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Abstract 

We prove tight bounds for crossing numbers of hypercube and cube connected cyc1es 
(CCC) graphs. 

1 Introduction 

Recently the hypercube-like networks have received considerable attention in the field of 
parallel computing due to its high potential for system availability and parallel execution of 
algorithms (see e.g. [4]). This motivates to investigation of various, {rom this point of view 
important, properties of the n-dimensional hypercube graph Qn and its bounded degree al­
ternatives: Cube Connected Cycles (CCC), Butterflyand de Bruijn graphs. In this paper we 
concentrate on the crossing number of Qn and GGGn. 

The crossing number cr( G) of a graph G is defined as the least number of crossings of its 
edges when Gis drawn in a plane. In practice, crossing numbers appear in the fabrication of 
VLSI circuits. The crossing number of a graph corresponding to the VLSI circuit has strong 
in:fl.uence on the area of the layout as well as on the number of wire - contact cuts that should 
be minimized. Leighton [6] pointed out that crossing numbers provide a good area lower bound 
argument in VLSI complexity theory. According tothe survey paper [3], all that is known 
on the exact values of cr(Qn) is cr(Q3) = 0,cr(Q4) = 8 and cr(Q6) < 56. Erdös and Guy 
conjectured in [2] that cr(Qn) ~ (5/32)4n - L(n2 + 1)/2J2n- 1 • . 

We prove the following tight bounds on cr(Qn) and cr(GGGn ): 

4n 4n 

20 - 3(n + 1)2n- 2 < cr(GGGn ) < "6 + 3n22n
-

3
• 

Our results on cr( Qn) and cr( GGGn) give immediately alternative proofs that the area com­
plexity of hypercube and GGG computers realized on VLSI circuits is A = n(4n). Previous 
proofs are in [1, 7]. Optimal layouts are proposed in [1, 9]. 
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2 Upper bounds 

The n-dimensional hypereube graph Qn is defined reeursively as follows. 
1. Q2 = K 2 • 

2. Let n ~ 2. Then Qn+l is eonstrueted from two eopies of Qn by inserting edges between 
eorresponding vertiees. 

First we give a simple reeursive drawing of Qn in aplane. Consider the real axis x in the 
2-dimensional Euelidean plane. Let Dn - I be a drawing of Qn-l in the plane such that the 
vertiees of Qn-l are the points 0,1,2, ... , 2n- 1 

- 1 on z. Produee a symmetrieal drawing to 
Dn - 1 arround the line normal to z in the point 2n-l - 0.5. If n is even (odd) then join the 
points i and 2n - 1 - i, i = 0,1, ... , 2n-l - 1 by cireular ares above (below) z. 

Lemma 2.1 Let ero( Qn) denote the number of crossings in the above construction. Then 

4n 

ero(Qn) < 6 - n 22n
-

3
• 

Proof: It is easy to show that ero(Qn) satisfies the following reeurrent relation 

L~J-I n-2i 

ero(Qn) = 2ero(Qn-l) + L 4i L(2n
-

2i 
- 2). 

i=1 ;=1 

The direet solution of the relation implies the daimed upper bound for ero( Qn)' 0 

Theorem 2.1 

4n 

er(Qn) < 6 - n
22n

-
3

• 

The graph OOOn is defined as follows. The set ofvertiees eonsists oftuples (i,i), 
i = 0,1,2,3, ... , 2n - 1, i = 0,1,2, ... , n - 1. Vertiees (i1, iI) and (i2, i2) are adjaeent if and only 
if i l = i 2 and I i2 - il I mod n = 1 or il = i2 and the binary representations of i}, i 2 dift'er only 
in the il-th bit. Thus OOOn is obtained from Qn by a proper replaeing of vertiees of Qn by 
eydes of length n. 

Theorem 2.2 

4n 

er(OOOn) < 6 + 3n22n- 3
• 

Proof: Consider the above drawing Dn of Qn in the plane. Around each vertex of Qn we find 
a region eontaining no erossings. In each region we replaee the vertex by a eyde of length n. 
Thus we have eonstrueted a plane drawing of OOOn having ~ ero( Qn) + (n;I)2n erossings. 0 

3 Lower bounds 

We apply the lower bound method proposed by Leighton [6]. Let GI = (Vi, Ed and G2 = 
(Vi, E 2 ) be graphs. An embedding of GI in G2 is a eouple of mappings (4),,,p) satisfying 

4> : VI --. Vi is an injeetion 

"p : EI --. {set of all paths in G2 } 

such that if (u,v) E EI then "p((u,v)) is a path between 4>(u) and 4>(v). For any e E E2 define 



and 

The value cg( 4>, 'ifJ) is called congestion. 

Lemma 3.1 [6] Let (4), 'ifJ) be an embedding of GI in G2 with congestion cg( 4>, 'ifJ). Then 

cr(G ) > cr( Gd _ I E 2 I 
2 - cg2( 4>, 'ifJ) 2 

(1) 

Theorem 3.1 

Proof: Let 2Km denote the complete multigraph of m vertices, in which every two vertices are 
joined by two parallel edges. Set GI = 2K2" and G2 = Qn. In what follows, we show, that 
there exists an embedding (4), 'ifJ) of 2K2 .. in Qn with 

(2) 

Kleitman's paper [5] implies 

2n (2n 
- 1)(2n 

- 2)(2n 
- 3) 

cr(K2,.) ~ 80 . (3) 

According to Kainen [8] it holds 

(4) 

Substituting (2), (3) and (4) into (1), we obtain the desired result. Now we will show an 
embedding satisfying (2). Let 4> be any bijection of 2K2" into Qn. For any two vertices of Qn, 
we have to design two paths between them. Consider two arbitrary vertices '!L and v of Qn. 
Let d be their distance. Then there exists the unique path of length d starting in '!L, traversing 
dimensions in ascending order and ending in v. Let the second path be the symmetrical one 
starting in v and ending in '!L. Let e = (z,y) be an arbitrary edge of Qn lying in a dimension 
i, 1 ~ i < n. Now we count the number of edges of 2K2" whose images (paths) traverse 
the edge (z,y). Let A (B) be the subcube of Qn that contains z (y) and lies in dimensions 
1,2, ... , i - 1( i + 1, i + 2, ... , n). (lf i = 1 or n then A or B is a single vertex, i.e. Qo.) Similarly, 
let G (D) be the subcube of Qn that contains y (z) and lies in dimensions 0,1,2, ... , i-I 
(i + 1,i + 2, ... ,n). It is easy to show that when an above defined path contains the edge (z,y) 
it must start in A (or C) and end in B (or D). Thus 

and consequently 
cg( 4>, 'ifJ) ~ 2n

• 0 

We use the same method to prove the lower bound on cr(CCGn ). 

Theorem 3.2 



Proof: Denote by COPn (Cube Connected Paths) the graph which is obtained !rom OOOn by 
removing edges ((i, 0), (i, n - 1)), for i = 0, 1,2,3, ... , 2n 

- 1. Observe that the graph OOPn has 
a simple recursive structure. Clearly it holds 

(5) 

Set GI = K 2'" ,2"', G2 = 00 Pn. In w hat follows we shall construct an embedding (4)n,.,pn) of 
K 2"',2'" in OOPn such that 

cg( <Pn, .,pn) = 2n
• 

Once more the Kleitman's result [5] implies 

22n- I (2n _ 1)(2n - 1 - 1) 
cr(K2"',2"') ~ 5 

Substituting (6) and (7) into (1) and noting (5) we obtain the desired result. 

(6) 

(7) 

Assume n ~ 2. Let <Pn be an injection that maps the first (second) 2n mutually nonadjacent 
vertices of K2"',2'" in the set {(i, 0) I i = 0,1,2,3, ... , 2n -1} ({(i, n-1) li = 0,1,2,3, ... , 2n -1}). 
We design .,pn by induction. Let n = 2. The 16 paths between the vertices {( i, 0) I i ::; 3} and 
{(i,l) li ::; 3} are the following: 
(k, O)(k, 1) 
(k,0)(k+1,0)(k + 1,1) 
(k, O)(k, l)((k + 2) mod 4, 1) 
(k, O)(k + 1, O)(k + 1, l)((k + 3) mod 4,1) for k = 0,2 
(k,O)((k- l),O)((k- 1),1) 
(k, O)(k, 1) 
(k, O)((k - 1), O)((k - 1), l)((k + 1) mod 4,1) 
(k, O)(k, l)((k + 2) mod 4, 1) for k = 1,3. 
Clearly cg( 4>2, .,p2) = 4. 
Assume we have constructed (<Pn-l, .,pn-l) such that cg( <Pn-l, .,pn-d = 2n - l • Consider vertices 
(i l ,0),(i2,n-1) ofOOPn· 

1. If i l , i2 < 2n
-

1 or il, i2 ~ 2n
-

1 then we first form a path between (i1, 0) and (i2 , n - 2) 
using .,pn-l and then prolong this path to (i2 , n - 1). 

2. If i l < 2n
-

1 and i2 ~ 2n
-

1 then we first form a path between (il,O) and 
(i2-2n - l , n-2) using .,pn-l and then prolong this path to (i2 , n-1) through (i2-2n - l , n-1). 
The case i l ~ 2n

-
1 , i 2 < 2n

-
1 is analogical. One can easily see that 
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