHBORREG := REG(NE!GHBORBRIDGE);

BORDERCOUNT(NEIGHBORREG) := BORDERCOUNT(NEIGHBORREG) - l;
NE!GHBORREG := FIND(NE!GHBORREG);

if REGCOLOR(NEIGHBORREG) "I REGCOLOR(CURREG) then begin/* Case (a) * /
NEWCHAINEDGE(X,Y,NEWX,NEWY,PLINK(CURBRIDGE),CURBRIDGE);

NEWCHAINEDGE(NEWX,NEWY,X,Y,PLINK(NE!GHBORBRIDGE),FLINK(NE!GHBORBRIDGE));

CHECKFOROUTPUT(NEIGHBORREG);

end
else begin /* Cases (b), (c), and (d): regions are the same color * /

if NEIGHBORREG # CURREG then begin /* Case (b) * /
UNION (CURREG ,NEIGHBORREG,CURREG,LOSER);

NEXTCYCLE(AUXCYCLEREAR(CURREG)) := AUXCYCLEFRONT(LOSER);

FLINK(PLINK(CURBRIDGE)) := FLINK(NEIGHBORBRIDGE);

PLINK(FLINK(NEIGHBORBRIDGE)) := PLINK(CURBRIDGE);

end
else if PLINK(CURBRIDGE) = NEIGHBORBRIDGE then/* Case (c): no-op * /
else /* Case (d) * /

NEWAUXCYCLE (FLINK(NE!GHBORBRIDGE) ,PLINK(CURBRIDGE) ,CURREG);

/*Cases (b), (c), and (d) */
PLINK(CURB RIDGE) := PLINK(NEIGHBORBRIDGE);

FLINK(PLINK(NEIGHBORBRIDGE)) := CURBRIDGE;

FREE(NEIGHBORBRIDGE);

end;
end/* PROCESSBORDERELEMENT * /;

procedure UNION(R,S,WINNER,LOSER);

value pointer region R,s;

reference pointer region WINNER,LOSER;

begin /* UNION * /
if COUNT(R) 2: COUNT(s) then begin

WINNER := R; LOSER:= s;

end
else begin

WINNER := s; LOSER:= R;

23

end;
FATHER(LOSER) := WINNER;
COUNT(WINNER) := COUNT(WINNER) + COUNT(LOSER) + 1;

end/* UNION * /;

pointer region FIND(R);
value pointer region R;
pointer region Rl := R, R2;
integer PATHCOUNT := O;
begin /* FIND * /

while not NULL(FATHER(R)) do R := FATHER(R);
while (Rl # R) do begin

R2 := FATHER(Rl);
/* PATH COUNT contains value of COUNT(Rl) from before start of path compression*/
COUNT(R2) := COUNT(R2) - PATH COUNT - 1;
PATHCOUNT := PATHCOUNT + COUNT(R2) + 1; j* old COUNT(R2) * j
if COUNT(Rl) = 0 and BORDERCOUNT(Rl) = 0 then begin

FREE(Rl);
COUNT(R) := COUNT(R)-1;
end

else
FATHER(Rl)
Rl := R2;

end;
end/* FIND*/;

:= R;

procedure NEWCHAINEDGE(xl,Yl,x2,Y2,PRED ,succ);
/*Add a new edge from (xl, Yl) to (x2, Y2) */

value integer xl,Yl,x2,Y2;
value pointer boundaryelement PRED,succ;
begin j*NEWCHAINEDGE * /

if ELEMENTTYPE(PRED) = CHAINTYPE then
if ELEMENTTYPE(succ) = CHAINTYPE then MERGECHAINS(PRED,succ)
else UPDATECHAIN(xl,Yl,PRED ,FALSE)

else
if ELEMENTTYPE(succ) = CHAINTYPE then UPDATECHAIN(xl,Yl,succ,TRUE)
else ADDCHAIN(xl,Yl,x2,Y2,PRED ,succ);

end/* NEWCHAINEDGE */;

24

'·•

Appendix B: The uncoded routines m the boundary extraction algorithm

ROUTINES THAT MANIPULATE THE ACTIVE BORDER:

procedure SPLIT(BORDEREDGE,SIZE);

value pointer activeborderelement BORDEREDGE;

value integer SIZE;

/*This routine splits the active border element BORDEREDGE into two parts, BORDEREDGE and NEW­

BORDEREDGE. It also splits the bridge DATA(BORDEREDGE) into two parts. The split of BORDEREDGE

is done in such a way that after the split, LEN(BORDEREDGE) = SIZE. If BORDEREDGE is vertical,
NEWBORDEREDGE becomes the predecessor of BORDEREDGE on the active border list. If BORDEREDGE

is horizontal, NEWBORDEREDGE becomes the successor of BORDEREDGE on the active border list. * /

procedure UPDATEACTIVEBORDER(LOWERLEFT ,RIGHTUPPER,LOWBRIDGE,RIG HT ,SIZE);

value pointer activeborderelement LOWERLEFT, RIGHTUPPER;

value pointer boundaryelement LOWBRIDGE;

reference pointer activeborderelement RIGHT;

value integer SIZE;

/* This routine is called to update the active border after a leaf block has been processed. It frees the
portion of the active border between LOWERLEFT and RIGHTUPPER (i.e., the left and top border of
the leaf block), and replaces this portion with two activeborderelement entries, corresponding to
the bottom and right border of the leaf block. On entry, LOWBRIDGE points to the boundary element
that is the bottom boundary of the leaf block. This information is necessary to correctly set the DATA

field in the two new activeborderelement entries. On exit, RIGHT points to the active border edge
corresponding to the right border of the block. * /

ROUTINES THAT MANIPULATE REGIONS:

procedure ALLOCATENEWREGION(XLEFT,YTOP,SIZE,REGCOLOR,CURREG,CURBRIDGE,LOWBRIDGE);

value integer XLEFT, YTOP, SIZE;

value color REGCOLOR;

reference pointer region CURREG;

reference pointer boundaryelement CURBRIDGE,LOWBRIDGE;

/*This routine allocates a region consisting of the leaf block whose location and size are sepecified by
XLEFT, YTOP, and SIZE, and whose color is REGCOLOR. A boundary description consisting of one com­
ponent with three bridges is built. On output, CURREG points to the newly allocated region descriptor;
CURBRIDGE is the "floating" bridge described in the text; and LOWBRIDGE is the bridge forming the
bottom boundary of the block. * /

procedure CHECKFOROUTPUT(REG)

value pointer region REG;

/* This routine checks to see if the region REG can be succesfully output. This can be done if and only
both of the following conditions are met: (1) BORDERCOUNT(REG) = 0, and (2) COUNT(REG) = o. If
the region is output, then the region record and all associated cycles and chains are deleted, and their
space is available for subsequent reuse. * /

ROUTINE THAT MANIPULATES BOUNDARY ELEMENTS AND CYCLES:

procedure NEWAUXCYCLE (START ,STOP ,REG);

value pointer boundaryelement START,STOP;

value pointer region REG;

/* The chain of boundary elements from START to STOP is made a separate, non-principal component
of the region REG. The calling routine is responsible for (1) ensuring that this sequence of boundary
elements does, in fact, form a cycle; and (2) delinking START and STOP from the principal boundary
component. * /

25

ROUTINES THAT MANIPULATE CHAINS:

procedure ADDCHAIN(xl,Yl,x2,Y2,PRED ,succ);

value integer xl ,Yl ,x2,Y2;

value pointer boundaryelernent PRED, succ;

/*Make a new chain, consisting of the two vertices (xl, Yl) and (x2, Y2), and link it so that it is after
PRED and before succ. * /

procedure UPDATECHAIN(X,Y,CH,ATFRONT);

value integer X,Yj

value pointer boundaryelernent CH;

value Boolean ATFRONT;

/* Put the vertex (x,Y) on the front or rear of the chain pointed to by CH, depending on whether ATFRONT

is true or false. Do this by replacing the first (last) vertex if possible, otherwise add a new first (last)
vertex. * /

procedure MERGECHAINS(PRED ,succ);

value pointer boundaryelernent PRED, succ;

/* Merge the two chains pointed to by PRED and succ into a single chain. If PRED ends with a horizontal
(respectively, vertical) edge and succ starts with a horizontal (respectively, vertical) edge, coalesce
these two edges. * /

26

Figure 1: A sample map, consisting of five regions

1 2 11 12

A

3 4 7 8 13 14 17 18
D

5 6 9 10 15 16 19 20

23 24
22 31 32 35 36

25 26 E
21

B
27 28 33 34 37 38

39 40

29 F 30 43

41 42
c

Figure 2: The decomposition of the map of Figure 1 into homogeneous blocks

27

1 2 11 12

3 4 7 8 13

5 6 9 10

(a)

1 2 11 12

(b)

Figure 3: (a) The active border of the map of Figure 2 after node 13 has been processed. (b) The list of
active edges that constitute the active border.

28

1·
...

c

p p

f
(a)

G
...

1·
c

Q

p p

f
(b)

.. _... - -c
Q

.. ...
-·~ I . Q

p p

D D

• •
(c)

c
Q

p p

... ...
(d)

Figure 4: The four cases that arise in PROCESSLEAFBLOCK. (a) The current region and the neighbor
region are different colors. (b) The current region and the neighbor region are the same color and have not
previously been merged (i.e., they are different regions). (c) The current region and the neighbor region
are the same region and a hole has not been detected. (d) The current region and the neighbor region are
the same region and a hole has been detected.

29

Figure 5: In this N x N image, the algorithm requires O(N2) storage

30

