MAX-PLANCK-INSTITUT FÜR INFORMATIK

On Crossing Numbers of Hypercubes and Cube Connected Cycles

Ondrej Sýkora Imrich Vrťo

MPI-I-91-124

November 1991

Im Stadtwald 66123 Saarbrücken Germany

On Crossing Numbers of Hypercubes and Cube Connected Cycles

Ondrej Sýkora Imrich Vrťo

MPI-I-91-124

November 1991

ON CROSSING NUMBERS OF HYPERCUBES AND CUBE CONNECTED CYCLES

Ondrej Sýkora and Imrich Vrťo*† Max Planck Institute for Computer Science Im Stadtwald, D-W-6600 Saarbrücken, FRG

Abstract

We prove tight bounds for crossing numbers of hypercube and cube connected cycles (CCC) graphs.

1 Introduction

Recently the hypercube-like networks have received considerable attention in the field of parallel computing due to its high potential for system availability and parallel execution of algorithms (see e.g. [4]). This motivates to investigation of various, from this point of view important, properties of the n-dimensional hypercube graph Q_n and its bounded degree alternatives: Cube Connected Cycles (CCC), Butterfly and de Bruijn graphs. In this paper we concentrate on the crossing number of Q_n and CCC_n .

The crossing number $\operatorname{cr}(G)$ of a graph G is defined as the least number of crossings of its edges when G is drawn in a plane. In practice, crossing numbers appear in the fabrication of VLSI circuits. The crossing number of a graph corresponding to the VLSI circuit has strong influence on the area of the layout as well as on the number of wire - contact cuts that should be minimized. Leighton [6] pointed out that crossing numbers provide a good area lower bound argument in VLSI complexity theory. According to the survey paper [3], all that is known on the exact values of $\operatorname{cr}(Q_n)$ is $\operatorname{cr}(Q_3) = 0$, $\operatorname{cr}(Q_4) = 8$ and $\operatorname{cr}(Q_5) \leq 56$. Erdös and Guy conjectured in [2] that $\operatorname{cr}(Q_n) \leq (5/32)4^n - \lfloor (n^2+1)/2 \rfloor 2^{n-1}$.

We prove the following tight bounds on $cr(Q_n)$ and $cr(CCC_n)$:

$$\frac{4^n}{20} - (n+1)2^{n-2} < \operatorname{cr}(Q_n) < \frac{4^n}{6} - n^2 2^{n-3}$$

$$\frac{4^n}{20} - 3(n+1)2^{n-2} < \operatorname{cr}(CCC_n) < \frac{4^n}{6} + 3n^2 2^{n-3}.$$

Our results on $cr(Q_n)$ and $cr(CCC_n)$ give immediately alternative proofs that the area complexity of hypercube and CCC computers realized on VLSI circuits is $A = \Omega(4^n)$. Previous proofs are in [1, 7]. Optimal layouts are proposed in [1, 9].

^{*}The research of both authors was supported by Alexander von Humboldt Foundation, Bonn, Germany

†The authors were on leave from Institute for Informatics, Slovak Academy of Sciences, Dúbravská 9, 84235
Bratislava, CSFR

2 Upper bounds

The n-dimensional hypercube graph Q_n is defined recursively as follows.

- 1. $Q_2 = K_2$.
- 2. Let $n \geq 2$. Then Q_{n+1} is constructed from two copies of Q_n by inserting edges between corresponding vertices.

First we give a simple recursive drawing of Q_n in a plane. Consider the real axis x in the 2-dimensional Euclidean plane. Let D_{n-1} be a drawing of Q_{n-1} in the plane such that the vertices of Q_{n-1} are the points $0, 1, 2, ..., 2^{n-1} - 1$ on x. Produce a symmetrical drawing to D_{n-1} arround the line normal to x in the point $2^{n-1} - 0.5$. If n is even (odd) then join the points i and $2^n - 1 - i$, $i = 0, 1, ..., 2^{n-1} - 1$ by circular arcs above (below) x.

Lemma 2.1 Let $cr_0(Q_n)$ denote the number of crossings in the above construction. Then

$$\operatorname{cr}_0(Q_n) < \frac{4^n}{6} - n^2 2^{n-3}.$$

Proof: It is easy to show that $cr_0(Q_n)$ satisfies the following recurrent relation

$$\operatorname{cr}_0(Q_n) = 2\operatorname{cr}_0(Q_{n-1}) + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor - 1} 4^i \sum_{j=1}^{n-2i} (2^{n-2i} - 2).$$

The direct solution of the relation implies the claimed upper bound for $cr_0(Q_n)$. \Box

Theorem 2.1

$$cr(Q_n) < \frac{4^n}{6} - n^2 2^{n-3}.$$

The graph CCC_n is defined as follows. The set of vertices consists of tuples (i, j), $i = 0, 1, 2, 3, ..., 2^n - 1, j = 0, 1, 2, ..., n - 1$. Vertices (i_1, j_1) and (i_2, j_2) are adjacent if and only if $i_1 = i_2$ and $|j_2 - j_1| \mod n = 1$ or $j_1 = j_2$ and the binary representations of i_1, i_2 differ only in the j_1 -th bit. Thus CCC_n is obtained from Q_n by a proper replacing of vertices of Q_n by cycles of length n.

Theorem 2.2

$$cr(CCC_n) < \frac{4^n}{6} + 3n^2 2^{n-3}.$$

Proof: Consider the above drawing D_n of Q_n in the plane. Around each vertex of Q_n we find a region containing no crossings. In each region we replace the vertex by a cycle of length n. Thus we have constructed a plane drawing of CCC_n having $\leq \operatorname{cr}_0(Q_n) + \binom{n-1}{2} 2^n$ crossings. \square

3 Lower bounds

We apply the lower bound method proposed by Leighton [6]. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. An embedding of G_1 in G_2 is a couple of mappings (ϕ, ψ) satisfying

$$\phi: V_1 \to V_2$$
 is an injection

$$\psi: E_1 \to \{ \text{set of all paths in } G_2 \}$$

such that if $(u,v) \in E_1$ then $\psi((u,v))$ is a path between $\phi(u)$ and $\phi(v)$. For any $e \in E_2$ define

$$\operatorname{cg}_{e}(\phi,\psi) = |\{f \in E_{1} : e \in \psi(f)\}|$$

and

$$\operatorname{cg}(\phi,\psi) = \max_{\epsilon \in E_2} \{\operatorname{cg}_{\epsilon}(\phi,\psi)\}.$$

The value $cg(\phi, \psi)$ is called congestion.

Lemma 3.1 [6] Let (ϕ, ψ) be an embedding of G_1 in G_2 with congestion $cg(\phi, \psi)$. Then

$$\operatorname{cr}(G_2) \ge \frac{\operatorname{cr}(G_1)}{\operatorname{cg}^2(\phi, \psi)} - \frac{\mid E_2 \mid}{2} \tag{1}$$

Theorem 3.1

$$\operatorname{cr}(Q_n) > \frac{4^n}{20} - (n+1)2^{n-2}.$$

Proof: Let $2K_m$ denote the complete multigraph of m vertices, in which every two vertices are joined by two parallel edges. Set $G_1 = 2K_{2^n}$ and $G_2 = Q_n$. In what follows, we show, that there exists an embedding (ϕ, ψ) of $2K_{2^n}$ in Q_n with

$$cg(\phi, \psi) \le 2^n. \tag{2}$$

Kleitman's paper [5] implies

$$\operatorname{cr}(K_{2^n}) \ge \frac{2^n (2^n - 1)(2^n - 2)(2^n - 3)}{80}.$$
 (3)

According to Kainen [8] it holds

$$\operatorname{cr}(2K_{2^n}) = 4\operatorname{cr}(K_{2^n}).$$
 (4)

Substituting (2), (3) and (4) into (1), we obtain the desired result. Now we will show an embedding satisfying (2). Let ϕ be any bijection of $2K_{2^n}$ into Q_n . For any two vertices of Q_n , we have to design two paths between them. Consider two arbitrary vertices u and v of Q_n . Let d be their distance. Then there exists the unique path of length d starting in u, traversing dimensions in ascending order and ending in v. Let the second path be the symmetrical one starting in v and ending in u. Let e = (x, y) be an arbitrary edge of Q_n lying in a dimension $i, 1 \leq i \leq n$. Now we count the number of edges of $2K_{2^n}$ whose images (paths) traverse the edge (x, y). Let A(B) be the subcube of Q_n that contains x(y) and lies in dimensions 1, 2, ..., i-1(i+1, i+2, ..., n). (If i=1 or n then A or B is a single vertex, i.e. Q_0 .) Similarly, let C(D) be the subcube of Q_n that contains y(x) and lies in dimensions 0, 1, 2, ..., i-1 (i+1, i+2, ..., n). It is easy to show that when an above defined path contains the edge (x, y) it must start in A (or C) and end in B (or D). Thus

$$cg_e(\phi, \psi) \le 2^{i-1}2^{n-i} + 2^{i-1}2^{n-i} = 2^n$$

and consequently

$$cg(\phi,\psi) \leq 2^n$$
. \Box

We use the same method to prove the lower bound on $cr(CCC_n)$.

Theorem 3.2

$$\operatorname{cr}(CCC_n) > \frac{4^n}{20} - 3(n+1)2^{n-2}.$$

Proof: Denote by CCP_n (Cube Connected Paths) the graph which is obtained from CCC_n by removing edges ((i,0),(i,n-1)), for $i=0,1,2,3,...,2^n-1$. Observe that the graph CCP_n has a simple recursive structure. Clearly it holds

$$\operatorname{cr}(CCC_n) \ge \operatorname{cr}(CCP_n).$$
 (5)

Set $G_1 = K_{2^n,2^n}$, $G_2 = CCP_n$. In what follows we shall construct an embedding (ϕ_n,ψ_n) of $K_{2^n,2^n}$ in CCP_n such that

$$cg(\phi_n, \psi_n) = 2^n. (6)$$

Once more the Kleitman's result [5] implies

$$\operatorname{cr}(K_{2^n,2^n}) \ge \frac{2^{2n-1}(2^n-1)(2^{n-1}-1)}{5} \tag{7}$$

Substituting (6) and (7) into (1) and noting (5) we obtain the desired result.

Assume $n \geq 2$. Let ϕ_n be an injection that maps the first (second) 2^n mutually nonadjacent vertices of $K_{2^n,2^n}$ in the set $\{(i,0) \mid i=0,1,2,3,...,2^n-1\}$ ($\{(i,n-1) \mid i=0,1,2,3,...,2^n-1\}$). We design ψ_n by induction. Let n=2. The 16 paths between the vertices $\{(i,0) \mid i \leq 3\}$ and $\{(i,1) \mid i \leq 3\}$ are the following:

(k,0)(k,1)

(k,0)(k+1,0)(k+1,1)

 $(k,0)(k,1)((k+2) \bmod 4,1)$

 $(k,0)(k+1,0)(k+1,1)((k+3) \mod 4,1)$ for k=0,2

(k,0)((k-1),0)((k-1),1)

(k,0)(k,1)

 $(k,0)((k-1),0)((k-1),1)((k+1) \bmod 4,1)$

 $(k,0)(k,1)((k+2) \mod 4,1)$ for k=1,3.

Clearly $cg(\phi_2, \psi_2) = 4$.

Assume we have constructed (ϕ_{n-1}, ψ_{n-1}) such that $cg(\phi_{n-1}, \psi_{n-1}) = 2^{n-1}$. Consider vertices $(i_1, 0), (i_2, n-1)$ of CCP_n .

- 1. If $i_1, i_2 < 2^{n-1}$ or $i_1, i_2 \ge 2^{n-1}$ then we first form a path between $(i_1, 0)$ and $(i_2, n-2)$ using ψ_{n-1} and then prolong this path to $(i_2, n-1)$.
- 2. If $i_1 < 2^{n-1}$ and $i_2 \ge 2^{n-1}$ then we first form a path between $(i_1, 0)$ and $(i_2-2^{n-1}, n-2)$ using ψ_{n-1} and then prolong this path to $(i_2, n-1)$ through $(i_2-2^{n-1}, n-1)$. The case $i_1 \ge 2^{n-1}$, $i_2 < 2^{n-1}$ is analogical. One can easily see that

$$cg(\phi_n, \psi_n) = max(2cg(\phi_{n-1}, \psi_{n-1}), 2^n) = 2^n.$$

4 Acknowledgement

This work was done while the authors were visiting Max Planck Institute for Computer Science in Saarbrücken. They thank Professor Kurt Mehlhorn for his support.

References

- [1] Brebner, G., Relating routing graphs and two dimensional array grids, In: Proceedings VLSI: Algorithms and Architectures, North Holland, 1985.
- [2] Erdös, P., Guy, R. P., Crossing number problems, American Mathematical Monthly, 80, 1, 1973, 52-58.
- [3] Harary, F., Hayes, J. P., Horng-Jyh Wu, A survey of the theory of hypercube graphs, Computers and Mathematics with Applications, 15, 4, 1988, 277-289.
- [4] Heath, M. I. (editor), Hypercube Multicomputers, Proceedings of the 2-nd Conference on Hypercube Multicomputers, SIAM, 1987.
- [5] Kleitman, D. J., The crossing number of $K_{5,n}$, Journal of Combinatorial Theory, 9, 1971, 315-323.
- [6] Leighton, F. T., New lower bound techniques for VLSI, In: Proceedings of the 22-nd Annual Symposium on Foundations of Computer Science, 1981, 1-12.
- [7] Leiserson, C. E., Area efficient graph layouts (for VLSI), In: Proceedings of the 21-st Annual IEEE Symposium on Foundations of Computer Science, 1980, 270-281.
- [8] Kainen, P. C., A lower bound for crossing numbers of graphs with applications to K_n , $K_{p,q}$, and Q(d), Journal of Combinatorial Theory (B), 12, 1972, 287-298.
- [9] Preparata, F. P., Vuillemin, J. E., The cube-connected cycles: a versatile network for parallel computation, In: Proceedings of the 20-th Annual IEEE Symposium on Foundations of Computer Science, 1979, 140-147.

