Skip to main content
Log in

Extensions of an idea of McNaughton

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Two important measures of the computational complexity of a regular language are the type of finite automaton needed to recognize it and the type of logical expression needed to describe it. Important connections between these measures were studied by Büchi and McNaughton as early as 1960. In this survey we describe the logical formalism used, outline these early results, and describe modern extensions of this work. In particular, we show how the formalism is extended by the use of new quantifiers and atomic predicates to express many of the fundamental classes of boolean circuit complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai, ∑ 11 formulae on finite structures,Ann. Pure Appl. Logic 24 (1983), 1–48.

    Google Scholar 

  2. E. Allender,P-uniform circuit complexity,J. Assoc. Comput. Mach.,36(4) (Oct. 1989), 912–928. Also Technical Report DCS-TR-198 (Aug. 1986), Department of Computer Science, Rutgers University.

    Google Scholar 

  3. D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages inNC 1,J. Comput. System Sci. 38 (1) (Feb. 1989), 150–164.

    Google Scholar 

  4. D. A. M. Barrington, K. Compton, H. Straubing, and D. Thérien, Regular languages inNC 1, Technical Report BCCS-88-02 (Oct. 1988), Boston College. Revised versionJ. Comput. System Sci., to appear.

  5. D. A. M. Barrington and J. Corbett, On the relative complexity of some languages inNC 1,Inform Process. Lett. 32 (1989), 251–256.

    Google Scholar 

  6. D. A. M. Barrington and J. Corbett, A note on some languages in uniformACC 0,Theoret. Comput. Sci., to appear.

  7. D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity withinNC 1,Structure in Complexity Theory: Third Annual Conference (Washington: IEEE Computer Society Press, 1988), 47–59. Revised versionJ. Comput. System Sci., to appear.

  8. D. A. M. Barrington and D. Thérien, Finite monoids and the fine structure ofNC 1,J. Assoc. Comput. Mach. 35 (4) (Oct. 1988), 941–952.

    Google Scholar 

  9. P. W. Beame, S. A. Cook, and H. J. Hoover, Log-depth circuits for division and related problems,SIAM J. Comput. 15 (1986), 994–1003.

    Google Scholar 

  10. J. Boyar, G. Frandsen and C. Sturtivant, An algebraic model for bounding circuit threshold depth, Technical Report 88-005 (April 1988), University of Chicago.

  11. J. R. Büchi, Weak second-order arithmetic and finite automata,Z. Math. Logik Grundlag. Math. 6 (1960), 66–92.

    Google Scholar 

  12. J. R. Büchi, On a decision method in restricted second-order arithmetic,Proc. 1960 Internat. Congress on Logic, Methodology, and Philosophy of Science (Palo Alto, CA: Stanford University Press, 1962), 1–11.

    Google Scholar 

  13. S. R. Buss, The Boolean formula value problem is in ALOGTIME,Proc. 19th ACM Symp. on Theory of Computing (1987), 123–131.

  14. A. K. Chandra, L. J. Stockmeyer, and U. Vishkin, Constant depth reducibility,SIAM J. Comput. 13 (2) (1984), 423–439.

    Google Scholar 

  15. S. A. Cook, A taxonomy of problems with fast parallel algorithms,Inform. and Control 64 (1985), 2–22.

    Google Scholar 

  16. A. Ehrenfeucht, An application of games to the completeness problem for formalized theories,Fund. Math. 49 (2) (1961), 129–141.

    Google Scholar 

  17. S. Eilenberg,Automata, Languages, and Machines, Vol. B (New York: Academic Press, 1976).

    Google Scholar 

  18. R. Fagin, Generalized First-Order Spectra and Polynomial-Time Recognizable Sets,SIAM-AMS Proceedings, Vol. 7 (Providence, RI: American Mathematical Society, 1974), 43–73.

    Google Scholar 

  19. R. Fraïssé, Sur quelques classifications des systèmes de relations, Thesis (1953), Université de Paris. AlsoAlger-Mathématiques 1 (1) (1954), 35–182.

    Google Scholar 

  20. R. Fraïssé, Application des γ-operateurs au calcul logique du premier echelon,Z. Math. Logik Grundlag. Math.,2 (1956), 76–92.

    Google Scholar 

  21. M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomialtime hierarchy,Math. System Theory 17 (1984), 13–27.

    Google Scholar 

  22. Y. Gurevich and H. R. Lewis, A logic for constant depth circuits,Inform. and Control 61 (1984), 65–74.

    Google Scholar 

  23. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation (Reading, Ma: Addison-Wesley, 1979).

    Google Scholar 

  24. N. Immerman, Relational queries computable in polynomial time,Inform. and Control 68 (1986), 86–104.

    Google Scholar 

  25. N. Immerman, Languages that capture complexity classes,SIAM J. Comput. 16 (4) (1987), 760–778.

    Google Scholar 

  26. N. Immerman, Nondeterministic space is closed under complementation,SIAM J. Comput. 17 (5) (1988), 935–938.

    Google Scholar 

  27. N. Immerman, Expressibility and parallel complexity,SIAM J. Comput. 18 (1989), 625–638.

    Google Scholar 

  28. K. B. Krohn, J. Rhodes, and B. Tilson, in M. A. Arbib, ed.,The Algebraic Theory of Machines, Languages, and Semigroups (New York: Academic Press, 1968).

    Google Scholar 

  29. R. E. Ladner, Application of model-theoretic games to discrete linear orders and finite automata,Inform. and Control 33 (1977), 281–303.

    Google Scholar 

  30. G. Lallement,Semigroups and Combinatorial Applications (New York: Wiley, 1979).

    Google Scholar 

  31. P. McKenzie and D. Thérien, Automata theory meets circuit complexity,Proc. 16th ICALP Lecture Notes in Computer Science, Vol. 372 (Berlin: Springer-Verlag, 1989), 589–602.

    Google Scholar 

  32. R. McNaughton, Symbolic logic and automata, Technical Note 60–244 (July 1960), Wright Air Development Division, Wright-Patterson AFB, Ohio.

  33. R. McNaughton, Büchi's sequential calculus, Technical Report 89-8 (1989), Department of Computer Science, Rensselaer Polytechnic Institute.

  34. R. McNaughton, personal communication (1989).

  35. R. McNaughton and S. Papert,Counter-Free Automata (Cambridge, MA: MIT Press, 1971).

    Google Scholar 

  36. A. R. Meyer, A note on star-free events,J. Assoc. Comput. Mach. 16 (1969), 220–225.

    Google Scholar 

  37. B. Molzan, Expressibility and nonuniform complexity classes, preprint (1988), Akademie der Wissenschaften der DDR.

  38. I. Parberry and G. Schnitger, Parallel computation with threshold functions,J. Comput. System Sci. 36 (3) (1988), 278–302.

    Google Scholar 

  39. D. Perrin and J. E. Pin, First-order logic and star-free sets,J. Comput. System Sci. 32 (1986), 393–406.

    Google Scholar 

  40. J. E. Pin,Varieties of Formal Languages (New York: Plenum, 1986).

    Google Scholar 

  41. N. Pippenger, On simultaneous resource bounds (preliminary version),Proc. 20th IEEE Symp. on Foundations of Computer Science (1979), 307–311.

  42. A. A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {&, ⊕},Mat. Zametki 41 (4) (April 1987), 598–607 (in Russian). English translationMath. Notes 41 (4) (Sept. 1987), 333–338.

    Google Scholar 

  43. J. H. Reif, On threshold circuits and polynomial computation,Second Structure in Complexity Theory Conference (1987), 118–123.

  44. J. L. C. Sanz, editor,Opportunities and Constraints of Parallel Computing (New York: Springer-Verlag, 1989).

    Google Scholar 

  45. M. P. Schützenberger, On finite monoids having only trivial subgroups,Inform. and Control 8 (1965), 190–194.

    Google Scholar 

  46. R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity,Proc. 19th ACM STOC Symp. (1987), 77–82.

  47. L. J. Stockmeyer, The polynomial time hierarchy,Theoret. Comput. Sci. 3 (1) (1976), 1–22.

    Google Scholar 

  48. L. Stockmeyer and U. Vishkin, Simulation of parallel random access machines by circuits,SIAM J. Comput. 13 (2) (1984), 409–422.

    Google Scholar 

  49. H. Straubing, D. Thérien, and W. Thomas, Regular languages defined with generalized quantifiers,Proc. 15th ICALP (1988), 561–575.

  50. R. Szelepscényi, The method of forcing for nondeterministic automata,Bull. European Assoc. Theoret. Comput. Sci. 33 (Oct. 1987), 96–99.

    Google Scholar 

  51. W. Thomas, Classifying regular events in symbolic logic,J. Comput. System Sci. 25 (1982), 360–376.

    Google Scholar 

  52. M. Vardi, Complexity of relational query languages,Proc. 14th ACM STOC Symp. (1982), 137–146.

  53. I. Wegener,The Complexity of Boolean Functions (New York: Wiley; Stuttgart: Teubner, 1987).

    Google Scholar 

  54. A. C. Yao, Circuits and local computation,Proc. 21st ACM STOC Symp. (1989), 186–196.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Former name David A. Barrington. Supported by NSF Computer and Computation Theory Grant CCR-8714714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mix Barrington, D.A. Extensions of an idea of McNaughton. Math. Systems Theory 23, 147–164 (1990). https://doi.org/10.1007/BF02090772

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02090772

Keywords

Navigation