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Eingegangen am 21. Mai 1973 

Summary: This paper considers the dynamic inventory model with a discrete demand. There is a 
constant lead time, backlogging of excess demand, a fixed set-up cost, and holding and shortage costs 
whose negatives are unimodal. The criterion is the long-run average cost. A value iteration method 
with discount factor approaching to 1 is studied. This value iteration method supplies policies of the 
(s , S) type and convergent upper and lower bounds on the minimal average cost. Further, the average 
cost of the (s. , s.) policy found at then-th iteration lies between the corresponding upper and lower 
bound. Also, for all n sufficiently large the (s. , S.) policy is average cost optimal. Computational con­
siderations are given for the special case of linear holding and shortage costs. 

1. The Inventory Model and Preliminaries 

We consider an inventory model in which the demands for a single item in 
periods 1,2, ... are independent identically distributed discrete random variables. 
Let <J>(j) be the probability of demand j in a period (j = 0, 1, ... ). It is assumed 
that the demand distribution { </> (j)} has a finite, positive mean µ. Any unfilled 
demand in a period is completely backlogged. At the beginning of each period the 
stock on hand and on order is reviewed. At each review an order may be placed for 
any positive integral amount of stock. An order placed at the beginning of period 
t is delivered at the beginning of period t + A, where A is a fixed non-negative 
integer. The demand in each period takes place after review and delivery (if any). 
The stock on hand and on order may take on any integral value, where a negative 
value indicates the existence of a backlog. 

The following costs are considered. The cost of orderingj units is K b(j), where 
K 2 0, b(0) = 0, and b(j) = 1 for j 2 1 3 ). Let g(j) be the (expected) holding and 
shortage costs in a period when j is the stock on hand at the beg:nning of that 
period just after any additions to stock. It is assumed that g (j) is non-negative. 
Future costs are not discounted. For any integer k, let 

00 

L(k) = L g(k - j)<J> 2 (j)' 
j = O 

') This paper is registered as Mathematical Centre Report BW 23/ 73. 
2) Dr. Henk C. 1ijms, Department of Operations Research, Mathematisch Centrum , Amsterdam. 
3 ) A linear purchase cost c contributes an amount c µ to the average cost of any policy to be consi-

dered , so for the average cost criterion we may take c = 0. 
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where ¢ 0 (0) = 1, ¢ 0 U) = 0 for j :2'. 1 and, for n :2'. 1, cp"U) is the 11-fold convolution 
of </JU) with itself, i. e., cp"U) is the probability ofa cumulative demandj inn periods. 
We assume that L(k) is finite for all k. Clearly, L(k) represents the expected holding 
and shortage costs in period t + }, when k is the stock on hand and on order at 
the beginning of period t just after ordering. The following conditions are imposed 
on L(k): (a) the function - L(k) is unimodal, i.e., there is an integer S0 such that 
L(k) ~ L(k - 1) fork~ S0 and L(k + 1) :2: L(k) fork :2'. S0 ; (b) L(k) > K + L(S0 ) 

for all lkl sufficiently large. Define r as the smallest integer such that 

L(r) ~ K + L(S0 ) , 

and let R be the largest integer for which 

L(R) ~ K + L(S0 ). 

For the infinite period model an (s,S) policy is a stationary policy of the following 
form: If, at review, the stock on hand and on order i < s, order S - i units; 
otherwise do not order. Denote by a(s,S) the long-run average expected cost 
per period when an (s,S) policy is used. It is known that the quantity a(a,S) is 
independent of the initia l stock and is given by [Iglehart , 1963 ; Tijms, 1972 ; 
Veinott-Wagner, 1965] 

a(s,S) = {L(S) + :t: L(S - k)m(k) + K};{1 + M(S - s)}, 

k k 

where m(k) is defined by m(k) = cp(k) + L m(k - j)</JU) and M(k) = L mU), 
k :2'. 0. Let j = O j = O 

g = min {a(s,S) I s,S integers, s ~ S}. 

A policy for controlling the stock is called average cost optimal when it minimizes 
the long run average expected cost per period for each initial stock. Under the 
conditions imposed on L(k) we have that among the class of all possible policies 
there is an average cost optimal policy which is of the (s, S) type [Johnson , 1968 ; 
Tijms, 1972] (this result was first proved by [Iglehart, 1963] for the case where 
L(k) is convex, see a lso [ Veinott-Wagner, 1965, pp. 530- 531 ]). Hence the minimal 
average expected cost is independent of the initial stock and equals g. Moreover, 
there is an average cost optimal (s,S) policy with r ~ s ~ S ~ R [Johnson, 1968; 
Tijms, 1972 ; Veinott -Wagner, 1965]. Both in [Johnson, 1968] and in [ Veinott­
Wagner, 1965] an computational method for finding an average cost optimal 
(s,S) policy has been given. These methods which are nearly identical to each 
other bear on the minimization of the quantity a(s,S). 

The purpose of this paper is to present a different approach which is based 
on the method of successive approximations. We shall treat a modified form 
of the value iteration method which is insensitive to any periodicity in the 
behaviour of the stock level. 
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Let {a"' n = 1.2, ... } be a sequence with 0 ~ an ~ 1 for all n. Define f 0 (i) = 0 
for any integer i, and, for n = 1,2, ... , define for any integer i, 

00 

f,,(i) = inf {Kb(k - i) + L(k) + ex,. L fn - dk - J)¢(j)}. (1) 
k?.i j = 0 

Then [Veinotr, 1966], for 11 = 1,2, . .. , 
:, .. -! K + L(S,.) + exn J/11

- I (S,. - })</JU) 

j,.(1) - oc 

L(i) + ex,. L J,,_ 1 (i - })</JU) 
j = 0 

for i < Sn, 

(2) 

for i 2 s,., 

00 

where Sn is the smallest integer for which Gn(k) = L(k) + exn L J,,- 1 (k - })<PU) 
j=O 

is minimal and Sn is the smallest integer such that Gn(s,.) ~ K + Gn(S,.). The 
result in (2) was first proved by Scarf [ 1960] for the case where L(k) is convex 
(observe that for our model there is no difference between Veinott's formulation 
of the salvage cost in the finite period model and Scarf's one, since the linear 
purchase cost is zero). Further, we have [ Veinott , 1966], 

r ~ s,. ~ Sn ~ R for n = 1, 2, .... (3) 

2. Approximations for Average Cost Optimal (s,S) Policies 

In this section we shall prove that the recursion in (2) supplies lower and upper 
bounds L,. and U,. such that L,. ~ g ~ a(s,.,S,.) ~ Un for all n. Moreover, under 
certain conditions, both L,. and U,. converge as n - CJJ to the minimal average 
cost g, and for all n sufficiently large the (s,., Sn) policy is average cost optimal. 

We introduce the following conditions. 

Condition 1: 

(i)0 <ex,.< 1 for n = 1,2, ... ; (ii) ex,. -1 as n - 00 ; 
II 

(iii)ex 1ex 2 ..• ex,.-0 as n -ifJ ;and(iv) L (ex,.exn 1···ex)lexj-exi - 1I-0asn- oo . 
j = 2 

Condition 2: 
(i)exn=1 for n = 1,2, ... ; and (ii) ¢(i) >0 forsome i>R-r. 

Remark 1: 
It is readily verified that Condition 1 is satisfied when exn = 1 - (n + n-b 

for all n provided that ½ < b ~ 1 (see also [ H ordijk-Tijms, 1973 a] ). 
Given the sequence {an}, we define 

1•0 = 0 and t'n = 1 + an)'n-t for n = 1,2, .... (4) 

Observe that }',. = n for all n when exn = 1 for all n. We shall need the following 
theorem. 
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Theorem I: 
If Condition 1 or Condition 2 is satisfied, then 

lim Un(i) - y,.g} exists and is finite for all i = r - 1, ... ,R . (5) 

Proof: 
Let us define a Markovian decision problem which is closely related to the 

inventory model under consideration. Consider a dynamic system which at 
times t = 1,2, ... is observed to be in one of R - r + 2 states labeled by 
i = r - 1, .. . ,R. After observing state i, an action k is chosen from the set A(i) 

of possible actions, where A (i) = { i, i + 1, ... , R}. If at time t the system is in state i 
and action k is chosen, then an expected cost cf= Kb(k - i) + L(k) is incurred 
and at time t + 1 the system will be in state j with probability Pt, where 
Pt= </J(k -j) for j #- r - 1 and PL- 1 = L </J(h) with <p(m) = 0 form < 0. 

h > k - r 

By (2) and (3) we havefn(i) = f,.(r - 1) for all i < rand n ~ 0, so, by (1) and (2), 
R 

f,.(i) = min {cf+ rt.,. L J,. _ i(j)pfj for r - 1 ::;; i::;; R and n ~ 1. 
k eA(i) j = r - 1 

Further, using the fact that for the inventory model there is an average cost 
optimal policy of the (s, S) type with r ::;; s ::;; S ::;; R, it is easily seen that for the 
above Markovian decision problem the minimal average expected cost per unit 
time is independent of the initial state and equals g. It now follows from Theorem 1 
in [Hordijk-11jms, 1973a] that under Condition 1 the result (5) holds. Assume 
now that Condition 2 is satisfied. Then, for any stationary policy f adding to 
each state i an action f(i) E A (i), the associated Markov chain ((Pl(i>)) has a single 
recurrent class and has no periodic states. It now follows from (Lanery [ 1967], 
Theorem 3 on p. 43) thatf,,(i) - ng has a finite limit as n - oo for all r - 1 ::;; i ::;; R 
(see also [ Odoni , 1969]). This ends the proof. 

The proof of the next theorem is an adaptation of proofs given in [ H ordijk-11jms, 
1973 a, 1973 b] ; for the case where rt.,. = 1 for all n see also [Hastings, 1971] and 
[ Odoni, 1969]. 

Theorem 2: 
For any n ~ 1, let 

L,. = min Un(i) - r:t.,.f,, - 1 (i) Ir,. - 1 .$; i .$; R}, 

U,. = max {J,.( i) - r:x.,J~ - 1 (i) Ir,. - 1 .$; i .$; S,.}, 

where r 1 = s1 and r,. = min (sn - 1,S,.). Then 

(a) L" .$; g .$; a(s"'S") .$; U,. for all n ~ 1. 

If Condition 1 or Condition 2 is satisfied, then 

(b) Both L" and U,. converge as n - oo tog. 
(c) For all n sufficiently large the (s"'S,.) policy is average cost optimal. 
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Proof: 
We first introduce some notation. Let F = {(s,S)lr s s s S s R}. For any 

(s,S) policy from F, define for i,j = r - 1, ... ,S 

pij(s,S) = ¢(i - j), (i ~ s,j i= r - 1), P;., - 1 (s,S) = L </J(k), (i ~ s), 
k > i - r 

pij(s,S) = ¢(S - j), (i < s,j i= r - 1), and p;_, _ i(s,S) = L </J(k), (i < s). 
k > S - r 

Denote by {n;(s,S), i = r - 1, ... ,S} the unique stationary probability distri­
bution of the Markov matrix ((pij(s,S))). Let c;(s,S) = K + L(S) for i < s, and let 
c;(s,S) = L(i) for i :2: s. Clearly, for all j = r - 1, ... ,S, 

s s 
nj(s,S) = L n;(s,S)pij(s,S), and a(s,S) = L c;(s,S)n;(s,S). (6) 

i :;;:. r- 1 i = r-1 

For part (a), fix n :2: 1. By (1) and (2) we have for any (s,S) E F, 
00 

{ 

K + L(S) + !Y.n L fn - i(S - j)</J(j) for r - 1 S i < S, 
/,,(i) S j = O 

00 

L(i) + a,, L fn - 1 (i - j)</J(j) for S S i S S, 

(7) 

j = O 

with equality for all i when s = sn and S = Sn. Since f,, _ 1 (i) = fn - 1 (r - 1) for 
i < r, we can write (7) in the equivalent form 

s 
fn(i) S C;(s,S) + !Y.n L fn - l (j)p;j(s,S) for r - 1 Si S S, (8) 

j = r - 1 

with equality for all i when s = Sn and S = Sn- By (2) we have fn(i) - anfn- I (i) 

is constant for i < r"' sofn(i) :2: anfn- i (i) + Ln for all is R. Choose now an (s,S) 
policy from F. Then, by (8), 

s 
anfn - i(i) + Ln S C;(s,S) + !Y.n L J,, - 1 (j)pij(s,S) for r - 1 S i S S. (9) 

j = r - I 

Now multiply both sides of (9) by n;(s,S) and sum over i. Using (6), we find 

!Y.nLfn _ i(i)n;(s,S) + Ln S a(s,S) + !Y.nLfn-1U)nj(s,S), 
i j 

so Ln s a(s,S). This implies Ln s g, since g = a(s,S) for some (s,S) E F. Consider 
now the (smSn) policy. When s = sn and S = Sn the equality sign holds in (8) for 
all i. Further, fn(i) s anf,, _ 1 {i) + Un for all i s Sn. Hence 

Sn 

anfn- 1 (i) + U,, :2: C;(SmSn) + !Y.n L fn- 1 (j)pij(smSn) for r - 1 S i S Sn, 
j = r - 1 

from which we derive in the same way as above that Un :2: a(smSn)­
(b) This assertion is an immediate consequence of (4) and (5). 
(c) The proof of this assertion is a minor modification of proofs given in (H ordijk­

Tijms [1973a], Theorem 2(b)) and (Odoni [1969], Theorem 1 (v)) and is omitted. 



220 H. C. Tijms 

Remark 2: 
The assumption of a linear purchase cost zero enabled it to reduce the inventory 

model with a denumerable number of possible stock levels to a finite state Mar­
kovian decision model. However, for the average cost criterion it is no restriction 
to assume that the linear purchase cost equals zero (see the footnote in section 1 ). 
Of course, the minimal total expected cost in the finite period inventory model 
depends on the value of the linear purchase cost. The case of a linear purchase 
cost c > 0 has been studied in [ H ordijk- 1/jms, 1973 b] under the assumptions 
that L(k) is convex, a,, = 1 for all n and c/J(i) > 0 for all i sufficiently large. It has 
been shown in [ H ordijk-1/jms, 1973 b] that under these conditions Theorem 2 
holds also provided that K 6 (k - i) is replaced by c. (k - i) + K 6 (k - i) in (2), 
L(k) is replaced by ck + L(k) in the relations defining s11 and S,,, and the term c µ 

is added to the right side of the expression for a(s,S) given in section 1. 

3. Computational Considerations 

In this section we give some general findings for the convergence of the algorithm 
(2) for the cases a,, = 1 and a" = 1 - (n + 1)-b where ½ < b :s; 1. We assume 
that the holding and shortage costs in a period are given by h-max (i, 0) - p-min (i, 0) 
when i is the stock on hand at the end of that period, where h > 0 and p > 0. 
Then [ cf. Veinott-Wagner, 1965], 

L(k) = p{(A + 1)/l - k} + (h + p) L <f) H
1 (j) , 

j < k 

where <f> H 1 (j) = 0 for j < 0 and <PH 1 (j) = c/J H 1 (0) + ... + c/JH 1 (j) for j ;;c: 0. 
It will be clear that the knowledge of the distribution function <f>H 1 ( ·) is sufficient 
to compute the bounds r and R. The functions L(k) and f,,(k) need be computed 
only for r - 1 :s; k :s; R (see (2) and (3)). We have investigated two types of demand 
distribution ¢ ( • ): An arbitrary distribution with ¢ (j) > 0 for finitely many 
values of j, and a Poisson distribution. 

In the computer program the algorithm was stopped when ( U" - L,,)/ L" :s; £, 

which implies a(sN,SN) :s; (1 + e)g where N is defined as the first value of n for 
which the convergence criterion ( U 11 - L,,)/ L,, :s; £. The number £ was chosen 
equal to 0.05, 0.01, or 0.005. 

Considerable computer experimentation has demonstrated that for the 
algorithm with a" = 1 - (n + 1) - b the convergence of (U,, - L 11)/L 11 becomes 
substantially worse as b decreases, where ½ < b :s; 1. In most examples tested 
where the algorithm with a" = 1 achieved convergence the number of iterations 
required for this algorithm was considerably less than the number of iterations 
required for the algorithm with a" = 1 - (n + 1) - 1

. For the algorithm with 
a,,= 1 the criterion (Un - Ln)/Ln exhibited a strong tendency to decrease expo­
nentially with the number of iterations when the demand is Poisson distributed. 
This agrees with theoretical results in [White, 1963]. For the algorithm with 
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an= 1 - (n + 1)-bournumericalresultsindicatethat(Un - L,,)/Ln = 0(1/n2
b - i), 

as might be expected from theoretical results in [Hordijk-Ttjms, 1973a]. Finally, 
there did not seem to be any clear relation between the number of iterations 
required for convergence and the value of R - r + 1; in fact the convergence 
depends on the probability L </>(k). 

k > R - r 

In table 1 we summarize some numerical results for two examples with an 
arbitrary demand distribution, where the other parameters are given by (cf. 

[ Wagner, p. A 32]), 
K = 24, h = 4, p = 10, and ] = 0 . 

Except the results in the columns with entry N', the results in table 1 refer 
to the algorithm with a,, = 1 - (n + 1) - 1

. The integer N' denotes the number 
of iterations required for the algorithm with a,,= 1 - (n + 1r 0

·
6

. For each case 
from table 1 the latter algorithm produced the same policy at the last iteration 
as the algorithm with an = 1 - (n + 1) - 1 did at the final iteration. For the 
example with </>(3) = 1 the algorithm with a,,= 1 leads to Ln = 12, Un= 24 for 
n;;:: 4, (s,,,S 11 ) = (1,3) for n odd and (s,,,Sn) = (2,6) for n even. We have a(1,3) = 24 
and a(2,6) = 18; the policy (2,6) is average cost optimal. For the example with 
</>(4) = </>(5) = 0.5 the algorithm with r:t.n = 1 leads to L,, = 19.5, Un= 26 for 
n;;:: 3, (s,,,S,,) = (2,5) for n odd and (s,,,S,,) = (3,9) for n even. We have a(2,5) = 26 
and a(3,9) = 22.75; the policy (3,9) is average cost optimal 

Table 1. a,, = l - (n + ])- 1 and a,,= I - (n + ]) - 0
·
6 

cp(3) = 1; r = 1, R = 11 cp(4) = cp(5) = 0.5; r = 2, R = 11 

E N N' (sN,SN) E N N ' (sN,SN) 

0.05 27 249 (2,6) 0.05 20 169 (3.9) 

0.01 133 >500 (2.6) 0.01 106 >500 (3,9) 

0.005 267 (2,6) 0.005 211 {3,9) 

In the tables 2 and 3 we summarize some numerical results for a number of 
examples with a demand distribution of the Poisson type, where the other para­
meters are given by ( cf. [ Wagner-O' H agan-Lundh, 1965, p. 697]), 

K = 64, h = 1, p = 9, and ] = 0. (10) 

The cases I, II and III correspond to i = 0.05, i = 0.01 and i = 0.005. The 
results in the tables 2 and 3 refer to the algorithm with an = 1, except the results 
in the rows with entry N'.The integer N' denotes the number of iterations required 
for the algorithm with a11 = 1 - (n + 1)- 1

. When c = 0.05 the latter algorithm 
produced the policies (2,23) and (6,36) for µ = 4 and µ = 9 at the last iteration; 
for each other case we found the same policy as we did for the algorithm with 
an = 1. Each policy from the tables 2 and 3 is average cost optimal, except the 
policy (12,51) forµ= 16. 
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Table 2. ex, = 1 and ex, = I - (n + 1) - 1 

µ I 2 4 9 16 

r,R - 6,67 -5,68 - 3,71 2,78 9,87 

Case I N 75 39 24 20 20 

N' 118 83 59 39 29 

(sN,SN) (0,11) (1,16) (2,24) (6,37) (12,51) 

Case II N 82 43 36 32 32 

N' > 500 410 290 193 146 

(sN,SN) (0,11) (1,16) (2,24) (6,37) (12,52) 

Case II I N 85 45 42 37 38 

N' > 500 >500 > 500 386 291 

(sN , SN) (0, 11) (1 ,16) (2,24) (6,37) (12,52) 

Table 3. '.X,, = I and '.X , = 1 - (n + 1) 1 

p 20 25 36 49 64 

r, R 13,92 17,98 28,110 41 , 125 56,142 

Case I N 17 29 113 75 3 
N' 26 27 21 18 17 

(sN, SN) (15,62) (20,56) (30,79) (42,106) (56,74) 

Case II N 34 69 200 170 3 
N' 130 118 104 91 82 

(sN, Sv) (15,62) (20,56) (30,79) (42,106) (56,74) 

Case 111 N 41 86 237 211 3 
N' 261 236 207 182 164 

(sN, SN) (15,62) (20.56) (30,79) (42,106) (56,74) 

Finally, we note that it seems difficult to choose a stop criterion based on 
reiteration of policies. Several examples were encountered in which s,, and S,, did 
not change for a number of successive values of n whereas no convergence in 
policy was achieved. In table 4 we give an example of this phenomenon for the 

Table 4. µ = 4. ex ,, = 1 - (n + I) - 1 

II s,,,S" u(s,,,S,) 

8 - 9 2,20 22.483 

10 - 11 2,21 22.325 

12 - 23 2,22 22.224 

24-168 2,23 22.173 

~ 169 2,24 22.166 
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algorithm with CXn = 1 - (n + n- 1
, where the demand is Poisson distributed 

with mean µ = 4 and the other parameters are given in (10). 

Remark 3: 
In this paper we have presented for the dynamic inventory model a modified 

form of the value iteration method which removes any asymptotic fluctuations. 
The computational considerations demonstrate that in the aperiodic case the 
value iteration method with an = 1 for all n is superior to the value iteration 
method with discount factor approaching to 1. In its turn, however, the former 
method will need in general more computing time than the algorithms given in 
[Johnson, 1968] and [Veinott-Wagner, 1965] (cf. [Riess, 1971]). 
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