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Abstract

The vertex updating problem for a minimum spanning tree �MST�
is de�ned as follows� Given a graph G � �V�EG� and an MST T for G�
�nd a new MST for G to which a new vertex z has been added along
with weighted edges that connect z with the vertices of G� We present
a set of rules that produce simple optimal parallel algorithms that run
in O�lgn� time using n� lgn EREW PRAM processors� where n �
jV j� These algorithms employ any valid tree	contraction schedule that
can be produced within the stated resource bounds� These rules can
also be used to derive simple linear	time sequential algorithms for the
same problem� The previously best known parallel result was a rather
complicated algorithm that used n processors in the more powerful
CREW PRAM model� Furthermore� we show how our solution can
be used to solve the multiple vertex updating problem� Update a
given MST when k new vertices are introduced simultaneously� This
problem is solved in O�lg k � lg n� parallel time using k�n

lg k�lgn
EREW

PRAM processors� This is optimal for graphs having 
�kn� edges�
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� Introduction

De�nition� The vertex updating problem for a minimum spanning tree

MST� is de�ned as follows We are given a weighted graph G � 
V�EG��
along with an MST T � 
V�E�� The graph is augmented by a new vertex z
and n weighted edges connecting z to every vertex in V � We want to compute
a new MST T � � 
V � fzg� E���
In this paper we present an optimal yet simple solution for the EREW

PRAM model� Our solution works in O
lg n� time 
lg n denotes log� n� using
n� lg n parallel processors� where n � jV j� the number of vertices in the graph�
Brent�s theorem applies and implies that� using p � n� log n processors� the
running time is O
lg n�n�p�� In the last section� we show how this solution
can be used to solve the multiple vertex updating problem 
an existing MST
T is updated simultaneously by k new vertices having weighted edges to T ��
The model of parallel computation we will use throughout this paper

is the EREW PRAM 
exclusive�read�exclusive�write parallel random access
machine� ���� The virtue of an algorithm in the EREW model is that no
arbitration of concurrent access requests need be provided in the machine
on which it runs� Such arbitration is necessary in the more powerful CREW
and CRCW models employed in all previous work on these problems�
We introduce a set of rules that make use of a few simple observations

on MSTs as well as of the fact that it is preferable to break the cycles in�
troduced by the new edges 
because there is only a polynomial number of
them� than to compute the tree from scratch� These rules are de�ned to
apply locally on the nodes of the existing MST� so we get parallel algorithms

using tree�contraction� as well as sequential ones 
using� for example� depth�
�rst�search��

History� The vertex updating problem of a minimum spanning tree
was �rst addressed by Spira and Pan in ���� where an O
n� sequential algo�
rithm was presented� Another solution using depth��rst�search and having
the same time complexity was later given by Chin and Houck in ���� while
Pawagi and Ramakrishnan ��� gave a parallel solution to the problem� Their
algorithm� which runs in O
lg n� time using n� CREW PRAMs� precomputes
all maximum weight edges on paths between any pair of nodes in the tree�
and then breaks the cycles simultaneously in constant time� Varman and
Doshi ��� presented an e�cient solution that works in the same parallel time�
but uses n CREW PRAM processors� They use divide�and�conquer to split
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the problem into approximately
p
n equally�sized subproblems which they

solve recursively� Even though their idea is rather simple� the implementa�
tion details make the algorithm rather complex� More recently� Jung and
Mehlhorn ��� have given an optimal solution for the more powerful CRCW
PRAMmodel by reduction to an all sub�expression evaluation problem� They
use an optimal tree contraction algorithm as a subroutine� as do we� How�
ever� their approach to breaking cycles is di�erent from ours� In our case�
we are able to restrict consideration of cycles to those with no more than
four vertices and� as we will show� they can be treated without concurrent
writing� Also� because of the all sub�expression evaluation reduction� they
need to have an upwards and a downwards pass on the tree to complete the
calculation� our approach simply computes an MST in the upward pass�
There is� of course� an obvious algorithm for solving the problem com�

pute from scratch an MST of the graph having as edges the old MST edges
plus the added edges of z� This� however� requires O
log n log log n� time
using n�m EREW PRAM processors ��� �� employing very elaborate tech�
niques� The solution we present here is faster and signi�cantly simpler�
The paper is organized as follows The remainder of this section discusses

a useful input representation� Section � has an outline of the solution and
describes the rules and the invariant used� Section � presents the main theo�
rem and some of the algorithms that can be derived using the rules� Finally�
Section � shows how the vertex updating algorithms can be used to solve
the multiple vertex updating problem in parallel� An earlier version of this
paper was presented in �	�� However� the present version di�ers considerably
and is simpler than the previous one�

Representation� As is well known� any MST T of a given graph G can
be found by a sequence of deletions of an edge of maximumweight 
MaxWE�
from some cycle� Since the same sequence of deletions can be followed on the
graph augmented with the new vertex z� there is an MST in the augmented
graph in which none of these original non�tree edges appears� Therefore� it
is su�cient to pose the MST problem in the augmented graph on a graph
composed of the original MST and the edges to the new vertex z� This
graph� which we call the su�cient graph� has at most �n � � edges� We
choose to represent the su�cient graph as a tree T with n�� weighted edges

corresponding to the given MST� and with weights on each of its n nodes

corresponding to weights of the newly introduced edges to z�� We will call
this object a weighted tree 
Figure ��� A path between any two weighted
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Figure � 
a� The initial 
given� MST� 
b� the su�cient graph after introduc�
ing the new vertex z along with its weighted edges and 
c� the corresponding
weighted tree�

nodes in the weighted tree corresponds to a cycle in the graph augmented
with z� Such a graph with �n� � edges is shown in Figure �b and is implied
by the weighted tree shown in Figure �c� In the discussion that follows�
reference to the weight of a node will mean reference to the corresponding
edge in the su�cient graph� unless noted otherwise�

� Breaking the Cycles

Outline of the Algorithm� As we mentioned� we are given the input in
the form of a weighted rooted tree� We assume that each vertex has a pointer
to a circular linked list of its children� and the linked lists are stored in an
array� The representation of the input is not crucial� since it can be derived
in O
lg n� time using n� lg n processors from any reasonable representation�
We should mention at the outset that in the course of our description

we treat every case where read or write con�icts might be expected to occur
and we show in each case how these con�icts are avoided� The basic idea is
that when only a constant number of vertices are involved in a computation�
avoiding con�icts is always possible with a constant dilation in running time
and is in fact straightforward to implement�
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Figure � Binarization A node with more than two children is represented
by a right path of unremovable edges�

The algorithm consists of a number of phases� During each phase� leaves
and nodes of degree � of the weighted tree 
such as the root or internal nodes
having one child� are processed� Each tree�node is processed once in the en�
tire course of the algorithm� The order in which the nodes are processed in
parallel is dictated by a tree�contraction schedule� Processing a node means
examining the edges composing small cycles 
cycles of length � or �� that
contain the node� and breaking these cycles by removing a MaxWE that ap�
pears in them� e�ectively computing an MST of the subgraph induced by the
examined edges� This is done by a set of rules which also update neighboring
nodes� so that the size of the unprocessed part of the tree decreases�
A sequential algorithm needs only to apply the appropriate rule while

visiting the nodes of the tree� Thus a depth��rst�search 
or a breadth��rst�
search� visit of the nodes su�ces� When working in parallel though� the rules
can apply to many nodes at once� provided that no confusion arises from the
simultaneous updating of neighboring nodes� A valid tree�contraction sched�
ule 
like the ones presented in Section �� su�ces to assure that neighboring
nodes are not processed at the same time� After processing all the nodes� an
MST of the su�cient graph has been computed and the algorithm terminates�

Binarization� The rules we present assume a binary tree as input� so
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some preprocessing is needed to transform the weighted tree to a binary
weighted tree� This can be achieved in O
lg n� time using n� lg n EREW
PRAM processors� and is needed only for ordering the processing of a node�s
children� Note that only the parallel algorithms need this transformation�
This transformation is performed by the procedure binarize� which we de�
scribe here� Each node v having k children v�� � � � � vk is represented by a
right path 
Figure �� composed of v � u� and k � � fake nodes u�� � � � � uk���
so that node uj is the right child of uj�� for j � �� � � � � k � �� Node vi� for
i � �� � � � � k� � becomes the left child of node ui��� and vk the right child of
uk��� We assign weights of �� to the edges of the right path 
which makes
them unremovable by our rules�� Since the fake nodes are introduced only to
�x the processing order of v�s children� they are assigned weight �� making
it impossible to retain them in the MST connecting z and v� Of course� the
real nodes v and the vi�s keep their weights� At the end of the algorithm each
right path is always included in the MST of the binarized problem� giving a
unique obvious solution to the original problem�
Some tree�contraction schedules require a regular binary tree as input�

For these cases� the binarization is extended to handle nodes v with only one
child in the input tree� For each of them a second child v� is introduced� for
which w�v�� � �� and w�
v� v��� � ���
The binary weighted tree has the same number of cycles� but may have

height much greater than the input tree and may contain twice as many
nodes� This fact� though� does not a�ect the asymptotic running time of the
algorithm� which is logarithmic in the number of tree nodes�

Invariant and Rules� The rules are divided into two categories Rules
that are applied to leaves 
pruning rules�� and rules that are applied to nodes
with only one child 
shortcutting rules�� Each node is examined exactly once
for rule application� Then� its incident edges are identi�ed as being either
included in the new MST� or excluded from it�
We will make use of the following two well�known facts which we state

here without proof

Fact � The edge with minimum weight incident to some node will always be
included in the MST�

�

Actually� Prim�s and other sequential ��� and parallel ���� algorithms are
based on this fact� Edge inclusion in our rules makes use of this observation�
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Figure � Contraction of edge fu� vg in G produces Gc � G�fu� vg�

Fact � Whenever some edge is found to correspond to the MaxWE of some
cycle it can be removed from the graph without a�ecting the computation of
the MST of the graph�

�

Kruskal�s MST algorithm makes use of this fact� Edge exclusion in our
rules is based on this observation�

A useful Lemma� Let w  V �E � R give the weights of the nodes and
the edges� At the beginning of the algorithm� the weight of a node v is the
weight of the edge connecting v to z� To resolve ties� we adopt the convention
that the currently processed node has weight larger than its equally weighted
neighbors�
For the purposes of this lemma� we assume that the edges of G can be

assigned labels based on their endpoints� e�g� edge fu� vg receives the label
labfu� vg� and that these labels persist under the change of endvertices in
the contraction operation we now de�ne� Given a weighted graph G and an
edge fu� vg� we de�ne the contracted graph G�fu� vg as follows Delete edge
u� v and then replace vertices u and v with a new vertex uv� retaining the
original edges and edge labels with only the indicated endpoint renamed�
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Thus� any edge incident on vertiex u� for example� is now incident on vertex
uv� 
Figure ��� In the case where there originally was an edge from a vertex
w to both u and v� delete the now parallel edge with the greater weight 
or�
in the case of a tie� one of the parallel edges��

Lemma � For fu� vg �MST 
G��

MST 
G� � fu� vg �MST 
G�fu� vg�
where the MST is de�ned by its edges� and equality is over edge labels that
persist under the contraction operation G�fu� vg�

Proof� Let us denote the contracted graph G�fu� vg with Gc� The lemma
states that MST 
G� � fu� vg �MST 
Gc��
Consider an MST 
Gc�� Then� for each edge e � Gc �MST 
Gc� there is

a cycle composed of edges in Gc� among which e is the MaxWE�
Observe that from the way Gc is constructed� each edge in Gc has a cor�

responding edge in G� 
The opposite is not true�� Now consider a subgraph
S � G induced by fu� vg and the edges of G corresponding to MST 
Gc��
Note that S is a spanning tree of G� We will show that for each edge e� � G�S
there is a cycle in G� in which e� is the MaxWE� this will prove the lemma�
To see that we consider two cases

�� e� corresponds to edge e in Gc� Since e 	� MST 
Gc�� there is a cycle
in Gc in which e is the MaxWE� Each one of the edges in this cycle
corresponds to an edge in G� and e� is the MaxWE in this cycle�

�� e� does not correspond to an edge in Gc� Then e� was one of the edges
deleted by the contraction� therefore it has one of its endpoints at u or
v� Without loss of generality we assume that e� � fw� ug� Then� there
is another edge fw� vg � G with weight less than the weight of e� which
has a corresponding edge in Gc� namely fw� uvg� Thus� there is a cycle
involving edges e�� fw� vg� fu� vg� in which e� is the MaxWE�

�

We are ready now to present our rules� Each application of a rule will
preserve the following invariant�
Invariant Whenever the rules include an edge e� then there is someMST 
G�
containing all edges already included for which e � MST 
G�� Whenever the
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Figure � Pruning Rules for a Leaf� An included edge is dotted and we keep
its weight letter� We erase an excluded edge along with its weight letter�

rules exclude an edge e�� then there is some MST 
G� containing all edges
already included and e� 	� MST 
G�� Updates in the weights of the vertices
re�ect the e�ect of contracting the included edge�

��� Pruning Rules

Consider a small cycle involving leaf v� p
v�� the parent of v in the
weighted tree of the su�cient graph� and z� Let w�
v� p
v��� � a� w�v� � b
and w�p
v�� � c 
Figure ��� The cycle of length � they form can be broken in
such a way that the invariant is preserved� We consider the following cases

a � minfa� bg� Then� a should be included and the edge corresponding to
maxfb� cg should be excluded� We update w�p
v��
 minfb� cg�

b � minfa� bg� Now� b should be included while� the edge corresponding to
maxfa� cg should be excluded� Similiarly with the previous case� we
update w�p
v��
 minfa� cg�

Some special care to avoid concurrent writing must be taken in the case
that v�s sibling� say u� is also a leaf 
Figure �� and is processed at the same
time� Actually� the ACD scheduling method ���� which we describe in a later
section schedules v and u to be processed at the same time� Section ���
discusses how we avoid concurrent accesses�
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Figure � Shortcutting Rules�

��� Shortcutting Rules

Now we consider a situation where v has only one child� say u� There
are two possible small cycles involving v z� v� u� z and z� v� p
v�� z� We will
describe how to break these cycles in a way that the invariant is preserved�
Let w�v� � a� w�
v� u�� � b� w�u� � c� w�
v� p
v��� � d and w�p
v�� � e

Figure ���

a � minfa� b� dg� Then� a should be included� and the edges corresponding
to maxfe� dg and maxfc� bg should be excluded� We update w�p
v��

minfe� dg and w�u�
 minfc� bg�

d � minfa� b� dg� Then� d should included and the edge corresponding to
maxfa� eg should be excluded� We update w�p
v��
 minfa� eg�

b � minfa� b� dg� Similiarly� b should be included and the edge corresponding
to maxfa� cg should be excluded� We update w�u�
 minfa� cg�

The fact that shortcutting a node may update both parent and child nodes
creates a possibility of a write con�ict� This can be easily avoided� since at
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most three processors may try to access the samememory cell simultaneously�
Section ��� describes how this con�ict is avoided�
Updating weights should be implemented in such a way that the original

edge� whose weight appears after the update on the node� is remembered�
One pointer per node pointing to this original edge su�ces to accomplice
this�

Correctness Lemma� We have described a set of rules that de�ne a
prune operation which removes the leaves of a tree� and a shortcut operation
which removes nodes of degree two from the tree� Note that individual
prunings and shortcuttings take O
�� time to be performed�
We are now ready to prove the following

Lemma � Application of a pruning or a shortcutting rule on some node v
of the weighted graph preserves the invariant�

Proof� Without loss of generality we may assume that G has a unique MST�
This can be easily accompliced by assigning unique weights on the edges of
the su�cient graph� The invariant states three things

�� Whenever the rules include an edge e� it is because e is the minimum
weight edge incident to a node� and by Fact �� e �MST 
G��

�� Whenever the rules exclude an edge e�� it is because there is a small
cycle in which e� is the MaxWE� and by Fact �� e� 	�MST 
G��

�� In every application of a rule� if we were to contract the included edge�
then we would have to introduce an edge with weight equal to the
updated weight�

�

We de�ne a valid tree�contraction schedule to be one which schedules the
nodes of the binary tree for pruning and shortcutting in such a way that 
i�
when a node is operated upon it has degree one or two� and 
ii� neighboring
nodes are not operated upon simultaneously�

Lemma � When the rules are applied on the nodes of a binary weighted tree
at times given by any valid tree�contraction scheduling� they correctly produce
the updated minimum spanning tree�
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Proof� As we said� a valid contraction schedule de�nes processing times
on nodes having degree � or �� So� only the prune and shortcut operations
are needed� and they are provided by the rules� Moreover any node may be
accessed simultaneously by at most three processors� This con�ict can be
resolved as described in Section ���� Therefore the shortcutting and pruning
operations can be done without confusion� and their application� according
to Lemmas � and �� preserves the invariant� Thus� at the end of the schedule�
the MST of the su�cient graph� has been computed� �

� The Algorithms

We say that a sequential algorithm for some problem of size n is optimal if it
runs in time that matches a lower bound for the problem to within a constant
factor�
Let t
n� denote the parallel running time for some parallel algorithm�

and p
n� denote the number of processors employed by the algorithm� Then�
w
n� � t
n�p
n� denotes the work performed by the algorithm� A parallel
algorithm for some problem is said to be optimal ��� if it has polylogarith�
mic parallel running time and the work w
n� performed by the algorithm is
O
T 
n��� where T 
n� is the running time of the best sequential algorithm for
the same problem�
The vertex updating problem has a lower bound of �
n� sequential time�

Also� any parallel algorithm for the problem must have running time of
�
log n�� To see that� consider the following argument Consider a tree
all of whose nodes are on a path of length n � �� and therefore having only
two leaf�nodes� If we add two new weighted edges connecting z to each of
the two leaves� the updating MST problem is equivalent to the problem of
computing the maximum of n�� weights on the cycle created� This problem
has a sequential lower bound of �
n� and a parallel lower bound of �
log n�
�����
We next present the algorithms�

Theorem � There are optimal parallel and sequential algorithms that solve
the MST vertex updating problem based on the rules presented above� The par�
allel algorithms run on a binary weighted tree in O
log n� time using n� lg n
EREW PRAM processors and the sequential algorithms run in O
n��
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Proof� a� the optimal parallel algorithms� There are� actually�
several valid tree contraction schedules that produce optimal behavior in our
algorithm� First� ���� proposed such a schedule which was constructed on the
�y by an optimal randomized algorithm� The problem and its applications
drew the attention of researchers� and soon several optimal deterministic
algorithms were presented ���� ��� ��� ��� ����

Shunting� We will brie�y describe here the simplest of these schedules

called Shunting� which was proposed independently by ���� and ����� The
algorithm is composed of a number of phases� each containing the following
steps 
Figure ��

�� Number the leaves of the tree from left�to�right� Here� the input is
supposed to be a regular binary tree� i�e� a binary tree in which every
internal node has exactly two children� The numbering can be done
within the desired bounds using the eulerian tour technique �����

�� Prune the odd�numbered leaves that are the left children of their parent�
Then� shortcut their parent� This is the shunt operation�

�� Shunt the odd�numbered leaves that are the right children of their
parent�

�� Shift out the last bit of the numbers of the remaining leaves and repeat
steps � to � until the whole tree has been contracted�

Lemma � 
����� The shunting algorithm computes a valid contraction sched�
ule which has length O
lg n��

If we had a processor assigned to each node� we could contract the tree
using n processors in the desired time� But the time at which processing
occurs can be computed beforehand for each leaf and placed in an array of
length dn��e � �� The array is �lled with pointers to leaves having numbers
������������ then to leaves having numbers �������������� etc� In general there
are O
lg n� phases numbered � � i � dlg
n���e� and in each of them� leaves
numbered �i� � � �i� � � �i� � � �i� � � � are shunted� Having the array� it takes
time O
n�p� using p � n� lg n processors to do the contraction� Optimality
is achieved for p � n� lg n� 
Example of the algorithm using the shunting
schedule is shown in Figure ���
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Figure � The Shunting Schedule The �rst phase� 
a� Numbering of the
leaves� 
b� Step � Shunting of odd numbered left children� 
c� Step �
Shunting of odd numbered right children�
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Figure � Run of the Parallel Algorithm using Shunting on the tree of
Figure �� Dotted edges are included in the MST� deleted edges are excluded
from it� 
a� In black are the �rst two processed vertices� 
b� Third step� 
c�
Fourth and �nal step�

ACD� The accelerated centroid decomposition 
ACD� technique was pro�
posed by ���� and also provides an optimal valid scheduling� Using their
technique another optimal algorithm for the vertex updating problem is ac�
quired� To conserve space we will not describe this method here� we refer
the interested reader to �����

b� the optimal sequential algorithms� The rules we present
do not depend on the particular order in which the nodes of the tree are
removed� Therefore� di�erent removal sequences of the nodes yield di�erent
algorithms and we can derive sequential algorithms from the parallel ones� In
particular� the Shunting and the ACD numberings give two such algorithms�
Their running times di�er only by a constant� In the next paragraphs we
present two more sequential algorithms�

Remove on the �y� Use depth��rst�search 
or breadth��rst�search to visit
the nodes of the tree� Every time a node of degree � or � is encountered�
process it using pruning or shortcutting rule� respectively� Each node will be
visited at most twice 
on the way down the tree and on the way up the tree��
so its running time is O
n��

Postorder� Probably the simplest to implement sequential algorithm is
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the following Visit the nodes of the weighted tree in postorder 
using� for
example� depth��rst�search�� A node is processed after all its children have
been processed so� in this case� only the pruning rules are needed� Since each
node is processed at most once� we have an O
n� sequential algorithm�

�

Remarks �� Several researchers who have given solutions to other tree
contraction problems� have used a variety of names to denote the �removal
of a leaf� and �removal of a node with degree two� operations� Rake has
been used as a synonym for prune� compress and by�pass as synonyms for
shortcut� Finally� shunt and rake have been used to denote the application
of a prune followed by a shortcut�
�� The algorithms presented do not exhaust the possible sequential and

parallel algorithms that can be derived based on the rules� but include only
the simpler ones� Other tree�contraction techniques ���� ��� lead to di�erent
algorithms with the same bounds�
�� The shunting method described in ���� requires that the root of the

tree not be shunted until the end� This is needed mainly for the expression
tree evaluation algorithm� In our case� shunting the root is permitted since
there is no top�to�bottom information to be preserved�

��� Binarization

Theorem � There are logarithmic�time optimal parallel algorithms solving
the MST vertex updating problem on a rooted tree�

Proof� The binarized graph 
described in Section �� has exactly the same
number of cycles as the given graph� and at the end of the algorithm the edges
composing the right path are always included into the new MST� Therefore�
the solution of the binarized problem shows a corresponding unique and
unambiguous solution to the general problem� �

Similar binarization techniques to the one described have been used in
���� ���� and ����� Another technique ��� �plants� a balanced binary tree over
the vi�s with v as the root� The internal nodes and the internal edges have
weights as those in the right path in the previously described technique� Both
constructions require the list ranking algorithm ��	� ��� which runs within the
desired bounds� 
Actually� in ��� the Eulerian tour technique is used which
has the list ranking procedure as a subroutine��
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Figure 	 Memory Access Con�icts and how to resolve them� Two 
a� and
three 
b� processors attempt to update v�

��� Memory Access Con�icts�

We �rst describe how to avoid concurrent writing when prunning simul�
taneously two leaves 
Figure ��� Let w�u� � e and w�
u� p
v��� � d� Prunning
both v and u will result in an attempt by the processors assigned to them to
update w�p
v�� at the same time� The correct execution of the algorithm re�
quires that a cycle of length � 
namely z� v� p
v�� u� z� be broken by excluding
its MaxWE� So w�p
v�� must be updated to either maxfa� bg or maxfd� eg�
depending on which child was connected to the excluded edge� This is done
by the processor assigned to� say� u as follows If maxfa� bg � maxfd� eg
then maxfa� bg is excluded and w�p
v�� 
 maxfd� eg� Else 
if maxfd� eg �
maxfa� bg� maxfd� eg is excluded and w�p
v��
 maxfa� bg�
This is the only con�ict that can occur during prunnings� The fact that
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shortcutting may update both parent and child nodes creates a possibility
of a write con�ict� Consider the following situation Let nodes x� v� y satisfy
p
y� � v and p
v� � x� and assume that nodes x and y are to be processed
simultaneously 
Figure 	a�� Moreover� let�s assume that shortcutting node x
calls for updating child node v with w�v�
 a� and shortcutting node y calls
for updating parent node v with w�v�
 b�
The write con�ict actually represents a cycle involving nodes z� x� v� y�

and possibly x�s parent and�or y�s child� Since two processors may try to
write on the same memory cell� the con�ict can be avoided and the cycle
behind it should be broken by removing the edge maxfa� bg while updating
w�v�
 minfa� bg�
This is the only kind of access con�ict that can be created by the shunting

schedule we described� There are other schedules though� which create a
slightly more complicated con�ict when updating a node with three values

Figure 	b�� say a� b� and c� Again� this can be resolved by breaking the
MaxWEs of the three cycles behind the con�ict� Therefore� in this case
the algorithm should update w�v� 
 minfa� b� cg and should exclude the
edges that correspond to the other two values� Note that the write con�ict
we described in the beginning of this section 
when two sibling leaves are
pruned simultaneously� can be viewed as a special case of this con�ict�

� On the Multiple Vertex Updates Problem

We de�ne the problem of multiple vertex updates of an MST as follows Let
G � 
VG� EG� be a weighted graph on n vertices and m weighted edges and
T � 
VG� ET � be its MST� Suppose G is augmented with k � jVkj new vertices
that are connected to VG�s vertices by kn � jEkj new weighted edges� but
they are not connected among themselves� We are asked to compute the new
MST T ��
The problem of multiple vertex updates was considered by Pawagi ����

and a parallel algorithm was presented running in O
lg n lg k� time using nk
CREW PRAM processors� The problem was also addressed in ���� and �����
We will show how our solution for the 
single� vertex update problem can

be used to achieve a better solution for the multiple updates problem on a
weaker model of parallel computation� Note that this is optimal for graphs
having �
kn� edges�
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Theorem � The multiple updates MST problem can be solved in parallel in
time O
lg n lg k� using nk�
lg n lg k� EREW PRAM processors�

Proof� The algorithm follows in general the one presented in ���� but in
certain parts uses di�erent implementation techniques to achieve the tighter
time and processor bounds� The algorithm consists essentially of three parts�

�� Make k copies of T and solve k update MST problems in parallel�

�� Combine the MSTs of the k solutions into a new graph Gz� This graph
may contain cycles� Transform it to an equivalent bipartite graph Gb�

�� Solve the bipartite MST problem on the graph Gb�

We will show that each of these parts can be implemented within the
desired bounds�

�� Solving k Updating Problems� Making k copies of T requires
O
kn� operations and it can be done in constant time if kn processors are
available� Therefore� it can be done in O
lg n lg k� time using kn�
lg n lg k�
processors following Brent�s technique ����
According to Theorem �� a single updating of an MST can be done in

O
lg n� time when n� lg n processors are available� Here we have k problems
to solve� each of size n� Allocating n�
lg n lg k� processors per problem� it
takes O
lg n lg k� time to solve each one in parallel�

�� Creating the Bipartite Graph� Next� we have to combine the
k solutions found in the �rst part� into a new graph Gz which in turn is
transformed to an equivalent bipartite graph Gb� By equivalent here� we
mean that there is a cycle in Gb if and only if there is a cycle in Gz� Graph Gz

will never be explicitly created� it is only de�ned for the sake of description�
If some edge 
v�w� � ET did not appear in at least one of the k solutions�

it was the MaxWE of some cycle and thus must be excluded� So� Gz �

V � fz�� � � � � zkg� Ez� is composed of edges 
v�w� � ET that appear in all k
solutions� along with edges of the form 
zi� v� � Ek� �i � f�� � � � � kg� It is
easy to see that the formation of Gz can be done within the desired bounds�
because there are at most n � � such edges per solution to examine�
We can view Gz as a collection of subtrees Cj of the old MST that are

held together by the zi�s 
Figure ���� Every cycle in Gz can be viewed as
starting at some zi� then entering subtree Cj at a node ve and visiting some of
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z� z� zk

C� C� Cj

Figure �� The graph Gz results from putting together the k solutions� The
�gure points out Gz�s bipartite nature�

its nodes� then exiting through a node v�e and visiting zl� etc�� until returning
back to zi 
Figure ���� The nodes ve that are adjacent to some zi are called
e�nodes� The new graph Gb � 
Vb� fz�� � � � zkg� Eb� has a set of vertices Vb

which contains one vertex v for each e�node ve of Gz� Consider a path from
zi to some e�node ve and let x be the MaxWE on this path� Then edge

zi� v� � Eb corresponds to this path and has cost equal to x�s cost� The
algorithm needs therefore to compute all MaxWE on all paths from zi to
e�nodes ve�
Note that solving the MST on Gb e�ectively solves the MST problem on

Gz There is a one�to�one correspondence between cycles in Gb and Gz � Each
cycle in Gb is broken by identifying and deleting the MaxWE in it� Such an
edge is also the MaxWE in the corresponding cycle in Gz and should be
deleted to compute the MST of Gz �
This is done as follows� First� all e�nodes ve are recognized� Then we

root each of the Ti�s at zi� Both of these operations can be done within the
desired bounds� Now we have to compute the MaxWEs on the paths between
zi�s and e�nodes by solving k instances of the following problem Given a

regular binary rooted� tree with n nodes having weights associated with its
edges� �nd the MaxWE for each path from a node to the root in O
lg n �
n�p� time using p � n� lg n EREW PRAM processors� Each solution is a
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Figure �� Cycles in Gz� They are composed of alternative visits to zi�s and
to tree components� Vertices that are connected to zi�s are called e�vertices�
In this picture a cycle of length � is shown�

simple application of the tree�contraction problem� We allocate n� lg n lg k
processors per tree and compute the problem in time O
lg n lg k��

�� The Bipartite MST Problem� For the third part of the algorithm
we need the following de�nition of the bipartite MST problem Let G �

Vk� Vn� E� be a weighted bipartite graph� where jVkj � k and jVnj � n�
k � n� We want to compute its MST� The following Lemma concludes the
description of the algorithm along with the proof of Theorem ��

Lemma 	 The bipartite MST problem can be solved in O
lg n lg k� parallel
time using kn�
lg n lg k� EREW PRAM processors�

Proof� The algorithm that we use is a well�known algorithm whose main
idea is attributed to Bor uvka ���� and was described in its parallel form in
����� The analysis� however� and the time�processors bounds for the bipartite�
MST problem are new�
First� let us give some de�nitions� A pseudotree is a directed graph in

which each vertex has outdegree one� A pseudotree has at most one simple
cycle� A pseudoforest is a graph whose components are pseudotrees� The
algorithm consists of a number of stages� In each stage� each vertex v selects
the minimumweight edge 
v�w� incident to it� This creates a pseudoforest of
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vertices connected via the selected edges� In this case the cycle of each pseu�
dotree involves only two vertices� so the pseudotree can be easily transformed
into a tree� Next� each tree is contracted to a star using pointer�doubling�
and vertices in the same component are identi�ed with the root of the star�
The crucial observation here is that� since every pseudotree must contain

at least one zi� after the �rst stage there will be no more than k vertices
in the resulting graph and the problem can be solved in O
lg� k� time using
k�� lg� k processors� So� we only have to show that the �rst stage can be
performed within the desired bounds�
As we said� the �rst stage consists of �nding the minima of O
n� sets of

vertices� each with cardinality O
k� and then to reduce the O
k� resulting
pseudotrees of height O
n� to stars� For the �rst part Brent�s technique
applies� For the second part we use the optimal list�ranking technique of
����� �
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