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Abstract

The vertex updating problem for a minimum spanning tree (MST)
is defined as follows: Given a graph G = (V, E¢) and an MST T for G,
find a new MST for G to which a new vertex z has been added along
with weighted edges that connect z with the vertices of G. We present
a set of rules that produce simple optimal parallel algorithms that run
in O(lgn) time using n/lgn EREW PRAM processors, where n =
|V|. These algorithms employ any valid tree-contraction schedule that
can be produced within the stated resource bounds. These rules can
also be used to derive simple linear-time sequential algorithms for the
same problem. The previously best known parallel result was a rather
complicated algorithm that used » processors in the more powerful
CREW PRAM model. Furthermore, we show how our solution can
be used to solve the multiple vertex updating problem: Update a
given MST when k new vertices are introduced simultaneously. This
problem is solved in O(lgk -lgn) parallel time using ; ’sz” — EREW
PRAM processors. This is optimal for graphs having Q%kn edges.
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1 Introduction

Definition. The vertex updating problem for a minimum spanning tree
(MST) is defined as follows: We are given a weighted graph G = (V, Eg),
along with an MST T = (V, E). The graph is augmented by a new vertex z
and n weighted edges connecting z to every vertex in V. We want to compute
anew MST 7" = (V U {z}, E').

In this paper we present an optimal yet simple solution for the EREW
PRAM model. Our solution works in O(lgn) time (lgn denotes log, n) using
n/ lg n parallel processors, where n = |V, the number of vertices in the graph.
Brent’s theorem applies and implies that, using p < n/log n processors, the
running time is O(lgn 4+ n/p). In the last section, we show how this solution
can be used to solve the multiple vertex updating problem (an existing MST
T is updated simultaneously by k new vertices having weighted edges to T').

The model of parallel computation we will use throughout this paper
is the EREW PRAM (exclusive-read-exclusive-write parallel random access
machine) [6]. The virtue of an algorithm in the EREW model is that no
arbitration of concurrent access requests need be provided in the machine
on which it runs. Such arbitration is necessary in the more powerful CREW
and CRCW models employed in all previous work on these problems.

We introduce a set of rules that make use of a few simple observations
on MSTs as well as of the fact that it is preferable to break the cycles in-
troduced by the new edges (because there is only a polynomial number of
them) than to compute the tree from scratch. These rules are defined to
apply locally on the nodes of the existing MST, so we get parallel algorithms
(using tree-contraction) as well as sequential ones (using, for example, depth-
first-search).

History. The vertex updating problem of a minimum spanning tree
was first addressed by Spira and Pan in [1], where an O(n) sequential algo-
rithm was presented. Another solution using depth-first-search and having
the same time complexity was later given by Chin and Houck in [2], while
Pawagi and Ramakrishnan [3] gave a parallel solution to the problem. Their
algorithm, which runs in O(lgn) time using n? CREW PRAMs, precomputes
all maximum weight edges on paths between any pair of nodes in the tree,
and then breaks the cycles simultaneously in constant time. Varman and
Doshi [4] presented an efficient solution that works in the same parallel time,
but uses n CREW PRAM processors. They use divide-and-conquer to split



the problem into approximately 1/n equally-sized subproblems which they
solve recursively. Even though their idea is rather simple, the implementa-
tion details make the algorithm rather complex. More recently, Jung and
Mehlhorn [5] have given an optimal solution for the more powerful CRCW
PRAM model by reduction to an all sub-expression evaluation problem. They
use an optimal tree contraction algorithm as a subroutine, as do we. How-
ever, their approach to breaking cycles is different from ours. In our case,
we are able to restrict consideration of cycles to those with no more than
four vertices and, as we will show, they can be treated without concurrent
writing. Also, because of the all sub-expression evaluation reduction, they
need to have an upwards and a downwards pass on the tree to complete the
calculation; our approach simply computes an MST in the upward pass.

There is, of course, an obvious algorithm for solving the problem: com-
pute from scratch an MST of the graph having as edges the old MST edges
plus the added edges of z. This, however, requires O(lognloglogn) time
using n + m EREW PRAM processors [7, 8] employing very elaborate tech-
niques. The solution we present here is faster and significantly simpler.

The paper is organized as follows: The remainder of this section discusses
a useful input representation. Section 2 has an outline of the solution and
describes the rules and the invariant used. Section 3 presents the main theo-
rem and some of the algorithms that can be derived using the rules. Finally,
Section 4 shows how the vertex updating algorithms can be used to solve
the multiple vertex updating problem in parallel. An earlier version of this
paper was presented in [9]. However, the present version differs considerably
and is simpler than the previous one.

Representation. As is well known, any MST T of a given graph G can
be found by a sequence of deletions of an edge of maximum weight (MaxWE)
from some cycle. Since the same sequence of deletions can be followed on the
graph augmented with the new vertex z, there is an MST in the augmented
graph in which none of these original non-tree edges appears. Therefore, it
is sufficient to pose the MST problem in the augmented graph on a graph
composed of the original MST and the edges to the new vertex z. This
graph, which we call the sufficient graph, has at most 2n — 1 edges. We
choose to represent the sufficient graph as a tree 7' with n — 1 weighted edges
(corresponding to the given MST) and with weights on each of its n nodes
(corresponding to weights of the newly introduced edges to z). We will call
this object a weighted tree (Figure 1). A path between any two weighted
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Figure 1: (a) The initial (given) MST, (b) the sufficient graph after introduc-
ing the new vertex z along with its weighted edges and (c) the corresponding
weighted tree.

nodes in the weighted tree corresponds to a cycle in the graph augmented
with z. Such a graph with 2n — 1 edges is shown in Figure 1b and is implied
by the weighted tree shown in Figure lc. In the discussion that follows,
reference to the weight of a node will mean reference to the corresponding
edge in the sufficient graph, unless noted otherwise.

2 Breaking the Cycles

Outline of the Algorithm. As we mentioned, we are given the input in
the form of a weighted rooted tree. We assume that each vertex has a pointer
to a circular linked list of its children, and the linked lists are stored in an
array. The representation of the input is not crucial, since it can be derived
in O(lgn) time using n/lgn processors from any reasonable representation.

We should mention at the outset that in the course of our description
we treat every case where read or write conflicts might be expected to occur
and we show in each case how these conflicts are avoided. The basic idea is
that when only a constant number of vertices are involved in a computation,
avoiding conflicts is always possible with a constant dilation in running time
and is in fact straightforward to implement.
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Figure 2: Binarization: A node with more than two children is represented
by a right path of unremovable edges.

The algorithm consists of a number of phases. During each phase, leaves
and nodes of degree 2 of the weighted tree (such as the root or internal nodes
having one child) are processed. Each tree-node is processed once in the en-
tire course of the algorithm. The order in which the nodes are processed in
parallel is dictated by a tree-contraction schedule. Processing a node means
examining the edges composing small cycles (cycles of length 3 or 4) that
contain the node, and breaking these cycles by removing a MaxWE that ap-
pears in them, effectively computing an MST of the subgraph induced by the
examined edges. This is done by a set of rules which also update neighboring
nodes, so that the size of the unprocessed part of the tree decreases.

A sequential algorithm needs only to apply the appropriate rule while
visiting the nodes of the tree. Thus a depth-first-search (or a breadth-first-
search) visit of the nodes suffices. When working in parallel though, the rules
can apply to many nodes at once, provided that no confusion arises from the
simultaneous updating of neighboring nodes. A valid tree-contraction sched-
ule (like the ones presented in Section 3) suffices to assure that neighboring
nodes are not processed at the same time. After processing all the nodes, an
MST of the sufficient graph has been computed and the algorithm terminates.

Binarization. The rules we present assume a binary tree as input, so



some preprocessing is needed to transform the weighted tree to a binary
weighted tree. This can be achieved in O(lgn) time using n/lgn EREW
PRAM processors, and is needed only for ordering the processing of a node’s
children. Note that only the parallel algorithms need this transformation.
This transformation is performed by the procedure binarize, which we de-
scribe here. Each node v having k children vq,---,vg is represented by a
right path (Figure 2) composed of v = ug and k — 2 fake nodes uy, - -+, ug_a,
so that node u; is the right child of u;_; for j = 1,...,k — 2. Node v;, for
1=1,---,k — 1 becomes the left child of node u;_;, and vg the right child of
Ug—3. We assign weights of —oo to the edges of the right path (which makes
them unremovable by our rules). Since the fake nodes are introduced only to
fix the processing order of v’s children, they are assigned weight +o00 making
it impossible to retain them in the MST connecting z and v. Of course, the
real nodes v and the v;’s keep their weights. At the end of the algorithm each
right path is always included in the MST of the binarized problem, giving a
unique obvious solution to the original problem.

Some tree-contraction schedules require a regular binary tree as input.
For these cases, the binarization is extended to handle nodes v with only one
child in the input tree. For each of them a second child v’ is introduced, for
which w[v'] = 400 and w[(v,v')] = —c0.

The binary weighted tree has the same number of cycles, but may have
height much greater than the input tree and may contain twice as many
nodes. This fact, though, does not affect the asymptotic running time of the
algorithm, which is logarithmic in the number of tree nodes.

Invariant and Rules. The rules are divided into two categories: Rules
that are applied to leaves (pruning rules), and rules that are applied to nodes
with only one child (shortcutting rules). Each node is examined exactly once
for rule application. Then, its incident edges are identified as being either
wncluded in the new MST, or ezcluded from it.

We will make use of the following two well-known facts which we state
here without proof:

Fact 1 The edge with minimum weight incident to some node will always be

included in the MST.
O

Actually, Prim’s and other sequential [1] and parallel [10] algorithms are
based on this fact. Edge inclusion in our rules makes use of this observation.



bl G.=G/{u,v}

Figure 3: Contraction of edge {u,v} in G produces G. = G/{u,v}.

Fact 2 Whenever some edge is found to correspond to the MazWE of some
cycle it can be removed from the graph without affecting the computation of

the MST of the graph.

a

Kruskal’s MST algorithm makes use of this fact. Edge exclusion in our
rules is based on this observation.

A useful Lemma. Let w: VUE — R give the weights of the nodes and
the edges. At the beginning of the algorithm, the weight of a node v is the
weight of the edge connecting v to z. To resolve ties, we adopt the convention
that the currently processed node has weight larger than its equally weighted
neighbors.

For the purposes of this lemma, we assume that the edges of G can be
assigned labels based on their endpoints, e.g. edge {u,v} receives the label
lab{u,v}, and that these labels persist under the change of endvertices in
the contraction operation we now define. Given a weighted graph G and an
edge {u, v}, we define the contracted graph G/{u,v} as follows: Delete edge
u,v and then replace vertices u and v with a new vertex uv, retaining the
original edges and edge labels with only the indicated endpoint renamed.



Thus, any edge incident on vertiex u, for example, is now incident on vertex
wv. (Figure 3.) In the case where there originally was an edge from a vertex
w to both u and v, delete the now parallel edge with the greater weight (or,
in the case of a tie, one of the parallel edges).

Lemma 1 For {u,v} € MST(G),
MST(G) = {u,v} U MST(G/{u,v})

where the MST is defined by its edges, and equality 1s over edge labels that
persist under the contraction operation G/{u,v}.

Proof. Let us denote the contracted graph G/{u,v} with G.. The lemma
states that MST(G) = {u,v} U MST(G,).

Consider an M ST(G,). Then, for each edge e € G. — MST(G.) there is
a cycle composed of edges in G, among which e is the MaxWE.

Observe that from the way G. is constructed, each edge in G. has a cor-
responding edge in G. (The opposite is not true.) Now consider a subgraph
S C G induced by {u,v} and the edges of G corresponding to MST(G.).
Note that S is a spanning tree of G. We will show that for each edge e’ € G—S
there is a cycle in G, in which €’ is the MaxWE; this will prove the lemma.

To see that we consider two cases:

1. €' corresponds to edge e in G.. Since e € MST(G.), there is a cycle
in G, in which e is the MaxWE. Each one of the edges in this cycle
corresponds to an edge in G, and €' is the MaxWE in this cycle.

2. €' does not correspond to an edge in G.. Then e’ was one of the edges
deleted by the contraction, therefore it has one of its endpoints at u or
v. Without loss of generality we assume that ¢’ = {w,u}. Then, there
is another edge {w,v} € G with weight less than the weight of €’ which
has a corresponding edge in G., namely {w,uv}. Thus, there is a cycle
involving edges €', {w, v}, {u,v}, in which €’ is the MaxWE.

a

We are ready now to present our rules. Each application of a rule will
preserve the following invariant.
Invariant Whenever the rules include an edge e, then there is some M ST(G)
containing all edges already included for which e € MST(G). Whenever the
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Figure 4: Pruning Rules for a Leaf. An included edge is dotted and we keep
its weight letter. We erase an excluded edge along with its weight letter.

rules ezclude an edge €', then there is some MST(G) containing all edges
already included and ¢’ ¢ MST(G). Updates in the weights of the vertices
reflect the effect of contracting the included edge.

2.1 Pruning Rules

Consider a small cycle involving leaf v, p(v), the parent of v in the
weighted tree of the sufficient graph, and z. Let w[(v,p(v))] = a, wjv] = b
and w[p(v)] = ¢ (Figure 4). The cycle of length 3 they form can be broken in
such a way that the invariant is preserved. We consider the following cases:

a = min{a, b}: Then, a should be included and the edge corresponding to
max{b, c} should be excluded. We update w[p(v)] < min{b, c}.

b = min{a, b}: Now, b should be included while, the edge corresponding to
max{a, c} should be excluded. Similiarly with the previous case, we
update w[p(v)] « min{a, c}.

Some special care to avoid concurrent writing must be taken in the case
that v’s sibling, say u, is also a leaf (Figure 8) and is processed at the same
time. Actually, the ACD scheduling method [11] which we describe in a later
section schedules v and u to be processed at the same time. Section 3.2
discusses how we avoid concurrent accesses.

10
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Figure 5: Shortcutting Rules.

2.2 Shortcutting Rules

Now we consider a situation where v has only one child, say u. There
are two possible small cycles involving v: z,v,u, z and z,v,p(v), 2. We will
describe how to break these cycles in a way that the invariant is preserved.
Let wlv] = a, w[(v,u)] = b, w[u] = ¢, w[(v,p(v))] = d and w[p(v)] = e
(Figure 5).

a = min{a, b,d}: Then, a should be included, and the edges corresponding
to max{e, d} and max{c, b} should be excluded. We update w[p(v)] «
min{e, d} and w[u] « min{c, b}.

d = min{a, b,d}: Then, d should included and the edge corresponding to
max{a, e} should be excluded. We update w[p(v)] < min{a, e}.

b = min{a, b,d}: Similiarly, b should be included and the edge corresponding
to max{a, ¢} should be excluded. We update w(u] < min{a, c}.

The fact that shortcutting a node may update both parent and child nodes
creates a possibility of a write conflict. This can be easily avoided, since at

11



most three processors may try to access the same memory cell simultaneously.
Section 3.2 describes how this conflict is avoided.

Updating weights should be implemented in such a way that the original
edge, whose weight appears after the update on the node, is remembered.
One pointer per node pointing to this original edge suffices to accomplice
this.

Correctness Lemma. We have described a set of rules that define a
prune operation which removes the leaves of a tree, and a shortcut operation
which removes nodes of degree two from the tree. Note that individual
prunings and shortcuttings take O(1) time to be performed.

We are now ready to prove the following:

Lemma 2 Application of a pruning or a shortcutting rule on some node v
of the weighted graph preserves the tnvariant.

Proof. Without loss of generality we may assume that G has a unique MST.
This can be easily accompliced by assigning unique weights on the edges of
the sufficient graph. The invariant states three things:

1. Whenever the rules include an edge e, it is because e is the minimum
weight edge incident to a node, and by Fact 1, e € M ST(G).

2. Whenever the rules exclude an edge €/, it is because there is a small

cycle in which €’ is the MaxWE, and by Fact 2, ¢’ ¢ MST(G).

3. In every application of a rule, if we were to contract the included edge,
then we would have to introduce an edge with weight equal to the
updated weight.

a

We define a valid tree-contraction schedule to be one which schedules the
nodes of the binary tree for pruning and shortcutting in such a way that (i)
when a node is operated upon it has degree one or two, and (ii) neighboring
nodes are not operated upon simultaneously.

Lemma 3 When the rules are applied on the nodes of a binary weighted tree
at times given by any valid tree-contraction scheduling, they correctly produce
the updated minimum spanning tree.

12



Proof. As we said, a valid contraction schedule defines processing times
on nodes having degree 1 or 2. So, only the prune and shortcut operations
are needed, and they are provided by the rules. Moreover any node may be
accessed simultaneously by at most three processors. This conflict can be
resolved as described in Section 3.2. Therefore the shortcutting and pruning
operations can be done without confusion, and their application, according
to Lemmas 1 and 2, preserves the invariant. Thus, at the end of the schedule,
the MST of the sufficient graph, has been computed. a

3 The Algorithms

We say that a sequential algorithm for some problem of size n is optimal if it
runs in time that matches a lower bound for the problem to within a constant
factor.

Let t(n) denote the parallel running time for some parallel algorithm,
and p(n) denote the number of processors employed by the algorithm. Then,
w(n) = t(n)p(n) denotes the work performed by the algorithm. A parallel
algorithm for some problem is said to be optimal [6] if it has polylogarith-
mic parallel running time and the work w(n) performed by the algorithm is
O(T(n)), where T(n) is the running time of the best sequential algorithm for
the same problem.

The vertex updating problem has a lower bound of {)(n) sequential time.
Also, any parallel algorithm for the problem must have running time of
Qlogn). To see that, consider the following argument: Consider a tree
all of whose nodes are on a path of length n — 1, and therefore having only
two leaf-nodes. If we add two new weighted edges connecting 2z to each of
the two leaves, the updating MST problem is equivalent to the problem of
computing the maximum of n+ 1 weights on the cycle created. This problem
has a sequential lower bound of }(n) and a parallel lower bound of Q(logn)
[18].

We next present the algorithms.

Theorem 1 There are optimal parallel and sequential algorithms that solve
the MST vertez updating problem based on the rules presented above. The par-
allel algorithms run on a binary weighted tree in O(logn) time using n/lgn
EREW PRAM processors and the sequential algorithms run in O(n).

13



Proof. A. THE OPTIMAL PARALLEL ALGORITHMS. There are, actually,
several valid tree contraction schedules that produce optimal behavior in our
algorithm. First, [12] proposed such a schedule which was constructed on the
fly by an optimal randomized algorithm. The problem and its applications
drew the attention of researchers, and soon several optimal deterministic
algorithms were presented [13, 14, 11, 15, 16].

Shunting. We will briefly describe here the simplest of these schedules
(called Shunting) which was proposed independently by [13] and [14]. The
algorithm is composed of a number of phases, each containing the following
steps: (Figure 6)

1. Number the leaves of the tree from left-to-right. Here, the input is
supposed to be a regular binary tree, i.e. a binary tree in which every
internal node has exactly two children. The numbering can be done
within the desired bounds using the eulerian tour technique [17].

2. Prune the odd-numbered leaves that are the left children of their parent.
Then, shortcut their parent. This is the shunt operation.

3. Shunt the odd-numbered leaves that are the right children of their
parent.

4. Shift out the last bit of the numbers of the remaining leaves and repeat
steps 2 to 4 until the whole tree has been contracted.

Lemma 4 ([13]) The shunting algorithm computes a valid contraction sched-

ule which has length O(lgn).

If we had a processor assigned to each node, we could contract the tree
using n processors in the desired time. But the time at which processing
occurs can be computed beforehand for each leaf and placed in an array of
length [n/2] 4+ 1. The array is filled with pointers to leaves having numbers
1,3,5,7,..., then to leaves having numbers 2,6,10,14,..., etc. In general there
are O(lgn) phases numbered 0 < < [lg(n —2)], and in each of them, leaves
numbered 2¢,3 - 2°,5- 24,7 - 2%, ... are shunted. Having the array, it takes
time O(n/p) using p < n/lgn processors to do the contraction. Optimality
is achieved for p = n/lgn. (Example of the algorithm using the shunting
schedule is shown in Figure 7.)
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Figure 6: The Shunting Schedule: The first phase. (a) Numbering of the
leaves. (b) Step 2: Shunting of odd numbered left children. (c) Step 3:
Shunting of odd numbered right children.



Figure 7: Run of the Parallel Algorithm using SHUNTING on the tree of
Figure 1. Dotted edges are included in the MST, deleted edges are excluded
from it. (a) In black are the first two processed vertices. (b) Third step. (c)
Fourth and final step.

ACD. The accelerated centroid decomposition (ACD) technique was pro-
posed by [11] and also provides an optimal valid scheduling. Using their
technique another optimal algorithm for the vertex updating problem is ac-
quired. To conserve space we will not describe this method here; we refer
the interested reader to [11].

B. THE OPTIMAL SEQUENTIAL ALGORITHMS. The rules we present
do not depend on the particular order in which the nodes of the tree are
removed. Therefore, different removal sequences of the nodes yield different
algorithms and we can derive sequential algorithms from the parallel ones. In
particular, the Shunting and the ACD numberings give two such algorithms.
Their running times differ only by a constant. In the next paragraphs we
present two more sequential algorithms.

Remove on the fly. Use depth-first-search (or breadth-first-search to visit
the nodes of the tree. Every time a node of degree 1 or 2 is encountered,
process it using pruning or shortcutting rule, respectively. Each node will be
visited at most twice (on the way down the tree and on the way up the tree),
so its running time is O(n).

Postorder. Probably the simplest to implement sequential algorithm is

16



the following: Visit the nodes of the weighted tree in postorder (using, for
example, depth-first-search). A node is processed after all its children have
been processed so, in this case, only the pruning rules are needed. Since each
node is processed at most once, we have an O(n) sequential algorithm.

O

Remarks 1. Several researchers who have given solutions to other tree
contraction problems, have used a variety of names to denote the “removal
of a leaf” and “removal of a node with degree two” operations. Rake has
been used as a synonym for prune, compress and by-pass as synonyms for
shortcut. Finally, shunt and rake have been used to denote the application
of a prune followed by a shortcut.

2. The algorithms presented do not exhaust the possible sequential and
parallel algorithms that can be derived based on the rules, but include only
the simpler ones. Other tree-contraction techniques [15, 16] lead to different
algorithms with the same bounds.

3. The shunting method described in [13] requires that the root of the
tree not be shunted until the end. This is needed mainly for the expression
tree evaluation algorithm. In our case, shunting the root is permitted since
there is no top-to-bottom information to be preserved.

3.1 Binarization

Theorem 2 There are logarithmic-time optimal parallel algorithms solving
the MST vertez updating problem on a rooted tree.

Proof: The binarized graph (described in Section 2) has exactly the same
number of cycles as the given graph, and at the end of the algorithm the edges
composing the right path are always included into the new MST. Therefore,
the solution of the binarized problem shows a corresponding unique and
unambiguous solution to the general problem. O

Similar binarization techniques to the one described have been used in
[4], [11] and [13]. Another technique [5] “plants” a balanced binary tree over
the v;’s with v as the root. The internal nodes and the internal edges have
weights as those in the right path in the previously described technique. Both
constructions require the list ranking algorithm [19, 20] which runs within the
desired bounds. (Actually, in [4] the Eulerian tour technique is used which
has the list ranking procedure as a subroutine.)
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Figure 9: Memory Access Conflicts and how to resolve them. Two (a) and

three (b) processors attempt to update v.

3.2 Memory Access Conflicts.

We first describe how to avoid concurrent writing when prunning simul-
taneously two leaves (Figure 8). Let w[u] = e and w[(u, p(v))] = d. Prunning
both v and w will result in an attempt by the processors assigned to them to
update w[p(v)] at the same time. The correct execution of the algorithm re-
quires that a cycle of length 4 (namely z,v, p(v),u, z) be broken by excluding
its MaxWE. So w[p(v)] must be updated to either max{a, b} or max{d, e},
depending on which child was connected to the excluded edge. This is done
by the processor assigned to, say, u as follows: If max{a,b} > max{d, e}
then max{a, b} is excluded and w[p(v)] « max{d,e}. Else (if max{d, e} >
max{a, b}) max{d, e} is excluded and w[p(v)] « max{a, b}.

This is the only conflict that can occur during prunnings. The fact that
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shortcutting may update both parent and child nodes creates a possibility
of a write conflict. Consider the following situation: Let nodes z,v,y satisfy
p(y) = v and p(v) = z, and assume that nodes z and y are to be processed
simultaneously (Figure 9a). Moreover, let’s assume that shortcutting node
calls for updating child node v with w[v] < a, and shortcutting node y calls
for updating parent node v with wv] « b.

The write conflict actually represents a cycle involving nodes z,z,v,y,
and possibly z’s parent and/or y’s child. Since two processors may try to
write on the same memory cell, the conflict can be avoided and the cycle
behind it should be broken by removing the edge max{a, b} while updating
wlv] « min{a, b}.

This is the only kind of access conflict that can be created by the shunting
schedule we described. There are other schedules though, which create a
slightly more complicated conflict when updating a node with three values
(Figure 9b), say a,b, and ¢. Again, this can be resolved by breaking the
MaxWEs of the three cycles behind the conflict. Therefore, in this case
the algorithm should update w[v] « min{a,b,c} and should exclude the
edges that correspond to the other two values. Note that the write conflict
we described in the beginning of this section (when two sibling leaves are
pruned simultaneously) can be viewed as a special case of this conflict.

4 On the Multiple Vertex Updates Problem

We define the problem of multiple vertex updates of an MST as follows: Let
G = (Vg, Eg) be a weighted graph on n vertices and m weighted edges and
T = (Vg, E7) be its MST. Suppose G is augmented with k = |Vi| new vertices
that are connected to Vg’s vertices by kn = |Eg| new weighted edges, but
they are not connected among themselves. We are asked to compute the new
MST T".

The problem of multiple vertex updates was considered by Pawagi [21]
and a parallel algorithm was presented running in O(lgnlg k) time using nk
CREW PRAM processors. The problem was also addressed in [22] and [23].

We will show how our solution for the (single) vertex update problem can
be used to achieve a better solution for the multiple updates problem on a
weaker model of parallel computation. Note that this is optimal for graphs

having Q(kn) edges.
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Theorem 3 The multiple updates MST problem can be solved in parallel in
time O(lgnlgk) using nk/(lgnlgk) EREW PRAM processors.

Proof. The algorithm follows in general the one presented in [21] but in
certain parts uses different implementation techniques to achieve the tighter
time and processor bounds. The algorithm consists essentially of three parts.

1. Make & copies of T' and solve k& update MST problems in parallel.

2. Combine the MSTs of the k solutions into a new graph G,. This graph
may contain cycles. Transform it to an equivalent bipartite graph Gs.

3. Solve the bipartite MST problem on the graph Gj.

We will show that each of these parts can be implemented within the
desired bounds.

1. Solving k£ Updating Problems. Making k copies of T requires
O(kn) operations and it can be done in constant time if kn processors are
available. Therefore, it can be done in O(lgnlgk) time using kn/(lgnlgk)
processors following Brent’s technique [6].

According to Theorem 1, a single updating of an MST can be done in
O(lgn) time when n/lgn processors are available. Here we have k problems
to solve, each of size n. Allocating n/(lgnlg k) processors per problem, it
takes O(lgnlg k) time to solve each one in parallel.

2. Creating the Bipartite Graph. Next, we have to combine the
k solutions found in the first part, into a new graph G, which in turn is
transformed to an equivalent bipartite graph G,. By equivalent here, we
mean that there is a cyclein Gy if and only if there is a cycle in G,. Graph G,
will never be explicitly created; it is only defined for the sake of description.

If some edge (v, w) € Er did not appear in at least one of the k solutions,
it was the MaxWE of some cycle and thus must be excluded. So, G, =
(VU{z1, -2}, E,) is composed of edges (v, w) € Er that appear in all k
solutions, along with edges of the form (z,v) € Ex, Vi € {1,---,k}. It is
easy to see that the formation of G, can be done within the desired bounds,
because there are at most n — 1 such edges per solution to examine.

We can view G, as a collection of subtrees C; of the old MST that are
held together by the z;’s (Figure 10). Every cycle in G, can be viewed as
starting at some z;, then entering subtree C; at a node v, and visiting some of
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Figure 10: The graph G, results from putting together the k solutions. The
figure points out G,’s bipartite nature.

its nodes, then exiting through a node v! and visiting z;, etc., until returning
back to z; (Figure 11). The nodes v, that are adjacent to some z; are called
e-nodes. The new graph Gy = (V, {21, - 21}, Fp) has a set of vertices V,
which contains one vertex v for each e-node v, of GG,. Consider a path from
z; to some e-node v, and let z be the MaxWE on this path. Then edge
(2z;,v) € Ep corresponds to this path and has cost equal to z’s cost. The
algorithm needs therefore to compute all MaxWE on all paths from z; to
e-nodes v,.

Note that solving the MST on G, effectively solves the MST problem on
G.: There is a one-to-one correspondence between cyclesin Gy and G,. Each
cycle in G is broken by identifying and deleting the MaxWE in it. Such an
edge is also the MaxWE in the corresponding cycle in G, and should be
deleted to compute the MST of G,.

This is done as follows. First, all e-nodes v, are recognized. Then we
root each of the T3’s at z;. Both of these operations can be done within the
desired bounds. Now we have to compute the MaxWEs on the paths between
z;’s and e-nodes by solving k instances of the following problem: Given a
(regular binary rooted) tree with n nodes having weights associated with its
edges, find the MaxWE for each path from a node to the root in O(lgn +
n/p) time using p < n/lgn EREW PRAM processors. Each solution is a
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c, c,

Figure 11: Cycles in G,. They are composed of alternative visits to z;’s and
to tree components. Vertices that are connected to z;’s are called e-vertices.
In this picture a cycle of length 4 is shown.

simple application of the tree-contraction problem. We allocate n/lgnlgk
processors per tree and compute the problem in time O(lgnlg k).

3. The Bipartite MST Problem. For the third part of the algorithm
we need the following definition of the bipartite MST problem: Let G =
(Vk, Va, E) be a weighted bipartite graph, where |Vi| = k and |V,| = n,
kE <n. We want to compute its MST. The following Lemma concludes the
description of the algorithm along with the proof of Theorem 3.

Lemma 5 The bipartite MST problem can be solved in O(lgnlgk) parallel
time using kn/(lgnlgk) EREW PRAM processors.

Proof. The algorithm that we use is a well-known algorithm whose main
idea is attributed to Boruvka [24] and was described in its parallel form in
[10]. The analysis, however, and the time-processors bounds for the bipartite-
MST problem are new.

First, let us give some definitions. A pseudotree is a directed graph in
which each vertex has outdegree one. A pseudotree has at most one simple
cycle. A pseudoforest is a graph whose components are pseudotrees. The
algorithm consists of a number of stages. In each stage, each vertex v selects
the minimum weight edge (v, w) incident to it. This creates a pseudoforest of
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vertices connected via the selected edges. In this case the cycle of each pseu-
dotree involves only two vertices, so the pseudotree can be easily transformed
into a tree. Next, each tree is contracted to a star using pointer-doubling,
and vertices in the same component are identified with the root of the star.

The crucial observation here is that, since every pseudotree must contain
at least one z;, after the first stage there will be no more than k vertices
in the resulting graph and the problem can be solved in O(lg” k) time using
k?/1g® k processors. So, we only have to show that the first stage can be
performed within the desired bounds.

As we said, the first stage consists of finding the minima of O(n) sets of
vertices, each with cardinality O(k) and then to reduce the O(k) resulting
pseudotrees of height O(n) to stars. For the first part Brent’s technique
applies. For the second part we use the optimal list-ranking technique of

[20]. O
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