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Abstract. With every finite-state word or tree automaton, we associate a 
binary relation on words or trees. We then consider the "rectangular decom- 
positions" of this relation, i.e., the various ways to express it as a finite union of 
Cartesian products of sets of words or trees, respectively. We show that the 
determinization and the minimization of these automata correspond to simple 
geometrical reorganizations of the rectangular decompositions of the associ- 
ated relations. 

Introduction 

Many results of Automata Theory can be conveniently formulated in the setting of 
Universal Algebra, which facilitates an immediate extension from words to trees. 
Regular languages and regular sets of finite trees can thus be considered as two 
instances of the notion of a recognizable set, a notion which can be defined with 
respect to arbitrary algebras as shown by Mezei and Wright [MW].  Courcelle 
[C1] applies this formal framework to sets of finite trees of various kinds, ordered 
or not, with bounded or unbounded degree. Appropriate notions of finite-state 
automata follow. Recognizable sets of graphs are considered in [C2]. However, due 

* This work was supported by the "Programme de Recherches Coordonn6es: Math6matiques et 
Informatique." It was initiated during a stay in Bordeaux by D. Niwinski in 1988. 
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to the intrinsically unstructured nature of graphs, no natural notion of a graph 
automaton arises. 

In this setting, a deterministic finite-state automaton can be viewed as a finite 
algebra over an appropriate signature. The minimizations of deterministic word 
and tree automata can be thus formulated as constructions of quotient algebras. 

Nondeterministic finite-state word and tree automata can also be defined. 
Classical algorithms transform them into deterministic ones which define the same 
sets of words or trees. The aforementioned algebraic approach to automata is not 
convenient for expressing the corresponding determinization algorithms, because 
we cannot represent the behaviors of nondeterministic automata by algebras with 
single-valued functions. (Algebras with multivalued functions might help, but this 
direction remains to be explored.) 

In this paper we present in a unified way the determinization and the 
minimization of finite-state word and tree automata. The idea is to associate with a 
language L G X* the set of pairs of words (u, o) such that uo belongs to L. This set 
is a binary relation SL on the set X*. A language L is regular iff the associated 
relation can be expressed as a finite union of "rectangles," i.e., of relations of the 
form A x B, where A and B are languages over the alphabet X. We call such an 
expression a rectangular decomposition of SL. In particular, a rectangular decom- 
position of sL is canonically associated with every automaton defining L. The 
determinization and the minimization of finite-state automata can then be ex- 
pressed as reorganizations of the rectangular decompositions associated with the 
given automata (and visualized geometrically, see Figures 1-4). This method also 
works for sets of trees: in this case, the appropriate relation is the set of pairs (t, c) 
such that t is a tree, c is a context (i.e., a tree with a "hole"), and c[t], the tree 
obtained by filling up the hole of c with t, belongs to the considered set of trees. 

As an application, we get a transparent proof of the fact that the minimization 
of a finite-state (word) automaton can be realized by a determinization of the 
reversed automaton. (See I-B] and Proposition 3.8(2) below for a precise state- 
ment.) 

We also show that the study of recognizable sets in arbitrary algebras can be 
done in the setting of rectangular decompositions of relations. Hence, our 
approach subsumes the algebraic one. 

Finally, we can treat the root-to-frontier tree automata introduced by Podelski 
[P],  that are in a certain sense deterministic, while being able to define all of the 
recognizable sets of trees. 

This paper is organized as follows. The geometry of rectangular decomposi- 
tions of relations is introduced in Section 1. Recognizable sets in arbitrary algebras 
are dealt with in Section 2. Applications to the recognizability of sets of finite and 
infinite words are given in Section 3. Our  major applications concern finite-state 
tree automata. They are given in Section 4. 

1. Rectangular Decompositions of Relations 

By a relation we mean in this section a subset of A × B, where A and B are 
nonempty sets. 
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Definition 1.1 (Rectangular  Decompos i t ions  of  Relations).  A rectangular decom- 
position of a relat ion s is an indexed set of  the form ~ = {(Ai, Bi)li ~ I}, such that  
s = U{Ai  x B~[ ~ I} and the sets A~, Bi are all nonempty .  Each set of  the form 
A~ x B~ is called a rectangle of  the decomposi t ion .  

Figure 1 shows a decomposi t ion  of  a relat ion r _ A x B consisting of four  
rectangles. T o  be precise, A = [0, 10], B = [0, 10]; the rectangles are A~ x Bi, for 
i = 1 . . . . .  4, where A 1 = [1, 8], B1 = [6, 7], A 2 = [4, 5], B 2 = [3, 8], A a = [9, 10], 
Ba = [6, 71 A ,  = [4, 9], and B4 = [1, 2]. (We denote  by I-n, m] the set o f  integers 
between n and  m, inclusive of n and m.) An element  (a, b) of  r is represented as the 
point  of  the plane with coordinates  a and  b. The  A-axis is hor izontal  and the B-axis 
is vertical. O the r  decomposi t ions  of  the relat ion r are shown in Figures 2-5. 

In  a decomposi t ion,  two indices m a y  refer to the same rectangle. T w o  
decompos i t ions  are equal if they consist  of  the same rectangles, irrespective of  the 
sets of  indices. The  cardinali ty of  a decompos i t ion  is the n u m b e r  of  disti_r'.ct 
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rectangles forming it, and not the cardinality of the index set. A relation isfinitely 
decomposable if it has a finite decomposition. 

The diagonal relation {(a, a)la ~ A} on a set A has a unique decomposition. 
The rectangles of this decomposition are singletons. 

Canonical decompositions of arbitrary relations will be obtained from the 
syntactical equivalences that we now define. 

Definition 1.2 (Syntactical Equivalences). Letting s be a relation, s ~_ A x B, we 
also denote by s the total mapping: A ~ ~(B) defined by s(a),= {b ~ Bl(a, b) ~ s}. 
We define an equivalence relation on A as follows: 

a ,,,~ a' iff s(a) = s(a'). 

We denote by s -1 the relation _ B × A equal to {(b, a)l(a, b) ~ s}. Finally, we 
let g(A),= {s(a)la ~ A} and s'(B),= {s-l(b)lb ~ B}. These two sets should not be 
confused with the sets s(A)= U{s(a) la~A} (called the codomain of s) and 
s-  I(B) = U {s- 1 (b) l b ¢ B} (called the domain of s). 

Since we have 

s(a) = {bla ~ s-  l(b)} 

we have a ~ ,  a' iffa and a' belong to exactly the same sets of the form s-  l(b), where 
b ranges over B. It follows that the equivalence class [a]~ of an element a of A with 
respect to ,,-~ can be expressed as follows: 

Fa]~ = (N{s-l(b)[b ~ s(a)}) - (U{s-l(b)]b ~ s(a)}). (1) 

The index m of ~~ (i.e., the cardinality of its set of equivalence classes) is equal 
to the cardinality of g(A); similarly, the index n of ~,-1 is equal to the eardinality of 
the set s'(B), and we have, by (1), m < 2". By symmetry, we also have n _< 2". In 
particular, m and n are both finite or both infinite. 

Proposition 1.3. For every relation s ~_ A x B, the following conditions are equiva- 
lent: 

(i) s is fni te ly  decomposable, 
(ii) g(A) is finite, 

(iii) s'(B) is finite, 
(iv) the index of  ~~ is finite, 
(v) the index of  ~~-1 is finite. 

Proof. (i) =- (ii) If ~ is a decomposition of s as in Definition 1.1, then s(a) is a 
union of sets Bi. Hence there are finitely many such sets s(a) if the decomposition 
is finite. 

The equivalence of (ii), (iii), (iv), and (v) follows from (1) and the related 
observations. 

The implication (iv)=, (i) follows from the definition of the decomposition 
min(s) that we give in the next subsection. [] 
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Definition 1.4 (Reduced and Deterministic Decompositions). Let ~ be a decom- 
position of a relation s, of the general form of Definition 1.1. We denote by ~ -  1 the 
decomposition {(Bi, Ai)[i ~ I} of s- I .  

We say that ~ is reduced if, for all indices i and j  in I, Bi = B i implies As = Aj. It 
is coreduced if the decomposition 9 - 1  is reduced. 

We let red(9) be the decomposition {(A'i, Bi)li ~ I} of s, such that 

A', = U { . 4 j l j  Bj = B, } .  

This decomposition is reduced, and is equal to ~ if ~ already reduced. Hence, we 
say that it is obtained from ~ by reduction. We obtain dually a coreduced 
decomposition eored(~), by exchanging the roles of A and B, or, formally, 

eored(~)  = ( red(~-  1))- 1. 

We say that a decomposition ~ is deterministic (resp. codeterministic) if 
Ai c~ Aj = ~ (resp. B i n  Bj = ~ )  whenever the rectangles Ai x Bi and Aj x B i are 
distinct. Hence, ~ is codeterministic iff 9 - ~  is deterministic. 

If ~ is deterministic, and if a belongs to Ai, then Bi = s(a). It follows that the 
second component of any pair (Ai, B~) in a deterministic decomposition is uniquely 
determined by the first one. If, in addition, ~ is reduced, then each first component 
of such a pair is uniquely determined by the second as follows: A i is the set of 
elements a of A such that B~ = s(a). Hence, any two reduced deterministic 
decompositions of a relation are equal. 

If ~ is a deterministic decomposition, then red(~) is deterministic. 
That every relation has a reduced deterministic decomposition is easy to see 

from the above remarks. Hence, every relation has one and only one such 
decomposition. It is canonical in the sense that it depends only on the relation, and 
is called its minimal decomposition. Dually, every relation has a unique coreduced 
codeterministic decomposition, that is also canonical, and is called its cominimal 
decomposition. These two canonical decompositions are investigated in detail 
below. We first look at some examples. 

Figures 2 and 3 show respectively a deterministic and a reduced deterministic 
decomposition of the relation r of Figure 1. The decomposition of Figure 2 is not 
reduced because we have B 7 = B s and B 5 = B 9 ,  while rectangles 7 and 8, on one 
hand, and rectangles 5 and 9, on the other, are distinct. The reduced decomposition 
of Figure 3 is obtained from that of Figure 2 by reduction, that is, by merging 
rectangles 7 and 8 into a single one, numbered 11. Rectangles 5 and 9 are also 
merged into a single one, numbered 10. In Figure 3, rectangle 10 is split into two 
parts, by the necessity of the graphic representation. Figure 4 shows the unique 
coreduced codeterministic decomposition of r. 

The two aforementioned canonical decompositions of a relation s can be 
obtained from the equivalence relations defined in Definition 1.2. We have 

s = U { r a ] ,  x s(a)la A} 
= U { s - ' ( b )  × [b],-, Ib B}. 
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Hence, the decompositions of s, 

rain(s) ,= {([a]~, s(a))la ~ A, s(a) is not empty} 

eomin(s) ..= {(s-l(b), [b]s-,)tb ~ B, s-1(b) is not empty}, 

are respectively reduced deterministic and coreduced codeterministic. Hence, they 
are the unique such decompositions. As mentioned above, we call them respectively 
the minimal and the cominimal decomposition of s. 

These decompositions are minimal with respect to the following partial order. 
If ~ and ~ '  are two decompositions of s, we write 9 '  ,~ ~ if every rectangle of ~ is 
contained in some rectangle of ~ ' .  Let g be any deterministic decomposition of s. 
Let E x F be a rectangle of 8 and let a E E. It follows from the determinism of ~f 
that F = s(a) and that E ~ [a]s. Hence, every rectangle of g is contained in some 
rectangle of rain(s), and rain(s) ,~ 8. We also have Card(rain(s)) < Card(8). These 
remarks establish the following minimality properties of rain(s): 

Proposition 1.5. 

(1) The decomposition min(s) is the unique reduced deterministic decomposition 
of  s. I t  is finite iff s is finitely decomposable. 

(2) It is the least deterministic decomposition of s with respect to the partial 
order ~ .  
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(3) I f  we assume in addition that s is finitely decomposable, then, for every 
deterministic decomposition ~ of  s, we have 

Card(rain(s)) < Card(~), 

unless 8 = rain(s). Hence, rain(s) is the unique deterministic decomposition of  
s o f  minimal cardinality. 

A similar characterization of comin(s) holds with respect to the same partial 
order on decompositions. 

We now wish to show that the decompositions min(s) and comin(s) can be 
constructed in a uniform way from any decomposition of s. A special case of this 
construction is that of the minimal deterministic automaton of a regular language, 
taking a nondeterministic automaton as input. See Section 3. 

Definition 1.6 (The Determinization of a Decomposition). Let 

= {(Ai, B~)li e I} 

be a decomposition of s c A × B. For  a e A, we let 

~(a).'= ~{Ai[i  e I, a e A,} - U{Ail i  e I, a q~ A,}. 

(This set is the equivalence class of a relative to the equivalence relation - on A , 
such that x ---- x' iff, for all i in I, x' e A~ iff x e A~. It is nonempty.) 

Since ~ is a decomposition of s, we have 

s(a) = U{B,[i e I, a e A,} (2) 

and this set is also nonempty whenever a belongs to s -  t(B), because in such a case, 
s(a) is a nonempty union of nonempty sets. We have 

s = U{~(a) x s(a)[a e s-l(B)}. 

Hence, the indexed set 

det(.~)-'= {(~(a), s(a))la e s-X(B)} 

is a decomposition of s. We now establish that this decomposition is deterministic. 
Any two sets of the form ~(a) are equal or disjoint since they are equivalence classes 
of = .  I fa  = a', i.e., if~(a) and ~(a') are not disjoint, then s(a) = s(a') by equality (2) 
and the definition of = .  This proves that det(~) is deterministic. We call it the 
determinization of ~ .  It is worth noting that the equivalence = is finer than ~~, 
hence that det(~)  >> min(s). 

The codeterminization of ~ ,  denoted by eodet(~), is defined symmetrically, by 
exchanging the roles of A and B, i.e., by letting: 

eodet(~) := (de t (~-  1))- 1. 

Note that det(~) is finite if ~ is finite, and, more precisely, that card(det(~)) < 
2" if m = card(~). 

Figure 2 shows det(~) where ~ is the decomposition of the relation r shown in 
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Figure 1. Figure 3 shows red(det(~)), that is, by Proposition 1.5(1), the canonical 
decomposition rain(r). Figure 4 shows the codeterminization of the decomposition 
det(~), shown in Figure 2. 

Proposition 1.7. 

(1) Let  ~ be a decomposition of  a relation s. We have 

min(s) = red(det(~)). 

(2) If, furthermore, ~ is codeterministic, then det(~) is reduced and det(~) = 
rain(s). 

Proof. (1) follows from the first part of Proposition 1.5. 
(2) Let a, a' be such that s(a) = s(a'), which means 

U(B,[a  ~ A i, i t  I} = U{B,  Ia' ~ Ai, i ~ I}. (3) 

Since ~ is codeterministic, if B i n  Bj is not empty, then Bi = B i, and Ai = Aj. It 
follows from (3) that a e A~ iff a' ~ A i, for every i in I, Hence, ~(a) = ~(a'). This 
proves that det(~) is reduced. [] 

The following corollary is immediate: 

Corollary 1.8. For every decomposition ~ of  a relation s, we have 

min(s) = det(codet(~)). 

The following fact is an easy consequence of the definitions. We state it for 
further reference. 

Fact 1.9. 

(1) Let  ~ be a decomposition of  a relation s that is both deterministic and 
codeterministic. I t  is reduced, coreduced, minimal, and cominimal. I t  is unique 
with these properties. 

(2) The relation s has such a decomposition iff whenever three pairs (a, b), (a, b'), 
and (a', b) belong to s, then (a', b') also belongs to s. 

Proof. (1) is clear from the definitions and the previous remarks. 
(2) Let s have a decomposition ~ that is both deterministic and codeterminis- 

tic. Let (a, b), (a, b'), and (a', b) belong to s. There is a unique rectangle C x D of 
such that a belongs to C and b belongs to D. We also have a' in C and b' in D. 
Hence, (a', b) belongs to C × D, hence to s. 

Conversely, let s satisfy the closure condition of Fact 1.9(2). For every (a, b) in 
s, let s(a, b) = {(a', b')l(a', b) and (a, b') belong to s}. This set is a rectangle included 
in s, and the set of all such rectangles forms a deterministic and codeterministic 
decomposition of s. [] 
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We finally mention a third type of canonical decomposition that works for 
arbitrary relations. Any relation s can be written as follows: 

s = U{la]s x [b]s-,l(a, b)~s}. 

The corresponding decomposition is larger with respect to ~ than both min(s) 
and comin(s). It is in general neither deterministic nor codeterministic. It is finite iff 
s is finitely decomposable. 

Figure 5 shows it in the case of the relation r of Figure 1. Its rectangles are the 
nonempty intersections of the rectangles of Figures 3 and 4. 

The reader wishing to see some applications immediately can look at Section 3, 
where the determinization and the minimization of finite-state automata are 
considered in this framework. In the next section we apply these definitions and 
results to recognizable sets in arbitrary algebraic structures. 

2. Recognizability in Algebraic Structures 

We apply the results of the preceding section and obtain a new characterization of 
recognizability in arbitrary algebraic structures. 
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Notation 2.1. Let A be a set and let B be a set of mappings from A into itself. With 
every subset L of A we associate a relation st. -~ A × B defined by 

(a, b) ~ st. iff b(a) e L. 

We apply the constructions of the preceding section to the relation SL. We use 
the following notations: 

-~ ~,. is denoted by ,~ L, 
" s ~ '  is denoted by ~L,  

SO that 

a ,-. L a' iff, Vb ~ B, b(a) ~ L ~ b(a') ~ L,  

b ~ L b' iff, 'Ca ~ A,  b(a) ~ L.¢~ b' (a) ~ L. 

Definition 2.2 (Many-Sorted Algebras). Let S be a finite set called the set of sorts. 

An S-signature is a finite set F of function symbols, such that each symbol is given 
with a profile. The profile of a symbol f in F is a sequence of the form 
s~ x . . .  x s k , s, where s 1 . . . . .  Sk, and s belong to S. (The sequence sl . . . . .  sk is 
called the arity of f ,  and s is called its sort.) 

We use terms written with symbols from F and variables. Each variable will 
have a fixed sort in S. Clearly, terms will have to be well-formed with respect to 
sorts in a classical way. 

An F-algebra  is an object A = ((As)s~ s, ( f a ) s~> .  Each A s is the domain of sort 
s of A, and each fA is a mapping: As, x -.. x Ask ~ As where s 1 x ...  x 
s k , s is the profile of f .  

For  sake of convenience, we assume that the domains of an algebra are 
pairwise disjoint. The union of the domains of A is denoted by A. 

A congruence on A as above in an equivalence relation ~ on A such that any 
two equivalent objects are of the same sort (i.e., belong to the same domain As), and 
that is stable under the operations of A in a well-known way. We denote by ~ s  the 
restriction of the relation ~ to the domain A s. We say that ~ is f i n i t e  if it has 
finitely many classes. It saturates  a subset L of A s if this set is a union of equivalence 
classes. 

Let t be a finite term, constructed with the symbols of F, with finitely many 
elements of the domains of A, and one variable x, of sort s, having a unique 
occurrence in t. Let r be the sort of t, i.e., by definition, the sort of its first ( topmost) 
symbol. Then t defines in a classical way a mapping A s , A,. Such a mapping 
is called a linear unary  derived operat ion of A, or more simply a linear operation.  We 
denote by Lin(A) the set of linear operations of A. The identity mapping  on each 
domain A s is in Lin(A) (it is defined by the term reduced to the variable x of sort s). 
Sort compatible compositions of mappings in Lin(A) are also in Lin(A). 

Let us recall from [MW-J, and from [ C I !  for the many-sorted case, that  a set 
L ~_ A s is said to be A-recognizable  if there exist a finite F-algebra B, a homo- 
morphism h: A ~ B, and a subset C of B~, such that L - h- l (C) ,  or equivalently 
that L is a union of classes of a finite congruence. 
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Our aim is to characterize recognizability in terms of finite decomposabi- 
lity. We do that for one-sorted algebras. We have introduced many-sorted algebras 
because we embed one-sorted algebras into two-sorted ones. Our construction 
actually extends in a straightforward manner to many-sorted algebras. 

We let A be an F-algebra, where F is a signature with a single sort. Its domain 
is denoted by A. For every subset L of A, we let SL be the relation ___ A x Lin(A) 
associated with L by Notation 2.1, namely, 

(a, b) ~ s L iff b(a) ~ L. 

The following lemma is well known in the case where A is a free monoid [E]. 
Its proof in the general case is essentially the same (see FC2] or Theorem 7.1, p. 94, 
of rGS'I) and is anyway easy to establish. 

Lemma 2.3. Let L c_ A. Then " L is a congruence relation on A that saturates L. 
This congruence is finite iff L is A-recognizable. 

Definition 2.4. We extend A into an algebra LIN(A) with two sorts, the sort ob of 
objects, that is nothing but the unique sort of A, and the sort In of linear operations. 

The signature LIN(F) of LIN(A) consists of F augmented with the symbols o, 
app, id, and F.f, i] for all f in F and i in I~ such that 1 <_ i <_ p ( f ) .  (We denote by 
p ( f )  the number of arguments of f ;  all of them are of sort ob.) We now define the 
profiles of these symbols, and the operations they denote in LIN(A). We let 

LIN(A) ,= (A, Lin(A), ( f A ) f e F ,  app, o, id, (l 'f ,  i ] L I N ( A ) ) f e F ,  l<i<p(f)>' where 

A is the domain of sort ob, 
Lin(A) is the domain of sort ln, 
app denotes the application of an argument to a linear operation; its profile is 

In x ob , ob, and it is defined by app(b, a) = b(a), 
o denotes the composition of linear operations, its profile is In x In , In, 
id is a constant of type In, denoting the identity operation, 
[ f  , I]LIN(A ) is defined for f ~ F, 1 < i < p ( f ) ,  its profile is ob p(f) - t ~ In, 

and 
[ f ,  i]uma~(al, a2 . . . . .  apty~-l) is the linear operation 2 x . f a ( a t  . . . . .  x . . . . .  

aptly_ 1), with one occurrence of x at the ith position. 

Proposit ion 2,5. A subset L o f  A is A-recognizable iff it is LIN(A)-recognizable.  

Proof. The "if" direction is obvious because A is a "par t"  of LIN(A). 
"Only if." Let L be A-recognizable. Let ~L be the equivalence relation on 

Lin(A) defined as follows: 

b ~--L b' iff, for all c in Lin(A), 
for all a in A, 
c(b(a)) ~ L iff c(b'(a)) ~ L. 

It is easy to verify that the pair ( ~ L ,  " L )  forms a congruence on LIN(A). 
Note that --L c ~ L. (This inclusion is strict in general.) 
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We know that " L  has finitely many classes (because L is A-recognizable and 
by Lemma 2.3). It follows from Proposition 1.3 that ~r. has finitely many classes. 
We need only prove that the same holds for - i , .  Let us consider b in Lin(A) and 
a, a' in A, such that a ~~. a'. Then b(a) ,~ Lb(a'). Hence b defines a unique mapping 
/~ of A~ ,~ t, into itself. It is easy to see that b ~- Lb' iff b = b'. Hence - z is of finite 
index since A~ ~ z  is a finite set. 

It follows that L is LIN(A)-recognizable. [] 

Theorem 2.6. 
are equivalent: 

6) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 

Let A be a one-sort algebra and let L ~_ A. The following conditions 

L is A-recognizable, 
L is LIN(A)-recognizable,  
the equivalence ~ L is finite, 
the equivalence ~- r. is finite, 
the equivalence "~ L is finite, 
the relation SL ~-- A × Lin(A) is f ini tely decomposable. 

Proof  ( i ) ,~  (ii) is Proposition 2.5. 
( i )~( i i i )  is Lemma 2.3. 
(iii) ,~  (v) ~- (vi) is Proposition 1.3. 
(i) =- (iv) by the proof of Proposition 2.5. 
(iv) =- (v) because ~- L =- ~ L (whence the index of ~ ~, is at most that of = z)- 

[]  

The equivalence of (i) and (iv) is proved in [NP]  and that of (i) and (v) is 
proved in [P] in the case where A is an initial algebra, namely, the algebra of finite 
binary trees. 

3. Applications to Automata on Finite and Infinite Words 

We now apply the definitions and results of the previous sections to finite-state 
automata on finite words, and to finite-state languages of infinite words. 

Definition 3.1. Let X be a finite alphabet. For  every language L ___ X*, we let 
s L.'= {(u, v)lu, v ~ X*,  uv ~ L} ~_ X *  x X*.  

An automaton is a 5-tuple d = ( X ,  Q, 6, QI, Qv)  consisting of an input 
alphabet X, a possibly infinite set of states Q, a transition relation 6, a set of initial 
states QI, and a set of final states QF- The transition relation is any subset of 
Q x x x Q. Such an automaton may be nondeterministic, but has no 8-transition. 

For  every state q in Q, we let L(~¢, - ,  q) be the set of words u in X* for which 
there is a computation from an initial state to q, and we let L ( d ,  q ~ ) be the set of 
words for which there is a computation from q to a final state. All automata are 
assumed to be trim, i.e., to be such that the languages L(~¢, ~ q) and L(~¢, q --* ) 
are all nonempty. The language L(~¢) defined by ~¢ is U{L(a¢, ~ q)[q ~ Qr} and is 
also equal to U { L ( d ,  q ~ )lq ~ QI}- 
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The indexed set D(Of):= {(L(Of, ~ q), L(Of, q ~ ))[q e Q} is thus a decompo- 
sition of the relation s, .  

Not every decomposition of the relation st. is of the form D(Of) for some 
automaton of defining L, even if it is finite. We can state the following characteriza- 
tion. 

Proposition 3.2. Let L c_X* and ~ be a decomposition {(Ai, B~) l ieJ  } of the 
relation s~. 

(1) There exists an automaton off such that D(Of)= ~ /ff the following 
conditions hold for all u e X*,  x e X,  and i e J: 

(i) I f  ux e A s, then there exists j e J such that u e A j, Aix  ~_ Ai, and 
xB~ c_ Bj. 

(ii) I f  xu e Bz, then there exists j e J such that u e B j, xBj  c_ Bi, and 
A~x c_ Aj. 

(2) I f  ~ is deterministic, then conditions (i) and (ii) can be replaced by: 
(iii) l f  ux e Ai, then u e Aj and Ajx c_ Aifor some j e J. 

(3) The minimal decomposition min(sr) satisfies these conditions. 

Proof. We only indicate the main steps. 
(1) The decomposition associated with an automaton satisfies conditions (i) 

and (ii). Let us conversely consider ~ satisfying them. We define of  = 
(X, Q, ~, Q~, QF) by letting Q ,= J, QI "= {i1~ e A,}, Q~ := {i[~ e Bi}, and ~ be the set 
of triples (i, x , j )  such that A~x ~_ Ai and xB i c_ By We then prove by induction on 
the length of a word w that 

weA~ iff w~L(of ,  ~ i )  
and 

w E B  i iff w e L(Of, i--*). 

(2) If a decompostion is deterministic and fulfills (iii), then it also fulfills (i) and 
(ii). 

(3) Easy to verify. []  

If two automata are isomorphic, then their associated decompositions are equal, 
but the converse is not true. Let of  be the automaton of Figure 6. Let of '  be the one 
obtained from of  by the deletion of one transition labeled by b. Its states are the 
same as those of d .  For every state q, we have 

L(Of, ~ q) = L(Of', --~ q) and L(Of, q --, ) = L(Of', q ~ ). (4) 

It follows that the decompositions associated with of  and of '  are the same 
although these automata are not isomorphic. Note that these decompositions are 
the same in a stronger sense than that of Definition 1.1: by (4), not only are the 
rectangles the same, but their indices also are. Hence, choosing the "strong 
equality" of decompositions (where two decompositions are equal iffthey are equal 
as multisets of rectangles) would not yield a one-to-one mapping from automata to 
decompositions. 
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Fig. 6 

An automaton d as in Definition 3.1 is deterministic if it has only one initial 
state, and if, for every q ~ Q and a ~ X, there is at most one transition (q, a, q') in 6. 
It is reduced if, for every q, q' in Q, L ( d , q ~ ) #  L ( d , q ' ~ )  if q ~ q'. An 
automaton is minimal if it is both deterministic and reduced. (This terminology is 
borrowed from [E].) 

Fact 3.3. An automaton d is deterministic iff L ( d ,  --, q) t~ L(~/, --, q') is empty 
whenever q ~ q'. In this case, the decomposition D ( ~ )  is deterministic, and it is 
reduced iff ~/ is minimal. 

The proof of this fact is a straightforward verification. The converse of the 
second implication does not hold. If d is a deterministic automaton, and 
consists of two disjoint copies of d ,  then D(~)  = D ( d ) ,  hence is a deterministic 
decomposition, although ,~ is not deterministic (it has two initial states). However, 
we have: 

Fact 3.4. 

(1) Two deterministic automata ~ and d '  are isomorphic/ f fD(d)  = D(~ ' ) .  
(2) Any two minimal automata defining the same language are isomorphic. 

Proof (1) Let Q and Q' be the sets of states of the two automata. If the associated 
decompositions are the same, the relation L ( d ,  ~ q ) =  L ( d ' ,  -~ q') defines a 
bijection of Q onto Q' and, moreover, an isomorphism of the automata. (Easy to 
verify.) 

(2) If two minimal automata define the same language L, the associated 
decompositions are two minimal decompositions of the relation s,.  Hence, they are 
equal. Since the automata are deterministic, they are isomorphic by (I). []  
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For every automaton ~' ,  we denote by rev(d)  the automaton obtained by 
reversing the arrows (in the oriented graph representing ~¢) and exchanging the 
sets Ql and QF. It is clear that L(rev(~/)) = rev(L(M)) where rev(u) denotes the 
mirror image of a word u, and roy(L) denotes the set of mirror images of the words 
of a language L. It is clear that 

D(rev(~¢)) = {(rev(B), rev(A))t(A, B) e D(~¢)}. 

This immediately yields the following fact: 

Fact 3.5. For every automaton d ,  the decomposition D ( d )  is codeterministic if 
rev(d)  is deterministic. 

We now reformulate in the present framework some classical transformations 
of automata. Given an automaton d = (X,  Q, t~, Q~, QF), the associated determin- 
istic (trim) automaton det(M) is constructed as follows: 

de t (d )  := (X,  Q', 6', {Q,}, Q~), 

where 

Q':= {A(u)lu ~ X*, A(u) ~ ~}, 

where, for every word u, 

A(u)..= {qlu e L(~/, ~ q)}. 

(Since ~ is trim, A(u) is not empty iff u is a prefix of some word in L(~/).) 

Q~ := {p e Q'Ip~QF # ~ } ,  
(p,x ,p ' )~6'  iff p ,p ' sQ '  and p '={q ' sQ l (q , x , q ' ) e6 ,  qsp} .  

Fact 3.6. For every automaton d ,  

D(det(~¢)) = det(D(~¢)). 

Proof. Let z¢ and de t (d )  be as above. Since de t (d )  is deterministic and, by Fact 
3.3, we have, for every p ~ Q', 

L(det(~¢), -~ p) = {u ~ X*lp = A(u)}. (5) 

Let p be given as A(w) for some w. We easily verify that the right-hand side of 
equality (5) can be written as follows: 

(N{L(~ 1, ~ q)lq ~ p}) - ( U ( L ( d ,  ~ q)lq q~ P}), 

hence, is equal to c~(w), where ~ is defined as in Definition 1.6 relatively to the 
decomposition D(M). 

We also obtain, if p = A(w), 

L(aet(~¢), p --, ) = U { L ( d ,  q - ,  )lq ~ P} 

= sLc~o(w) (6) 
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(see Definition 1.6). It follows from (5), (6), and Definition 1.6 that D(de t (d ) )  = 
det(D(d)) ,  since D(~¢) is defined as the following decomposition of sL~): 

D ( d )  = {(L(,.~¢, --+ q), L(z~/, q --+ ))[q ~ O}. []  

Given a deterministic automaton d of the general form of Definition 3.1, the 
associated reduced automaton, also called its minimal automaton, is 

min(~¢) .'= (X ,  Q", ~5", {ql}, OF"), 

where 

Q" "= {qlq e Q}, 

and, for every q in Q, 

4 ..= {q'~ 0 1 L ( d ,  q' --, ) = L ( d ,  q ~ )}. 

The initial state o f m i n ( d )  is ql where q~ is the (unique) initial state o f d .  Its set 
of final states is 

Q~" '= {qlq e QF} 

and 

6" ,= {(4, x, q')l(q, x, q') e 6}. 

It is clear that, for every p ~ Q", L(min(d) ,  p --* ) = L(~¢, q ---, ) for all q E p, and 
that L(min(d) ,  ~ p) = U { L ( d ,  ~ q)[q ~ p}. From this observation, and Defini- 
tion 1.4, we immediately have the following fact: 

Fact 3.7. For every deterministic automaton ~¢, we have 

D(min(d))  = red(D(~¢)). 

Proposition 3.8. Let L be the language defined by an automaton d .  

(I) The automaton min(det(d))  is the unique deterministic automaton ~ such 
that D(~)  = min(sL). 

(2) We have min(det(d))  = det(rev(det(rev(d)))). 

Proof (1) That D(min(det(d)))  = min(sz) follows from Facts 3.6 and 3.7. The 
unicity follows from Fact 3.4. 

(2) The automaton rev(z¢) defines rev(L). So does the deterministic 
automaton det(rev(d)). Hence, rev(det(rev(d))) defines L, and its associated 
decomposition is codeterministic by Fact 3.5. It follows from Proposition 1.7(2) 
that det(D(rev(det(rev(~¢))))) is reduced. This decomposition of s L is equal to 
D(det(rev(det(rcv(~¢))))) by Fact 3.6. Since it is reduced, the deterministic automa- 
ton det(rev(det(rev(d))) is reduced, by Fact 3.3. This automaton defines L, it is 
deterministic and reduced, hence it is equal to min(det(~¢)), by the first part. [] 
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The second assertion of this proposition is known from l-B]. We think that its 
best explanation is the "geometrical fact" stated as Corollary 1.8. 

A few words now on regular languages, defined by automata with finitely 
many states. 

Proposition 3.9. A language L ~_ X*  is regular iff the relation s L is f initely 
decomposable. 

Proof. If L is regular, then the decomposition associated with a finite automaton 
defining it is finite. Conversely, if SL is finitely decomposable, then a finite 
automaton defining L can be constructed from the finite decomposition min(sL) by 
Proposition 3.2. [] 

We now consider what can be obtained from the algebraic framework of 
Section 2. We let A be the algebra (X*, (~)x~x, ~) where e is a constant denoting 
the empty word, and ~ is the mapping u ~-, ux (for u a X*, x ~ X). From Theorem 
2.6 we get that L _  X* is A-recognizable (i.e., regular) iff any of the three 
equivalence relations ,-, L, ~ L, and ~--L has a finite index. These equivalences are 
the following classical ones: 

U"LU' "=" V w ~ X * ' [ u w ~ L ~ u ' w ~ L ] ,  

U,~,LU' ~ V v ~ X * . [ v u ~ L ~ v u '  e L ] ,  

U " L U '  ¢~ Vv, w ~ X * . [ v u w ~ L c ~ v u ' w ~ L ] .  

The first one is the canonical right-invariant equivalence (its finiteness 
characterizes regularity by Nerode's well-known result IN]), the second one is the 
"dual"  of the first (with respect to rev as a duality mapping), and the last one is the 
syntactic congruence of L. We refer the reader to [El or to [RS] for more details. 

We conclude this section by giving some applications to og-languages. 

Definition 3.10. For every set of to-words L _ X ~', we let 

SL.'= {(U, v)Iu ~ X*,  v ~ X °', uv ~ L}. 

An to-language (i.e., a set of co-words) L isfinite-state, as defined by Trakhten- 
brot IT], if the set {SL(U)IU ~ X*} is finite. The reoular to-languages, defined by 
finite-state automata in the sense of McNaughton, Biichi, and Muller, are finite- 
state. There are uncountably many finite-state in-languages, hence, some of them 
are not regular. (See IS] for the proofs of these facts.) 

Let B be the algebra (X ~', (~)x~x), where ~ is the mapping ofX ~' into itself such 
that ~(u) = xu for every ~o-word u. (This algebra is not finitely generated i fX has at 
least two symbols). We say that an to-language is recoonizable iff it is recognizable 
with respect to B. 

Proposition 3.11. For every og-lanouage L ~_ X °', the followin 9 conditions are 
equivalent: 

(i) L is finite-state, 
(ii) L is recoonizable, 
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(iii) the equivalence relation ,~ on X *  such that 

u ~ u' i f f  uw E L ~ u'w ~ L f o r  every to-word w. 
has a f ini te  index, 

(iv) the congruence ..~ on B such that 

w ... w' i f f  uw ~ L ¢~ uw' ~ L fo r  every word u, 
has a f ini te  index, 

(v) the congruence " on X *  such that 

v ~-- v' i f f  uvw ~ L ~ uv'w ~ L for  every word u and 
every to-word w, has a f ini te  index. 

Proo f  (i) ¢~- (iii) ¢~ (iv) by Proposition 1.3. 
(ii)¢~(iv) by Lemma 2.3. 
(iv) ¢~ (v) by (iv) ~ (v) of Theorem 2.6. [] 

Note that - is a congruence on words that extends, in a natural way, the 
syntactical congruence classically associated with a language. See [A] for a 
refinement of "-, the finiteness of which characterizes the regularity of an 
to-language. 

Note also that, in a pair (u, v) as in Definition 3.10, the component  v is an 
element of the domain of the relevant algebra, namely B, while u corresponds to an 
element of Lin(B). 

4. Applications to Tree Automata 

We first review the determinization and the minimization of finite-state frontier-to- 
root (bot tom-up) tree automata.  These constructions are well known (see [GS])  
and are actually very close to those of Section 3. We then consider certain root-to- 
frontier tree automata  and we reformulate several determinization and minimiza- 
tion results originally presented in [P].  

Definition 4.1. We let F be a finite one-sorted signature consisting of a set F 2 of 
binary symbols and a set F o of nullary symbols. We denote by M(F) the initial 
F-algebra. A tree is an element of the domain of M(F), that we also denote by 
M(F). A fores t  (or a tree language) is a set of trees. It follows from this definition 
that a tree is either a symbol of Fo or an expression of the form f ( t l ,  t 2 )  , where f is 
a symbol in F 2 and t 1 and t2 are trees. 

Trees can also be represented by labeled directed graphs in a well-known way. 
We thus refer to the set of nodes N(t) of a tree t. One of the nodes of a tree is its root. 
The nodes labeled by symbols from F 0 are the leaves. Any other node has a label 
belonging to F 2 and an ordered pair of successors belonging to N(t) x N(t). The 
set of leaves of a tree is called its frontier.  

A tree automaton is a tuple ~¢ = (F ,  Q, 6, Q~) consisting of a finite signature F 
as above, a set of states Q, a set of root states QR ~- Q, and a transition relation 

-(Fo x Q) u(Q x Q x F~ x Q). 
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If t is a tree in M(F), a run of d on t is a mapping r: N(t) --* Q satisfying the 
following conditions, for every node v of t: 

(i) ifv is labeled by some symbol a from Fo, then (a, r(v)) ~ 6 (in this case v is a 
leaf of t); 

(ii) if v is labeled by some symbol f from F 2, then it has a pair of successors 
(v I, v2) and we require that the 4-tuple (r(vl), r(v2), f ,  r(v)) belongs to 6. 

We denote by T(~¢, q) (or by T(q) if the context makes d clear) the set of trees 
t on which d has a run r such that r(root(t)) = q. We denote by T(~¢) the forest 
recognized by ,~¢, and defined as U {T(q) lq e QR}. 

It is well known that a forest T is M(F)°recognizable (in the sense of Section 2) 
iff it is recognized by afinite tree automaton, i.e., by a tree automaton with finitely 
many states. (See I'GS], [C1], [NP] ,  and [P].) 

The set Lin(M(F)) is in one-to-one correspondence with the set of trees in 
M(F  u {x}) having one and only one occurrence of the variable x. These special 
trees are called contexts. (They are called pointed trees in [NP].) Theorem 2.6 yields 
a characterization of recognizable sets of trees, some parts of which can be found in 
[NP]  and in [P].  

The set of contexts relative to F is denoted by Ctxt(F). We denote by c[t] the 
tree obtained by substituting the tree t for the variable x in the context c. Note that 
x is a context, called the identity context (since x[t] = t). Since contexts are trees 
over a larger set of symbols, we can refer to them with the terminology that we 
already use for trees. 

By a q-run r of ~¢ on a context c, we mean a mapping r: N(c) ~ Q satisfying 
conditions (i) and (ii) above, together with the following two conditions for every v 
in N(c): 

(iii) if v is labeled by x, then r(v) = q, 
(iv) r(root(c)) e Q~. 

Note that d has a q-run on the context x iff q ~ Q~. 

We let C ( d ,  q) denote the set of contexts on which d has a q-run. (This set is 
denoted by C(q) if ~¢ is clear from the context.) Let us observe that 

C(q) ~ {c ~ Ctxt(F) lc[t] ~ T(d)} ,  (7) 

for every tree t in T(q), and that if (p, p', f ,  q) ~ 6, c ~ C(q), then 

T(p') G {t e M(F) lc[f(x,  t)] e C(p)}. (8) 

All tree automata are assumed to be trim, i.e., to be such that the sets T(q) and 
C(q) are nonempty for all states q. 

With every forest T c M(F), we associate a relation s r .-= {(t, c)~ M(F) x 
Ctxt(F)lc[t]  ~ T}. With every automaton ~¢, we associate the indexed set of pairs 
of sets: 

D(z~¢) .-= {(T(q), C(q))lq e Q}. 
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Fact 4.2. D ( d )  is a decomposition of the relation sr¢~. 

A characterization of the decompositions of a relation of the form s r that 
correspond to tree automata,  fully analogous to the one of Proposition 3.2, could 
be given. It is quite complicated to write, and we omit it. 

An automaton ~¢ as above is frontier-to-root deterministic (fr-deterministic) if 
there are no two tuples in 6 of the form (a, q) and (a, q'), or of the form (ql, q2, f ,  q) 
and (ql, q2, f ,  q') for any a in F o, f in F2, and ql, q2 in Q, with q ~ q'. If  ~1 is 
if-deterministic, then it has at most one run on every tree t in M(F), and on every 
context c in Ctxt(F), it has at most one q-run for each state q. If, furthermore, z~¢ is 
finite (and given), then its run on t or its q-run on c can be computed deterministi- 
cally from the leaves to the root. (This justifies the terminology.) 

A tree automaton isfr-reduced, if, for every two distinct states q and q', the sets 
C(q) and C(q') are not equal. It isfr-minimal if it is fr-deterministic and fr-reduced. 

Fact 4.3. A tree automaton d is fr-deterministic iff, for any two distinct states q and 
q', the sets T(q) and T(q') are disjoint. I f  this is the case, then the decomposition D ( d )  
is deterministic and, furthermore, d is fr-minimal iff D(zz¢) is reduced. 

Fact 4.4. Two fr-deterministic tree automata sac and ~ '  are isomorphic/ffD(M) = 
D(M'). For every forest T, there exists a unique fr-minimal tree automaton ~ ,  such 
that D ( ~ )  = min(sT). 

Note the similarity with the case of languages in Facts 3.3 and 3.4: here, the 
sets of trees T(q) play the role of the languages L( ~ q), while the sets of contexts 
C(q) play that of the languages L(q ~ ). 

It  is well known that fr-deterministic tree automata  can be determinized and 
minimized (see [GS]). The formal constructions are so similar to the ones for 
(word) au tomata  recalled in Section 3, that we do not give them. In particular, the 
subset construction can be performed on tree automata  and makes it possible to 
transform a tree automaton d into an equivalent fr-deterministic one, denoted by 
fr-det(d) .  Similarly, an fr-deterministic au tomaton ~¢ can be transformed into an 
fr-minimal one, denoted by fr-min(~¢). As in the case of words, we have: 

Fact 4.5. For every tree automaton ~ :  

D(fr-det(~¢)) = det(D(d)) .  

I f  ~ is fr-deterministic, then 

D(fr-min(M)) = red(D(d)) .  

Note that, for every tree automaton M, the decomposition codet(D(~¢)) exists. 
It  does not correspond to any tree automaton in general. Since we do not  have on 
trees any operation analogous to the mirror  image on words (denoted by rev), the 
results of Section 3 involving rev have no counterpart  concerning forests and tree 
automata.  
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Definition 4.6 (Root-to-Frontier Determinism). An automaton ~ as in Defini- 
tion 4.1 is root-to-frontier deterministic (rf-deterministic) if it has one and only one 
root state and if there are no two distinct tuples of the forms 

(qt, q2, f ,  q) and (q~, q~, f ,  q) 

in its transition relation 6. 

It is clear that if ~¢ is if-deterministic, then C(~/, q)r~ C(~¢, q') is empty 
whenever q # q', hence that D ( ~ )  is codeterministic. It is well known that some 
sets of trees, like the finite one {f(a,  a), f (b ,  b)}, cannot be recognized by any rf- 
deterministic automaton. 

We consider alternative less restrictive determinism conditions, ensuring in 
particular, for every automaton, the existence and unicity (up to isomorphism) of 
the minimal automaton recognizing the same forest. 

We say that an automaton d as above is l-deterministic if it has a unique root 
state, and if, for any two distinct tuples (ql, q2, f ,  q) and (q'~, q~, f ,  q) in 6, we have 

~ T ( d ,  qt) ~ T ( d ,  q'l), 
(L) IT(M ' qz) c~ T(M, q2) = ~ .  

By exchanging the roles of(q1, q'1) and (q2, q'2), we get the analogous notion of 
r-determinism. Finally, an automaton is lr-deterministic if it is both l- and r- 
deterministic, that is if it has a unique root state, and if it satisfies the following 
condition, for every two distinct tuples as above: 

~T(,~', qt) c~ T(~¢, q'~) = O,  
(LR) (T(~¢, q2) n T ( d ,  q~) ~ .  

(This condition implies that the decompositions 

{(T(M, p), T(e~¢, p'))[(p, p', f ,  q) ~ 6} 

are deterministic and codeterministic for all f in F2 and q in Q. See the proof  of 
Proposition 4.9 below.) 

Lemma 4.7. 

(1) An automaton d is lr-deterministic iff, for every two distinct states q and q', 
the sets C(q) and C(q') are disjoint. I f  this is the case, then the associated 
decomposition D ( d )  is codeterministic. 

(2) Two lr-deterministic tree automata are isomorphic iff the associated decom- 
positions are equal. 

Proof. (1) Let ~ / b e  such that C(q) c~ C(q') = ~ for every two distinct states q and 
q'. Let us consider two distinct tuples (ql, qz, f , q )  and (q't,q'2, f , q )  in the 
transition relation 6 of~¢. We provethat  T(qt) c~ T(q't) = ~ and T(q2) n T(q[) = ~ .  

Let us assume without loss of generality that qt # q[. Let also c be some 
context in C(q). Then, by formula (8) of Definition 4.1, 

T(q2) c { t ic[ f  (x, t)] ~ C(ql)}, 



Geometrical View of the Determinization and Minimization of Finite-State Automata 139 

and similarily with q~ and q'~. Since C(q~)c~ C(q'~) is empty, we get that 
T(q2) n T(q~) is also empty. We obtain in particular that q2 # q~, hence, by a 
symmetric argument, we obtain that T(q0 and T(q'l) have an empty intersection. 
Hence, we have established conditions (LR). 

If d had two distinct root states q and q', then we would have x ~ C(q) c~ C(q'), 
contradicting the initial assumption on ~¢. Hence, d is lr-deterministic. 

Let us now assume that Jzf is lr-deterministic. We prove that for every context c 
there is at most one q such that c ~ C(q). 

If c = x, then c e C(q) iff q ~ Q~, and we know that QR is singleton. Otherwise, 
c = c ' [ f (x ,  t)] or, symmetrically, c = c '[ f ( t ,  x)]. Let us assume the first. By 
induction, there is at most one state q' such that c' E C(q'). Ifc ~ C(q~) n C(q'~), then 
this means that there are two tuples (q~, q2, f ,  q') and (q'~, q'2, f q') in 5 such that 
t e T(q2) c~ T(q~). By the definition of lr-determinism, we get q~ = q'l. The proof is 
similar in the symmetric case. 

(2) Let ~¢ and ~¢' be two lr-deterministic automata with respective sets of 
states Q and Q' and equal decompositions. The relation C(~¢, q ) =  C(~¢', q') 
(or equivalently C ( d ,  q) n C ( ~  ¢', q') v~ ~ )  defines an isomorphism of the two 
automata. We omit the details. [] 

Definition 4.8 (Minimal lr-Deterministic Automata). We say that an lr-determin- 
istic automaton ~¢ is minimal iff, for every two distinct states q and q', we have 
T(q) ~ T(q'). By Lemma 4.7, this is equivalent to requiring that the decomposition 
D(~¢) is codeterministic and coreduced, hence, equivalently, that it is the (unique) 
cominimal decomposition of sTt~). This shows, by the second part of Lemma 4.7, 
that there exists at most one minimal lr-deterministic automaton recognizing a 
forest. (The unicity should be understood up to isomorphism.) 

Proposition 4.9. I f  ~r4 is an Ir-deterministic automaton, then there exists a minimal 
lr-deterministic automaton ~ recognizing T(d) .  I t  is unique with these properties, 
and D(~)  = eored(D(~¢)). 

Proof  Let ~¢ = (F,  Q, 6, {qR}) be lr-deterministic. Let ~ be the equivalence 
relation on Q such that q ,-, q' iff T(q) = T(q'). We let ~ = (F,  Q~ ~ ,  r l, {[qR]}) 
where Q~ ~ is the quotient set of Q by ~ ,  where [qR] is the equivalence class of qa, 
and where t/is defined as the set of tuples of the form ([ql], [q2], f ,  [q]) or (a, [q]) 
where (ql, q2, f ,  q) or, respectively (a, q), belongs to 5. 

For every q ~ Q and f ~ F 2, vce let 

6 -1( f ,  q) = {(ql, q2)l(ql, q2, f q)6 5}. 

For every subset T of M(F), we let 

f - X ( T )  = {(tl, t2) l f ( tx ,  t2)e Z}. 

We denote by A-~(f ,  q) the decomposition 

A-~(f ,  q) = {(T(qt), T(q2))i(q~, q2)~ 6 - l ( f ,  q)} 

of the relation f -  l(T(q)). 
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Claim 1. l f  q ~ q', if(r, s, f ,  q) belongs to 6, then there is some (r', s', f ,  q') in 6 such 
that r ... r' and s ~ s'. 

Proof  Since q ~ q', we have f - t ( T ( q ) ) =  f - t (T(q ' ) ) .  The decompositions 
A-  l ( f ,  q) and A- ~(f, q') are both deterministic and codeterministic by condition 
(LR). Hence they are equal. (See Fact 1.9.) The rectangle T(r) x T(s) of the former 
is equal to some rectangle T(r') x T(s') of the latter, and (r', s', f ,  q) is the desired 
tuple. []  

Claim 2. T(~ ,  [q]) = T(~¢, q) for  every q ~ Q. 

Proof  Let q~: Q ~ Q~ ~ be the canonical surjection that maps any q to its 
equivalence class [q]. Let t ~ T ( d ,  q) and let r: N(t) ~ Q be a run of ~¢ on t. Then 
q~ o r is a run of ~ on t, and we have t e T(:~, ~0(q)) ( = T(~ ,  [q])). This proves the 
inclusion 2 .  

For  the other, consider t in T(~ ,  [q]) and a run r o f&  on t. By a repeated use of 
Claim 1 and by traversing t from the root to the leaves, we can construct from r a 
run of d on t with root state q. This proves that t ~ T(~¢, q). []  

It follows in particular that T(&) = T(~¢), that & is lr-deterministic, and, in 
addition, that & is minimal lr-deterministic. 

Claim 3. C(&, Iq]) = U { C ( ~ ,  q')lq' "" q} for  every q ~ Q. 

Proof  If q ,-, q', we obtain C ( d ,  q) _q C(&, Iq]) as in the first part of the proof  of 
Claim 2. 

For  proving the other inclusion, namely _q, let us consider c in C(:~, [q]). By 
the construction of the second part of the proof of Claim 2, we can find a run of d 
on c. Hence, c E C ( d ,  q') for some q'. Hence, by the first part, c is in C(:~, [q']). 
Since ~ is lr-deterministic, we have [q'] = [q] by Lemma 4.7, hence, q' ~ q, as was 
to be proved. [ ]  

It follows then from Claims 2 and 3 that D(&) = eored(D[~¢]). []  

Next we characterize the forests defined by lr-deterministic automata. 

Definition 4.10 (Homogeneous forests). For  every T ~ M(F) and every c in 
Ctxt(F), we let 

c -  I(T)--= {tic[t] ~ T}. 

Let us recall that, for f ~ F2, we let f -  I(T) denote 

{(tl, ta) ~ M(F) x M ( F ) t f ( q ,  t2) ~ T}. 

We say that T is homogeneous if, for every c in Ctxt(F) and every f in F2, the 
relation f -  1(c- I(T)) on M(F) has a (possibly infinite) decomposition that is both 
deterministic and codeterministic. As noticed in Fact 1.9, this is equivalent to 
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requiring that, for every tt, tz, t'~, (2 in M(F), if (tt, t2)  , ( t l ,  t~),  and (t], t2) belong to 
f - t ( c - t ( T ) ) ,  then (t't, t~) also belongs to f-X(e-X(T)). In this way we obtain the 
original definition of [P]. 

Proposition 4.11. A forest is homogeneous if it is defined by an Ir-deterministic 
automaton. 

Proof Let L = T(~¢) for some lr-deterministic automaton ~1. Let w = 
f -  1(c- t(L)) for some context c and some f ~ F 2, with w # ~ .  By Lemma 4.7, 
there is a unique state q of ~1 such that c ~ C(~1, q). Hence T(~¢, q) = c-  t(L), and 

w = U{T(~ t, ql) X T(M, q2)[(qt, q2)~ 6-~(f ,  q)}. 

Since M is k-deterministic T ( ~ ,  qi )~  T ( ~ ,  q'i)= ~ ,  for i =  1, 2, where 
(ql, q2) and (q],q~) are distinct pairs in 6-1( f ,  q). It follows that 
{(T(M, ql), T(z~', q2))](qx, q2) ~ 6 -x( f ,  q)} is a deterministic and codeterministic 
decomposition of w. Hence L is homogeneous. [] 

Our next proposition yields the converse of the previous one. 

Proposition 4.12. Let ~ be an automaton defining a homogeneous forest L. There 
exists a minimal lr-deterministic automaton ~ that defines L and is such that 
D(~)  = codet(det(D(d))). 

Proof Let a,¢ = (F, Q, 6, Qa) be an automaton defining a homogeneous forest L. 
For every context c in Ctxt(F), the forest c - t (L)  is homogeneous. We let 

Q(c) := {q ~ QIT(M, q) c c-t(L)}. 

It is not hard to verify that c- l (L)  = T ( d ,  Q(c)), where, for every a _q Q, we let 
T(~t, ~) denote U{T(d ,  q)[q ~ ~}. 

We now let ~ = (F,Q',6' ,  {Q(x)}) where Q'= {Q(c)]c-l(L) # ~} .  The 
unique root state of ~ is Q(x), associated with the identity context x. We have 
QR ~-- Q(x) but the inclusion may be strict. 

We define c$' as the set of tuples of the following two possible forms: 

(i) (a, ?) where a ~ T ( d ,  ?), 7 ~ Q'- 
(ii) (a, t ,  f ,  ?) where we have 

--- {q ~ Q l f ( T ( d ,  q), s2) - T(M, y)}, 
fl = {q E Qtf(s t ,  T ( d ,  q)) _~ T ( d ,  y)}, 
st, s2 ~ M(F), f ( s l ,  s2) ~ T ( d ,  ?), and 7 ~ Q'- 

(We say that this 4-tuple is associated with the pair (st, s2).) 
In case (ii) we must prove that a and fl belong to Q'. It is actually easy to verify 

that a = Q(c'), where c' is the context c[ f (x ,  s,)]. Since f ( s l ,  s2) ~ T(M, 7), ct # ~ ,  
hence a ~ Q'. Similarly, fl ~ Q'. It follows that sl ~ T(~¢, ct) and that s2 e T(M, fl). 

Claim. For every a ~ Q', we have T(~,  a) = T ( d ,  a). 
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Proof. We prove by induction on the structure of t that, for every t in M(F), 

t ~ T ( ~ , ~ )  ~ .  tET(~ ' ,~ ) .  

The ease where t = a ~ Fo follows immediately from the definition of 6'. Otherwise, 
let t = f ( t  1, t2). 

Let us assume that t ~ T(~¢, ~). A tuple in 6' of the form (/~, ~, f ,  ~) with 
t~ ~ T(~¢,/~), t~ ~ T(~¢, ~), can be associated with (t:, t2) by case (ii) of the defini- 
tion of 6'. By induction we have t~ ~T(~, /~)  and t2~T(~ ,y ) ,  hence, t = 
f(t~, tz) ~ T(~,  ~). 

Conversely, let us assume that t - - f ( t ~ , t z ) ~ T ( ~ , ~  ). We have a tuple 
(fl, ~, f ,  ~) such that t~ ~ T(~, ~), t2 ~ T(~,  ~,), associated by (ii) with a pair (sl, sz). 
Hence, we have t~ e T(~¢,/~) and t~ e T(~¢, y) by the induction hypothesis. We also 
have 

f(s~, s~) ~ T(~¢, ~), 
f(T(~¢,/~), sz) ~- T(~¢, ~), whence f ( tx ,  s~) ~ T(~',  ~), 
f(s~, T(z¢, ~)) __q T(~¢, ~), whence f(s~, t~) ~ T(z¢, ~). 

Since T(~¢, 00 is homogeneous, we have f(t~, tz) ~ T(~¢, ~) as was to be proved. 
[] 

It follows from the claim that T(&) = T(~¢, Q(x)) = L. We now prove that 
is k-deterministic. Note first that & has a single root state. Let (p, ~,, f ,  ~) and 
(fl', y', f ,  ~) be two tuples in 6' associated with pairs (st, s2) and (s~, s~). Let t belong 
to T(&, fl) n T(:~, p'), assumed to be nonempty. 

We have 

= {q ~ Q l f ( s  1, T ( d ,  q)) __ T(z¢, ~t)}. 

Since f ( s l ,  s~) and f ( t ,  s2) belong to T ( ~ ,  ~), we also have, since T ( d ,  ~t) is 
homogeneous, 

f ( s l ,  T(z¢, q)) G T(z¢, ct) iff f ( t ,  T(~¢, q)) G T(M, ~t), 

hence, 

y = {q E Q l f ( t ,  T(~¢, q)) _~ T ( d ,  ~t)}. 

The same argument applies to ~', hence, ~' = y. 
By using some t' in T(~,  ~,), which is equal to T(~,  7'), we get by a similar 

argument that/~ = ft. Hence, ~1 is lr-deterministic. 
Finally, we show that & is minimal. Let us consider T(~,  ~) with ~t = Q(c) for 

some c. Every state q, such that T(M, q) _= T(~,  ~), belongs to ~ (because, then, c[t] 
belongs to L for every t in T(~¢, q), whence q e Q ( c ) =  ~t). Hence, if T(:~, ct)= 
T(&, ~)  we obtain by the claim and this remark that ct = Q(c) = ~t'. 

It follows that D(~)  is the unique cominimal decomposition of st. Hence, it 
must be equal to codet(flet(D(z¢))) by Corollary 1.8. []  

Proposition 4.12 is also a consequence of Proposition 4.15 given below, 
because it can be proved that if an 1-deterministic automaton recognizes a 
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homogeneous forest, then this automaton is lr-deterministic. See IP] for more 
details. 

Corollary 4.13. A forest is homo#eneous iff it is recognized by an Ir-deterministic 
automaton. It  is homogeneous and recognizable iff it is recognized by a finite Ir- 
deterministic automaton. I f  a forest is given by a finite automaton, then we can decide 
whether it is homogeneous. I f  it is, we can construct its finite minimal lr-deterministic 
automaton. 

Proof. If in Proposition 4.12 the automaton a¢ is finite, then the automaton & is 
finite and can be effectively constructed. If it is lr-deterministic, which can be tested, 
then we can test whether T ( ~ )  = T(~). If the equality does not hold or if ~ is not 
lr-deterministic, then the given forest is not homogeneous. Otherwise it is, and ~ is 
the desired automaton. [] 

Remark 4.14. Let a¢ and ~ be as in Proposition 4.12. By this proposition and 
Proposition 1.7(1), we have 

D(~)  --- cored(eodet(D(d))) (9) 

= eodet(det(D(d))). (10) 

If z¢ is fr-deterministic, then D ( d )  is deterministic and equality (10) reduces to 

D ( ~ )  = eodet(D(~)) .  

We ask the following question: does there exist a general construction by 
which we can obtain from d an automaton ~ such that D(~) = eodet(D(a¢)), 
where a¢ is not necessarily fr-deterministic? This would give, by (9), 

D(~)  = eored(D(~)), 

and a two-step construction of the minimal Ir-deterministic automaton recognizing 
the forest T(~¢), similar to the construction of the minimal automaton recognizing 
a language that consists of a determinization followed by a reduction. 

Equation (10) actually corresponds to the construction of the minimal 
automaton of a language consisting of two determinizations (see Proposition 
3.8(2).) 

Finally, the "one-step construction" that we give in Proposition 4.12 has the 
following counterpart in the case of languages. Let d = (X, Q, 6, Qi, QF) be a 
(nondeterministic) word automaton recognizing L __ X*. For every word u ~ X*, 
we let Q(u).-= {q ~ QluL(d ,  q ---, ) _ L}. We then let ~ = (X, Q', 6', {Q(e)}, Q'F) 
where 

Q' = {Q(u)lu ~ X*, Q(u) ~ ~} ,  
Q~ = {Q(u)lu ~ x*,  QF c~ Q(u) ~ O}, 
(ct, a,[3)~6' iff ~t, f l eQ' ,  a ~ X ,  

and 

[3 = {q ~ QlaL(~ ,  q --* ) c U{L(a¢, q' ~ )[q' ~ ~}}. 
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The verification that ~ is the minimal automaton defining L is nothing but an easy 
adaptation of the proof of Proposition 4.12. 

We now consider the recognition power and the minimization of 1-determinis- 
tic automata. 

Definition 4.6 can be reformulated as follows: an automaton d =  
<F, Q, 6, QR> is 1-deterministic iff QR is a singleton and, for every q e Q and f e F 2, 
the decomposition 

A-  t ( d ,  f ,  q),= {(T(z~¢, qx), T(z~¢, q2))[(ql, q2) ~ 6 -  t ( f ,  q)} 

of the relation f -  I (T(~,  q)) is its unique cominimal decomposition. 
An l-deterministic automaton ~ is minimal iff T(~¢, q) # T(~¢, q') for any two 

distinct states q and q'. This implies that D(z¢) is coreduced. The following 
proposition is fully similar to Proposition 4.9. 

Proposition 4.15. l f  ~ is an l-deterministic automaton, then T ( d )  is reco#nized by a 
unique minimal 1-deterministic automaton ~,  and then D(~)  = eored(D(~)).  

Proof. We first establish that any two minimal 1-deterministic automata, m¢ and 
~¢', defining the same forest L are isomorphic. We let m¢= <F, Q, 6, {qR}> and 
,no' = <F, Q', 6', {q~}>. We let p be the relation ~_ Q x Q' such that (q, q') e p iff 
T(z¢, q) = T(~¢', q'). This relation is a one-to-one partial function since the two 
automata are minimal. We prove that it defines a bijection, Q ---, Q', and, moreover, 
an isomorphism of the two automata. 

We have (qR, q~) e p since T(~¢) = T(~¢'). Let q, q' be two states such that 
q e Q, q' e Q', and (q, q') e p. We have 

T(~¢, q) = T(m¢', q'), 

hence, for every f ~ F2, 

f - I (T(~¢ ,  q)) = f-1(T(~¢' ,  q')) 

from which we get 

A - l ( d ,  f ,  q) = A-'(~1' ,  f ,  q'), 

since, as noted above, they are two cominimal decompositions of a same relation. 
It follows that, for each tuple (ql, q2, f ,  q) in 6, we have a unique tuple 

(q~, q~, f ,  q') in 6' with (q~, q~) e p, (q2, q~) e p. 
For every a in F o, we also have (a, q) e 6 iff (a, q') e 6', since we assume that q 

and q' are related by p. 
It follows that, for every q in Q, if there is a context c, such that c e C(~¢, q), 

then there is a state q' in Q' such that (q, q') e p and c e C(~¢', q'). A similar property 
holds by exchanging the roles of the two automata. Since they are trim, the relation 
p is a bijection of Q onto Q'. We have seen above that it defines a bijection of 6 onto 
6'. 

Hence, there is at most one minimal 1-deterministic automaton recognizing a 
given forest. 
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Let us now assume that a forest L is T ( d )  for some 1-deterministic automaton 
d .  The quotient construction already used in the proof of Proposition 4.9 yields 
the desired automaton &. The remainder of the proof is the same as that of 
Proposition 4.9, and we omit it. [] 

Theorem 4.16. Every forest L is defined by some l-deterministic automaton z¢. I l L  
is recognizable, then ~ '  can be constructed finite. 

Proof. Let L _  M(F) be defined by a (possibly infinite) fr-deterministic (trim) 
automaton ~ = (F, Q, 3, Q~). For f e F 2 and c~ ~ Q, we let 

r ( f ,  ~):= {(q~, q2)lf(T(~, q~), T(~,  q2)) -- T(~,  ~)}, 

where T(&, ~):= U{T(~,  q)iq e ~}. 
We now let d '  be the possibly not trim automaton (F, Q', 6', Q~) where 

Q' ..= ~(Q), 

Q~t := {QR}, 
3' .-= {(a, a))p • a, and (a, p) ~ 6} 

u {(al, a2, f ,  a)[(~l, a2) is a pair belonging to comin(r(f, a))}. 

Let us recall that comin(s) denotes the unique cominimal decomposition of a 
relation s. (See Definition 1.4.) 

Claim 1. T ( d ' ,  ~) = T(~,  ~)for all ~ • Q'. 

From this claim it follows that T ( d ) =  T ( d ' ) =  L where d is the trim 
automaton obtained from d '  by deleting all states ~ such that T ( d ' ,  ~) or C(d ' ,  ~) 
is empty. 

We prove later that d is 1-deterministic. 

Proof of Claim 1. We prove that, for every t in M(F), 

t • T ( d ' , ~ )  ,=- t • T ( ~ , c 0  

by using an induction on the structure of t. 

Basis: t = a • F o. The equivalence follows immediately from the definition of ~¢'. 

Inductive step: t = f ( t l ,  t2). Let t • T ( d ' , o  O. Then we have tl • T ( d ' , ~ l ) ,  
t 2 • T ( d ' ,  ~2) for some (a t, ~2, f ,  ~) in 6'. By the induction hypothesis, we have 
t ie  T(~, qz), q~•~ ,  for i =  1, 2. Since f (T (~ ,  q~), T(~,  q2 ) ) -  T(~,  ~) by the 
definitions o f r '  and of r(f ,  ~), we have t = f ( t  1, t2) • T(~,  ~), as was to be proved. 
The proof is similar in the other direction. [] 

Claim 2. ~ is l-deterministic. 

Proof. By construction, d has a unique root state. We now verify condition (L). 
Let (~1, ~2, f ,  ~) and (~'~, ~ ,  f ,  ~) be distinct tuples in 6', and let us establish that 
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T(~¢, ~2) c~ T(~¢, ~[) ffi O.  Let us assume by contradiction that t e T(~¢, ~2) c~ 
T(~¢, ~[). Since ~ is fr-deterministic, there is a unique q e Q such that t e T(~ ,  q) 
and q • ~z by Claim 1. Similarly, q • ~[, but we get a contradiction since ~2 n ~[ = 

by the definition of 6'. 
In order to complete the proof, we need only prove that T(~¢, ~t) # T(~¢, ~,~). 

By the definition of 6', we have ~i # ~ .  Let q distinguish these two sets, say q 
belongs to ~t and not to ~'~. Let t belong to T(~ ,  q). Since ~ is fr-deterministic, and 
by Claim 1, t cannot belong to T(~¢, ~ ) .  This finishes the proof. []  

This concludes the proof for the case where L is an arbitrary forest. If L is 
recognizable and ~ is a given finite automaton, then the l-automaton ~d is finite 
and can be effectively constructed. [] 
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