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Currently, it is possible to modify (say, hourly) the topology of a data communications 
network by adding or deleting network links and/or by increasing or decreasing bandwidth 
on existing links in response to changing traffic loads and/or projected network conditions. 
The intent of this paper is to study a Markov decision process (MDP) model of the 
dynamic topology problem (DTP), the problem of activating and/or deleting links, as 
a function of the current traffic in the network and of the most recent network topology 
design. We present a decomposition of this model and structural results for the 
decomposition. The decomposition and structural results enhance the tractability of 
procedures for determining optimal link control policies. A numerical example is used 
to illustrate these results. 

1. Introduction 

With the advent  o f  data ne tworking  t echno logy  in the late 1960's  and ear ly  

1970's came a paradigm for their design and construction based entirely on the process 

for  acquir ing t ransmission media.  Original ly  compr i sed  ent i re ly  o f  var ious  vo ice  

grade t e lephone  lines with a m a x i m u m  line speed not  exceed ing  19.2 k i lob i t s / second  
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(kb/s), transmission technology has evolved considerably, through wideband analog 
circuits with a maximum speed of 50 kb/s and into the world of digital circuits of 
speeds ranging from 56 kb/s to 1544 kb/s (T1) and higher. Yet the basic mechanism 
for the acquisition of transmission circuits remains unchanged: Circuits traditionally 
have been leased on a long-term basis, charged monthly, from the various vendors 
(AT&T, MCI, etc.), and there is often a significant time delay in between the time 
a circuit is ordered and the time it is in place. This process continues today along 
with the static design paradigm it engendered (discussed below). 

The technology of digital communications, however, continues to evolve. It is 
becoming increasingly possible (using digital cross-connect technology) for data 
circuits to be acquired on a per-use basis (i.e. in the same way that a person can place 
a call of brief duration, a packet switch can now establish a circuit to another for a 
brief period of time). This possibility has a number of implications for the operation 
and design of data networks. Most notably, if we presume for the moment that data 
networks can adapt their topologies effectively to changing traffic requirements and/or 
network performance (in essence, redesign themselves in near real-time), what currently 
constitutes design may radically change. 

The status quo in data network design is the design of a static network 
topology driven by a fixed (i.e. expected) traffic matrix. The traffic matrix is typically 
constructed using measured or estimated peak traffic rates between node pairs across 
the network (where different node pairs may reach their peak traffic rates at different 
times of the day), so that the final traffic matrix (an input to the design process) 
represents an upper bound on traffic at any one point in time. Yet in the case of a 
network geographically distributed across the United States, one can easily imagine 
that traffic will peak in the East, then the Midwest, then the West, according to 
normal business hours. Depending on the cost trade-offs between temporary and 
permanent (leased) circuits, a dynamic response in the network topology to the 
traffic variations it measures in real time may eliminate the need for a large number 
of the circuits which would have been present in the static design, at least for long 
periods of time. It may also provide circuits not anticipated in the static design due 
to unforeseen traffic requirements. Indeed, with the advent of many distributed 
computing applications, high bandwidth services will increasingly be required, not 
to create economies of scale, but rather to support individual computing requirements 
of relatively short duration. In short, dynamic topologies may produce both significant 
cost and performance gains. 

What constitutes network design in the context of dynamic topologies is at 
best speculation until the mechanisms underlying the topologies and the costs and 
benefits associated with dynamic topologies have been determined. It is clear, however, 
that at least the potential exists for: (i) entirely dynamic topologies, or (ii) dynamic 
augmentation of a skeletal permanent backbone topology, depending on the relative 
prevalence of permanent and temporary circuits and the purpose for which each type 
of circuit is used. 
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This paper is organized as follows. A brief literature review is provided in 
section 2. The MDP model of the DTP is presented in section 3. We present standard 
results for the MDP in section 4, and the numerical implications of those results are 
discussed in section 5. These implications indicate the need to examine special cases 
of the DTP in order to enhance the tractability of the MDP model. Section 6 lists 
assumptions that lead to an MDP decomposition. Structural policy results for the 
decomposition are presented in section 7. Section 8 presents a numerical example 
that illustrates the decomposition and the structured results. Conclusions and future 
work are listed in section 9. 

2. Literature review 

Investigation of approaches to optimizing network topologies in response to 
changes in traffic demands is relatively new. Related modeling and optimization 
work is fairly abundant for self-organizing networks, principally radio networks (see 
Noakes et al. [15] and Shor and Robertazzi [18] for two examples and further 
literature in that area). Some additional related work in modeling and optimization 
of dynamic hierarchical networks is also available (see Moose [12], Nance and 
Moose [14], Moose and Nance [13] for key literature reviews of work by these and 
other authors). To our knowledge, however, the first and, to date, only paper to 
directly address the subject of this paper (i.e. the DTP for packet/router networks) 
is LeBlanc [9], which did so in a static, mathematical programming framework (see 
also related work by LeBlanc and Harder [8] and LeBlanc and Simmons [10]). It is 
instructive to note that LeBlanc's literature review also contained no references to 
prior work on this problem. Our consideration of the DTP for packet/router networks 
is novel, therefore, and our MDP approach to is appears to be unique. 

Recent applications of MDPs to other communications networking problems 
are relatively abundant, however. Rouskas and Ammar [17] used an MDP approach 
in dynamically configuring paths in multihop wave division multiplexing lightwave 
networks. Hwang [6] developed an MDP approach to state-dependent virtual path 
routing in high-speed networks. Ross and Tsang [16] and Gopal and Stern [22] 
provided MDP approaches to the access port design problem for integrated services 
networks, the former paper employing policy iteration methods, and the latter value 
iteration and linear programming methods (the three approaches together make up the 
usual range of MDP solution techniques). MDPs have also been applied in such areas 
as: optimal vacation control for an MIGI1 queue [1], a problem of interest in local 
area network modeling and optimization; server allocation [11], and flow control [3,4]. 

3. An MDP model of the DTP 

Let N represent the set of nodes in the network. We assume there are two types 
of links: 



400 C.C. White, III et al., Dynamic topology problem 

1. Permanent links, Ap _ N x N. 

2. Switchable links, i.e. links that can be activated and deactivated, As C_ N x N. 

We assume Ap fq As = 0 ,  the null set. 
Let al(t) = 1 (=0) if link l ~As  is activated (is not activated) during the time 

period [t, t + 1). Let a(t) = {al(t) ..... aL(t)}, where L = l As I, the cardinality of the set 
As. The vector a(t) represents the decision variable at time t. 

Let zij(t) be the number of message units per unit time at time t that originate 
at node i E N  and have node j E N  as their destination, and let "r(t)= {'ely(t)}. We 
assume that { ~'(t), t = 0, 1,... } is a time and action invariant Markov chain having 
known transition probabilities P[z(t  + 1)lz(t)]. For simplicity in this study, we have 
assumed that these transition probabilities are time invariant. In general, it may be 
more realistic to assume that they are periodic (with a period, say, of  24 hours). 

Let s( t )= {'r(t), a ( t - 1 } ,  which we will call the state at time t. Note that 
{s(t), t = 0, 1 .... } is a controlled Markov process. Let c(s, a) be the expected cost to 
be accrued over the period [t, t + 1), assuming s( t )= s and a(t)= a. We assume 
c(s, a) is of  the form 

c(s, a) = c s (s, a) + CD (s, a), 

where c$(s, a) = wCs(s, a), CD(S, a) = (1 - w)Co(s, a), w is a given trade-off constant, 
C$(s, a) is the operating cost of  the network, Co(s, a) is the expected cost associated 
with expected delays in the network. Let c], c 2 and CL 3 be the nonnegative, time- 
invariant costs of  activating link l, deactivating link l, and having link l activated 
during the period [t, t + 1), respectively. We assume that 

where 

C$ (s, a) = ~ C$l (s, a),  
l 

C$l [a t (t - 1), a I ( t ) ]  = c ]  max{at (t) - a t (t - 1), 0} 

+ c 2 max{a I (t - 1) - a l (t), 0} + c3al (t).  

Let zij(s, a) be a measure of  the expected delay of a message unit originating 
at node i and having node j as its destination during the period [t, t + 1). Then, 

Co (s, a) = b ~ "Cij ( t)Zij  (S, a ) ,  
ir j 

where s(t) = {'r(t), a(t - 1)} = s, a(t) = a, and b is the per unit cost of  delay. Specific 
definitions of  zij(s, a) can vary according to network type and routing. As an example 
of  a specific definition, consider: the expected message delay for a message whose 
origin is node i and whose destination is node j in seconds. This is the traditional 
definition - see Kleinrock [7, p. 317] and note the intentional similarity of notation 



C.C. White, III et al., Dynamic topology problem 401 

there and here; note also that CD(S, a) under this definition of z is a cost-commensurated 
average packet delay. A second example definition is: the average total message 
delay from node i to node j in hops, as will be illustrated in a numerical example 
below. 

We note that zij(s, a) in the above expression must be dependent (albeit implicitly) 
on the routing protocol. Further note that the entirety of our model's dependency on 
routing is captured in the set {zij(s, a)}. The nature and mechanism of this dependence 
itself depends on the type of network and routing protocol(s) employed. For example, 
consider the case of dynamic delay-based routing in a packet-switched network, 
where the routing pattern adapts to changes in traffic. In this case, it may be nearly 
impossible to compute zO(s, a) exactly using known analytical means and hence we 
must resort to approximations to obtain {zij(s, a)}. At the opposite extreme, in the 
case of high-speed circuit-switched routing using paths precomputed and stored in 
a table, the {zO(s, a)} are deterministic. 

A policy at time t is a mapping that selects an action on the basis of the current 
state; i.e. the decision to activate or deactivate any switchable link at time t assumes 
knowledge of s(t) = { ~(t) = a(t - 1) }. Let A = { 0, 1 }L be the set of all possible actions, 
and let S be the (finite) state space, i.e. the set of all possible values of s(t) for any 
t. Both S and A are assumed to be time invariant. Thus, a policy at time t is a function 
t5 i : S ---> A. Let 7~ be the set of all policies. A strategy is an infinite sequence of time- 
dependent policies; i.e. zr = { 81, ~ .... }. Our objective is to f'md a strategy that minimizes 
the following criterion: 

where fl E [0, 1) is the given discount factor and E{. [ s(0) } is the expectation operator, 
conditioned on initial state s(0). 

We have assumed that the action set A equals {0, 1 }L. In general, however, it 
may be a strict subset of {0, 1 }L. This would occur if (N, Ap) is not sufficiently 
connected and some of the links in A s must be activated in order to guarantee the 
required level of connectivity. Under these circumstances, determination of A may 
not be a simple task and/or the description of A may be difficult to deal with 
numerically. In seems clear, however, that a ~ A  and a < a" would imply a '  EA. 

4. Optimality equations 

We nowpresent  optimality equations for the MDP model of the DTP. Define 
the operators H~ and H as 

[/~sv] (s) = c[s, 6(s)] +/3 ~ P[s'l s, ~(s)]v(s') 
$s 
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and /~V = in f /~Sv ,  
8 

respectively, where t~ E A and where P[s'[ s, t~(s)] is P[s(t + 1) = s'l s(t) = s], indexed 
by t~. Then, standard results (fould and explained in detail, for example, in Bertsekas 
[2, section 5.3] imply that 

1. /~ has a unique fixed point 5; i.e. 5 = /~5.  

2. If v0 is such that II v0_ll = max { [ v0(i)[ : i ~ S} is bounded, then l i m ~ , [ I  v n -  5 I[ 
= 0, where v~ § = H v~ (which is the successive approximations algorithm). 

3. If  g E A is such that 5 =/~,~5 = larS, then the time invariant strategy zr = 
{t~, t~ . . . .  } is optimal. 

These results provide a theoretical basis for the numerical determination of an optimal 
strategy for the DTP. 

5. Numerical considerations 

We now investigate the numerical implications of using successive approximations 

to determine 5 and t~. We note that ISIIA 1151 multiplications (and ISIIA IISI additions) 
are required to determine vn§ from v n, where S is the set of all non-zero values of 
P(s'[s, a) for each s e S  and a cA.  Let t rbe  the number  of possible values "co(t ) can 
take, for any (i,j)pair. Then Isl = 2Ltr INI(INI-i) and IsI = tr INI(INI-1) . Clearly, IAI = 2 L. 
Thus, 2 2L tr 2]gl(Igl- 1) multiplications (and additions) are required to determine vn + 1 
f rom vn. We note that this implies that even for modestly sized networks,  the standard 
MDP approach to solution determination will be numerically infeasible. We now 
investigate a decomposi t ion procedure that can significantly enhance the tractability 
of  the MDP approach to optimal policy determination. 

6. Structural assumptions 

It is clear f rom earlier discussions that 

P[_s = (_z, a)ls '  = ('t", a ' ) ,  a] = P(z_lv')P(ala), 

where P(al a) = 1(= 0) if a = a(~  a). 
Assume the set ~ t  C N x N, associated with link l E A s, is such that (i, j )  E ~t  

if and only if zij(s, a) depends on only st = {sij, ( i , j)  E@t} and at. That is, zij(s, a) 
= zij(Sl, al) if and only if ( i , j )  ~ ~l. Thus, ( i , j )  ~ ~t  indicates that the expected delay 
of  a message unit originating at node i and having destination j is affected only by 
the activation or deactivation of link l and by the message rates f rom i to j for only 
pairs ( i , j )  ~ ~t.  
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Assume @l CI @k = O, for all l ;~ k. Consideration of the case where @t fq @k 
is not necessarily null, for l ;~ k, is a topic for future research. Our efforts so far, 
however, indicate that the case is treatable and is likely to require the results in White 
and Schlussel [19], who assume a decentralized information structure in order to 
reduce computational complexity (and often more accurately mirror reality). 

A general comment can be made at this time, however, which applies to all 
cases. It is instructive to note that the choice of the sets of permanent and switchable 
links (Ap and As, respectively), along the routing procedure, will determine the sets 
{@t: I EA s } and correspondingly whether the condition ~l N ~k = 0 ,  for all l ~ k, 
holds. Indeed, while this paper is largely directed at determining topology control 
policies given Ap, A s, and routing, a broader issue is that of design, i.e. selection of 
At, and As, given the routing procedure and the nature of control strategy. Hypothetically 
(and perhaps rather unlikely, given White and Schlussel), if it turned out to be 
computationally infeasible or impractical to determine a topology control policy 
when ~t N @k = O, for all 1 r k, one could place the requirement that @t N @k = O, 
for all l r k on the process that selects At, and As. 

The assumption that ~t f'l @k = O, for all l r k, permits the DTP to be decomposed 
into L independent MDPs, the /th of which has the following optimality equation: 

I TIZ l (T/, al, 0) + ~ Z P/(T[ I~l )ul ('c[, 0), 
vt (Zl, ~l ) = min 

I n ( a t )  + VlZl (Tt, at ,  1) + fl ~ el (T;ITI)'Ol (T[, 1), 

where the summations are over all T[, where 

T l -~ {Tij: (i, j )  e ~l},  

"QZl ( 'Q'~l 'a)= Z TijZij (Tl'~l'a)'  
(i,j) ~ l  

B(5 l) = c~ max{1 - a t, O} + Cl 2 max{~ l - 1, O} + c3; 

a t represents the status of link l one time unit in the past, where we assume that 
e( 'r ' l ' r)  -- Pl ('t'[ I'rj)Pi('r ~ I'r i)  for "r = {TI,T[} and l r [,  and where PI(~[['Q) is the 
conditional probability associated with the/ th  MDP. We now examine the structural 
properties implied by the decomposed optimality equation which, for notational 
simplicity, we define 

['rz('r, ~, O) + f l ~  P(~'] ~)v(l:', 0), } 
[Hv) ('r, ~) = min 5 r' . 

[B(~) + ~'z(~', ~, 1) + fl Z P('r' I "r)v('r', 1) 

Determination of Hv, given v, requires 4 21~1 multiplications, which for reasonably 
sized cr and I @tl represents a tractable problem. Note that the number of multiplications 
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per iteration of successive approximations for the decomposed MDP is an exponential 
reduction, relative to the number  of multiplications per iteration of successive 
approximations,  from the original MDP model. 

7. Structural results 

We now give a reasonable condition which implies that the optimal policy for 
the decomposed MDP is isotone (monotonically nondecreasing) in both "r and ~. We 
begin with an important preliminary result. 

LEMMA 

Assume that: 

(i) Y . , , ~  P(z ' [  z) is isotone in "r for each set ~ such that "r ~ ~ and z < "r' imply 
that z '  ~ ~ .  

(ii) The function z(z, 0, a ) -  z(z, 1, a) is nonnegative and isotone in z and a. 

(iii) The function z('r, 0, 0 ) -  z(Z, 1, 1) is nonnegative and isotone in 7:. 

Then, 

(a) 

(b) 

if the real-valued function v is such that v('r, 0) - v('r, 1) is isotone in "r: 

There exists a policy t~ that achieves the min imum in H v  and is isotone in "r 
and ~. 

[Hv]('t, 0 ) -  [Hv](z, 1) is isotone in "r. 

Assumption (i) indicates that the transition matrix describing {-r(t), t = 0, 1 .... } 
has, in the terminology used by Derman [5] in determining structured policy results 
for machine replacement problems, an increasing failure rate (IFR). Restricted to the 
scalar case and using the terminology here, assumption (i) implies that the probability 
that the level of traffic in the system will make transition into level of traffic k or 
above is never decreasing as a function of the current level of traffic, and that this 
condit ion holds for all k. This appears to be reasonable assumption for many 
communicat ions  networks. 

Assumptions (ii) and (iii) concern properties of certain differences in expected 
delays, where the expected delay is assumed to be a function of traffic ('r), link status 
one unit of t ime in the past (~),  and current link status (a). These assumptions are 
stated in the above form for complete generality. In most  cases of practical interest, 
however, z('r, ~-, a) = z(z, a), i.e. expected delay depends only on traffic and current 
link status. In our travails thus far, we have considered three such cases of  the 
z('r, ~, a),  given below in order of increasing generality. We present these cases now, 
and then turn to proving the lemma. 
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Case 1 

Assume that z('r, K, a) = z(a). Then, assumption (ii) is trivially satisfied and 
the condition z(0) - z(1) > 0 satisfies assumption (iii). This case arises when expected 
delay is traffic independent,  i.e. is affected only by link status. A network where the 
delay from node i to node j is assumed to be a constant times the number  of links 
traversed from i to j is an example of this case. 

Case 2 

( i , j )  E @t implies that zij( z, at, at) = zij( zij, at) = hij( at)l(l ~ - "cij), where assumption 
(ii) is trivially satisfied, and the condition hij(O) > hij(1) satisfies assumption (iii) for 
all zij </~. If  hij(a t) is the number  of links traversed from node i to node j and # is 
the average link transmission rate in messages per unit time (note: ~t may be dependent  
on i and j) ,  Zij(T, al, at) can be interpreted as the expected delay accrued along a 
sequence of ho(a t) independent  MIM/1 queues in tandem seeing only the traffic 'rij. 
This case has arisen in a real-time computing test-bed, where a full-period backbone 
is to be augmented in a cost-effective manner using temporary circuits to handle 
large, short-duration traffic requirements between certain node pairs and there is little 
other traffic. 

Case 3 

(i, j )  E ~t implies that zij(z, at, at) = zij('Cl, at) = Y'r~R~i,j,a,)Tr(zl, at), where 
R(i, j ,  at) = set of indices of circuits traversed in the route from node i to node j,  
given link status at, and Tr('rl, at) = l / [ / l r -  &r('rt, at)] is the expected delay on circuit 
r, modeled as an M/M/1 queue with mean service rate #r  and mean arrival rate 
~r('ct, at). Note that t],r('Cl, at) = ]~(i.j)~lXijr(al)'Cij, where Xijr(al) = 1[=0]  when 
r E R ( i , j ,  a t ) [ ~ R ( i , j ,  at] for all i , j ,  r, and at (i.e. {Xijr(al) } is a set of indicator 
variables specifying the circuits used by each node pair (i, j )  ~ ~l  as a function of 
at). For this case, assumption (ii) holds trivially, as before. Assumption (iii) can be 
satisfied by appropriately selecting two routing patterns {R(i , j ,  0), ( i , j ) E ~ t }  and 
{R(i , j ,  1), ( i , j ) E @ t } ,  using some standard non-bifurcating routing procedure (e.g. 
min imum hop routing, min imum delay routing on the unloaded network, etc.), as 
long as X~('rl, at) </.tr for all r, "rl, and at. 

Case 3 is considerably more general than either case 1 or 2, but as such 
requires more careful attention to the determination of ~t .  A subtlety in determining 
~l  for pairs ( i , j )  whose intra-pair routes do not change as a result of activating or 
deactivating link l is that they still can have their delays affected by its presence or 
lack thereof. As an illustration, consider the network fragment given in fig. 1, assume 
that all message rates are zero save ~'97, ~'73, and "r93, and for simplicity assume 
min imum hop routing. If the switchable link is deactivated (off), all message flows 
are zero s a v e  ~,97 = ~'97 + "b'93 and ~ 7 3  = "C73 + ~'93. If the switchable link is activated 
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. o ~ 1 7 6  

permanent 

Fig. 1. Network fragment. 

(on), all message flows are zero except :1,97 = "/797 , ~1,73 = ~73, and /] '93 = ~93" In this 
case, @93 must  include at least the pairs (9,7), (7,3), and (9,3). An an aside, note that 
if the circuits here are modeled as MIMI1 queues, assumption (iii) is satisfied. 

We now conclude our discussion of the lemma with its proof. 

Proof of the lemma 

The isotonicity of ~ in K follows directly from the fact that c I > 0. With respect 
to the isotonicity of ~ in ~:, note that 6(1:, a-) = 0 if and only if 

rz(~-, ~, 0) + fl ~ P( ' r '  I ~')v(~", 0) _< B(~) + ~'z('r, ~, 1) + fl ~ P(~" I ~')v('r', 1) 
T t T '  

or equivalently 

"c[z('r, ~, 0) - z(z, ~, 1)] + fl ~ e(~" I ~') [v('r', 0) - v(-r', 1)] < n (~ ) .  

It follows f rom results in Derman that the left-hand side of the latter inequality is 
isotone in z, which implies that 6(~:, a-) is isotone in z. 

We now show that [Hv](z, 0) - [Hv](~:, 1) is isotone in z. Let a:< ~'. There are 
six possible cases to consider (see table 1). All other possibilities are ruled out 
because of the isotonicity of ~. Let 

AH = {[Hv] (z ' ,  0) - [no] (~', 1)} - { [nu]  (r ,  0) - [nu] (~, 1)}. 

The values of AH for the six cases are given in table 2. 
Cases 1, 3, and 6 clearly imply the result. The result follows for case 4 by 

results in Derman, as mentioned previously. For case 2, it was assumed that 6('r', 1) = 1, 
and hence f rom the definition of H, 

c 3 + "r'z('r', 1, 1) + fl ~ P ( # ' l ' r ' ) u ( # ' ,  1) _< z-'z('r', 1, O) + fl ~ P(~"I~')v(~", 0) ,  
.~,, .r 

which implies the result. Similarly, for case 5, the assumption that t~('r, 0) = 0 implies 
the result. [] 
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Table 1 

Case no. tS(z, O) 6(z, 1) 6 (z ;  O) tS(z; I) 

1 0 0 0 0 

2 0 0 0 1 

3 0 0 1 1 

4 0 1 0 1 

5 0 1 1 1 

6 1 1 1 1 

Table 2 

Case no. AH 

z ' [z (z ' ,  O, o) - z (z ' ,  1, 0)] - z[z(~,  o, O) - z(z,  1, 0)] 

r ' [z (z ' ,  0, 0) - z(~', 1, 0)] - z[z(z, 0, 0) - z(z, 1, 0)] - c 3 

+/3 ~ r . P ( z " l  z')[vC'r", 0) - u('c", 1)] 

c I + "r'[zCz', O, 1) - z(z ' ,  1, 1)] - z[z('r, O, O) - z(z, 1, 0)] 

z '[z( 'r ' ,  O, O) - z('r', I, 1)] - ~[z(z, O, O) - z(z, l, 1)] 

+/3 E~.[PCz"I ~') - PCz"I z)] [vCz", 0) - vCz", 1)l 

c I + c 3 + z '[z(z ' ,  O, 1) - z(z ' ,  1, 1)] - z[z(z, O, O) -zCz,  1, 1)] 

+ fl Yr -e (z" l  z)[v(z" ,  O) - v('r", 1)] 

z '[z(z ' ,  O, 1 ) -  z(z ' ,  1, 1 ) ] -  ~[z(z, 0, 1 ) -  z('r, 1, 1)] 

W e  n o w  p r e s e n t  o u r  m a i n  r e su l t .  

T H E O R E M  

A s s u m e  t h a t  v* is t h e  f i x e d  p o i n t  o f  H ,  a n d  t h a t  a s s u m p t i o n s  (i) ,  ( i i ) ,  a n d  ( i i i )  

in  t h e  l e m m a  h o l d .  T h e n :  

( a )  T h e r e  is an  o p t i m a l  p o l i c y  t h a t  is i s o t o n e  in "r a n d  ~.  

(b )  v*( ' r ,  0 )  > v*( ' r ,  1) > 0 f o r  a l l  "r. 

( c )  v*( ' r ,  0 ) -  v*( ' r ,  1) is i s o t o n e  in z. 

(d )  v*( ' r ,  ~ )  is i s o t o n e  in "r f o r  e a c h  ~.  
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Proof of  the theorem 

Consider  the sequence {v,,}, where v0 = 0 and v~+l = Hv,,. As stated earlier, 
lim~__,., II v* I I = o. Note that v0 satisfies conditions (b), (c), and (d); assume v,, + l 
also satisfies these conditions. The isotonicity of  Hv in v implies that v,, satisfies (c). 
A standard induction argument implies that (b), (c), and (d) hold. Application of  the 
lemma implies that (a) holds. [] 

There are (at least) two advantages that can result from a structural optimal 
policy. First, such policies are often more easily implemented.  Second, they often 
suggest  reduced numerical  effort. In the current context, in calculating Hun_t, if 
•('t', a-) -- 1, where 8 i s  such that Hsvn_l =HUn_l, then we know t~('r', ~') = 1 for all 
(z',  ~') such that z ' <  "t-and ff < ~' and hence it is unnecessary to calculate 

z ' z (* ' ,~ ' ,O)  + ]~ ~ P(Z" Iz')Vn_l (*", 0).  
T H 

The above results have assumed that {zt(t), t = O, 1 ... .  } is condi t ional ly  
independent  of  {z[ (t), t = O, 1 . . . .  }, where for all t, "r(t) = {'t- t (t), "r[ (t)}. It seems 
reasonable to assume that 

P(* ' I* )  = I-I  
i<j 

and hence 

PI (z[ I zt ) = 1-1 P(T~,  Tji I Tij , Tji ). 
i<j 

(i,j) ~ ~1 

It also seems reasonable to assume that the process { {zij(t), Tji(t)},  t = 0 ,  1 . . . .  } has 
an IFR, for all (i, j ) E N x  N. Unfortunately, it does not necessarily follow that 
{ zl(t), t = 0, 1 .... } is IFR if the { { zij(t), ~i(t) }, t = 0, 1 .... } are IFR, for all (i, j )  E ~t,  
and hence the optimal policy may not be isotone if the { { zij(t), "~i(t) }, t = O, 1 .... } 
are IFR, for all (i, j ) E ~ t .  See White and Schlussel [20] for a counterexample.  
However,  it seems reasonable to expect that if the {{'rij(t), xji(t)}, t =  0, 1 ... .  } are 
IFR, for all (i, j )  E ~t, then there exist high quality suboptimal designs within the 
class of  isotone policies. 

8. A numerical example 

Consider  the problem of determining when to activate and deactivate two 
links, one between nodes 4 and 7 (which we will denote as 4 - 7 )  and the other 
between nodes 3 and 9 (3 -9 ) ,  in the network given in fig. 2. Assume zij(s, a) = zi j (al)  
equals the min imum number  of links to be traversed in going f rom node i to node 
j (i.e. the min imum hop count from i to j ) .  This is case 1 f rom our previous discussion 
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~..~176 

Fig. 2. Network for the numerical example. 

Table 3 

Hop counts: @4-7 and ~3-9. 

(a) Link 4 - 7  min-hop information 

Hops without Hops with 
Node pair link 4 - 7  link 4 - 7  

(~4-7)  ( a 4 _ 7  = 0) ( a 4 _ 7  = 1) 

(4,7) 3 1 

(4,9) 3 2 

(4,13) 3 2 

(6,7) 3 2 

(b) Link 3 -9  rain-hop information 

Hops without Hops with 
Node pair link 3 -9  link 3 -9  

(~3-9)  ( a 3 - 9  = 0) ( a 3 - 9  = 1) 

(1,9) 3 2 

(2,9) 3 2 

(3,8) 3 2 
(3,9) 2 1 

(3,1o) 3 2 

(3, 12) 4 3 
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of the lemma and is used here as an example for clarity, since ~4-7 and ~3-9 can 
be identified by inspection. Table 3 indicates that four node pairs are affected by link 
4 - 7  and that six node pairs are affected by link 3-9 .  Note that ~4-7 n ~3-9 = 0 .  

We assume that for each ( i , j ) E ~  l, l E  {4-7, 3-9},  {'cij, "rji } can be in one 
of four states and has the IFR transition matrix: 

0.40 0.30 0.20 0.10 7 

0.25 0.35 0.25 0.15 

0.10 0 . 2 5  0.40 0.25 

0.05 0.20 0 . 3 5  0.40 

Other parameter values are: w =0.5, fl=0.9, C1_ 7 = C1_9 = 5 units of COSt, a n d  c42_7 
= c2_9 = 3 units of cost. We assume that the amount of traffic between any pair ( i , j )  
is symmetric at 10, 20, 40, and 70 packets per second when {zji, zji} is in state 1, 
2, 3, and 4, respectively�9 We also assume that the cost of delay per packet-hop 
(parameter b) equals 0.025. 

The MDP decomposition for link 4 - 7  (3-9)  required 0.25 seconds (38�9 
seconds) of CPU time per iteration of the standard successive approximations algorithm 
on a Sun SPARC station TM 2GX for a total of 3.28 seconds (578.23 seconds)�9 Thirteen 
iterations (fifteen iterations) were needed for the link 4 - 7  (3 -9 )  problem to satisfy 
the stopping criterion max { ]v~ + l(s) - v~(s) l : s E S } < 0�9 All state transition matrices 
were calculated from the individual {'r i j, ~i} transition matrices, for each state, 
action, and iteration. The above reported CPU times could have been reduced 
significantly had these matrices been precomputed. A variety of numerical procedures 
(see White and White [21]) could have been used to further reduce CPU time and 
the number of iterations until convergence. We have indicated earlier that problems 
like this numerical example do not satisfy the IFR assumption in the theorem�9 It is 
worthy to note, however, that the policies that resulted from the two problems are 
isotone. 

The state for each MDP decomposition is st(t) = {(q f i j ( t ) ,  ( i , j )  E ~l); a(t - 1)}, 
so there are (44)(2) = 512 possible states for the link 4 -7  problem and (46)(2) = 8,192 
possible states for the link 3 - 9  problem. The policies resulting from the successive 
approximation solution of the two problems simply map each possible state into one 
of the two possible actions a(t) = 0 or 1. Table 4 gives a portion of the optimal policy 
for the link 4 - 7  problem�9 For clarity in illustration, the indices of the traffic levels 
are used rather than the numerical levels themselves, i.e. level 1 corresponds with 
10 packets per second, 2 with 20, 3 with 40, and 4 with 70. Also, action 1 corresponds 
with link 4 - 7  deactivated (off) and action 2 with activated (on). Table 4(a) demonstrates 
the isotonicity of the policy in traffic and table 4(b) demonstrates its isotonicity in 
~4-7. In both cases, the traffic-~4-7 combination that first triggered activating link 
4 - 7  is delineated by double thin lines. 
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Table 4 

Partial policy for the link 4-7 problem. 

(a) Illustration of policy isotonicity in traffic 

State Action 

{Traffic level {zji, zji } for (i,j) ~4-7;  a4-7} a4-7 

Pair (4,7) Pair (4,9) Pair (4,13) Pair (6,7) 

1 3 4 4 1 1 
1 4 3 4 1 1 
1 4 4 3 1 1 

1 4 4 4 1 2 

2 4 4 4 1 2 

(b) Illustration of policy isotonicity in ~4-7 

State Action 

{Traffic level {z/i, zyi} for (i,j) E~4_7; a4-7} a4-7 

Pair (4,7) Pair (4,9) Pair (4, 13) Pair (6,7) 

1 1 1 3 2 1 

1 1 1 4 1 1 

1 1 1 4 2 2 

2 1 1 4 2 2 
1 2 1 4 2 2 

1 1 2 4 2 2 

9. C o n c l u s i o n s  

We have presented an MDP model of the DTP, a decomposition of  this model, 
and structural results for the decomposition. The decomposit ion and structural results 
enhance the potential tractability of  procedures for determining optimal and good 
suboptimal policies for activating and deactivating links as a function of  current 
traffic in the network and past control decisions. A numerical example illustrated 

these procedures. 
Several assumptions were made in order to obtain the (optimal) results presented 

in this paper. These assumptions were: 

1. Zij(s,a)=zij(Tij,  al) for ( i , j )  E~ t ,  

2. @ t f q ~ k = O i f l ~ : k ,  
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3. the IFR assumption,  

4. the dependence  o f  the cost  s tructure on the current  traffic matr ix  and the 

current  and most  recent  control  decisions.  

5. A = {0, 1} L. 

We ( implici t ly)  assumed that the M D P  decompos i t ion  was tractable.  It was also 

assumed  that each link was ei ther  act ivated or deact ivated;  but, if IAI --- 2 L, then the 

opi tmal  dynamic  al locat ion o f  bandwidth  could  be studied. Remova l  o f  any or all o f  

these assumptions provides  a direction for future research. Use o f  numerical  procedures  

to reduce  C P U  t ime to convergence  is also a topic for  future research.  

References 

[1 ] E. Altman and P. Nain, Optimal control of the M/G/I queue with repeated vacations of the server, 
IEEE Trans. Auto. Control 38(1993) 1766-1775. 

[2] D. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models (Prentice-Hall, 
Englewood Cliffs, 1987). 

[3] R.M. Bournas, EJ. Butler and D. Teneketzis, Optimal flow control allocation policies in 
communications networks with multiple message classes, IEE Trans. Auto. Control 38(1993) 
390-403. 

[4] R.M. Bournas, EJ. Butler and D. Teneketzis, Properties of optimal hop-by-hop allocation policies 
in networks with multiple transmitters and linear equal holding costs, IEEE Trans. Auto. Control 
36(1991)1450-1463. 

[5] C. Derman, On optimal replacement rules when changes of state are Markovian, in: Mathematical 
Optimization Techniques, ed. R. Bellman (University of California Press, Berkeley, CA, 1963). 

[6] R.-H. Hwang, Routing in high-speed networks, Ph.D. Dissertation, Department of Computer 
Science, University of Massachusetts, Amherst (1993). 

[7] L. Kleinrock, Queueing Systems Volume H: Computer Applications (Wiley, 1976). 
[8] L. LeBlanc and J.H. Harder, Optimization models for design and routing in wide-area data- 

communication networks, Stud. Locational Anal. 6(1994)3-18, 
[9] L. LeBlanc, Design and operation of packet-switched networks with uncertain message requirements, 

IEEE Trans. Commun. 38(1990)1223-1230. 
[10] L. LeBlanc and R. Simmons, Continuous models for capacity design of large packet-switched 

telecommunications networks, ORSA J. Comp. 1(1989)271-286. 
[11] A.M. Makowski and A. Shwartz, On constrained optimization of the Klimov network and related 

Markov decision processes, IEEE Trans. Auto. Control 38(1993)354-359. 
[12] R.L. Moose, Modeling networks with dynamic topologies, ORSA J. Comp. 1(1988)223-231. 
[13] R.L. Moose and R.E. Nance, Link models for networks with dynamic topologies, Technical 

Report SRC 87-006, Systems Research Center, Virginia Polyrechnic Institute and State University 
(1987). 

[14] R.E. Nance and R.L. Moose, Link capacity assignment in dynamic hierarchical networks, Comp. 
Networks and ISDN Syst. 15(1988)189-202. 

[15] M.D. Noakes, J.B. Cain, J.W. Nieto and E.L. Althouse, An adaptive link assignment algorithm 
for dynamically changing topologies, IEEE Trans. Commun. 41(1993)694-706. 

[16] K.W. Ross and D.H.K. Tsang, Optimal circuit access policies in an ISDN environment: A 
Markov decision approach, IEEE Trans. Commun.37(1989)934-939. 

[17] G.N. Rouskas and M.H. Ammar, Dynamic reconfiguration in multihop WDM networks, Proc. 
Photonics, 1993. 



C.C. White, IH et aL, Dynamic topology problem 413 

[18] J. Shot and T.G. Robertazzi, Traffic sensitive algorithms and performance measures for the 
generation of self-organizing radio network schedules, IEEE Trans. Commun. 41(1993)16-21. 

[19] C.C. White and K. Schlussel, Suboptimal design for large-scale multi-module systems, Oper. 
Res. 29(1981)865-875. 

[20] C.C. White and K. Sehlussel, Optimal replacement policies for completely observed multi- 
component systems, Proc. Southeastcon, Williamsburg, VA, 1977. 

[21] C.C. White and D.J. White, Markov decision processes, Euro. J. Oper. Res. 39(1989)1-16. 
[22] I.S. Gopal and T.E. Stem, Optimal call blocking policies in an integrated services environment, 

Conf. Inform. Sci. Syst., Johns Hopkins University, 1983, pp. 383-388. 


