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In this paper, we analyse Stochastic Petri Net (SPN) models of slotted-ring networks. 
We show that a simple SPN model of a slotted-ring network, which exhibits a product- 
form solution, yields similar results to a more detailed SPN model that has to be ana- 
lysed by numerical means. Furthermore, we demonstrate a Mean-Value Analysis 
(MVA) approach to calculate efficiently the results for the simple model. This MVA 
approach allows for the movement of groups of tokens (customers) rather than just in- 
dividual customers, as traditional MVA schemes for queueing network models do. Also, 
the MVA allows for non-disjoint place invariants, whereas previous MVA schemes ad- 
dressed disjoint place invariants only. From the MVAs, it can be concluded that slotted- 
rings have very attractive performance characteristics, even under overload conditions 
(there is no "thrashing"). Also, we found that the choice of the slot size is a key factor 
in calibrating slotted-ring systems for optimal performance. Having a fast and reason- 
ably accurate means available to evaluate the performance of slotted-ring systems, such 
as our proposed MVA, eases this calibration task. The proposed MVA for the product- 
form SPN models should therefore be regarded as a "quick engineering" tool. 

1. Introduction 

Slotted-ring networks have been prol6osed as interesting candidates for local 
and wide-area  networks.  Especial ly when large distances need to be covered,  or when  
high t ransmiss ion speeds are involved,  such networks  are known to behave  in an 

attractive way, both f rom the user point o f  view (in terms of  throughput  and delay 
characteristics) and f rom a system efficiency point  o f  view (not much of  the available 
bandwidth  is wasted) [28, 29]. With the advent  o f  B - I S D N  and ATM, slot ted-r ing 
networks become  of  special interest, for example,  as interconnect ion structure within 

ATM switches [3,4,  20, 25]. 

�9 J.C. Baltzer AG, Science Publishers 
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Over the last few years, considerable interest has been shown in using 
Stochastic Petri Nets (SPNs) for the modelling and analysis of a wide variety of 
computer and communication systems. One of the reasons for this is their flexibility 
and the availability of software tools to support the construction and solution of the 
SPN models. However, one of the limitations of the use of SPNs has been the size of 
the models, most notably, the number of states and transitions in the underlying 
Markov chains, which increases exponentially with the size of a network. Various 
procedures have been designed to cope with this problem. Symmetries have been 
exploited by Sanders and Meyer [26] to allow for the application of lumping theorems. 
Fixed-point iteration techniques have been employed by Ciardo and Trivedi [6] and a 
decomposition/aggregation approach has been studied by Henderson and Lucic [ 18]. 
Approximations based on reduced-load methods have been used by Coyle et al. [8] 
and state-space truncation techniques were employed successfully by Haverkort [14]. 

In this paper, two SPN models of slotted-ring networks are presented. The first 
is the more realistic one, but the amount of CPU time and computer memory required 
to solve this model is prohibitive in most cases. The second, more simplified SPN 
model, has a product-form solution for which a recursive MVA scheme is presented 
that calculates the performance measures of interest. The model is fairly abstract in 
comparison with some others that have been used for the analysis of slotted-ring 
networks (see section 2). However, the results are quite accurate and with the 
presented MVA technique, larger slotted-ring configurations can be analysed than has 
been possible hitherto. The MVA approach can therefore be regarded as a "quick 
engineering" approach towards the analysis of slotted-ring systems; see also [10], in 
which Van Dijk points out the usefulness of product-form results for bounding or 
quick engineering purposes. 

Due to the inherent complexity of slotted rings, most slotted-ring models 
known from the literature can be analysed only by simulation (see, for example, 
[22, 23, 28]). We are aware of only a few performance analysis studies of slotted-ring 
systems in which analytical or numerical solution techniques are employed. Most 
notably, Ajmone Marsan et al. [1,2] and De Goei [15] employ SPN-based techniques 
to study various variants of slotted-rings, and Zafirovic and Niemegeers [28,29] 
derive approximate closed-form analytical expressions. 

The paper is organised as follows. In section 2, we introduce slotted-ring 
systems and discuss typical system parameters and scenarios in which these systems 
are used. In section 3, two SPN models of slotted-ring systems are introduced. The 
first can be analysed only via its underlying Markov chain, which is shown to grow 
unwieldy. The second, more abstract, model is seen to approximate the first fairly 
accurately. It is then shown how results for this second model can be obtained very 
quickly using an MVA approach, which is derived in section 4. Some implementation 
aspects of the MVA scheme are considered there as well. In section 5, we present 
numerical examples and compare the MVA approach with a numerical solution 
approach. Section 6 provides a summary. 
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2. Slotted-ring systems 

We discuss the general operation of  slotted-ring systems and some typical 
scenarios of  usage. 

GENERAL OPERATION 

In slotted-ring systems there are M stations, numbered 1 ..... M, connected to a 
ring-shaped medium. On the medium k 0 slots circulate, each representing an equal 
part of  the medium capacity. Slots consist of a small header followed by an informa- 
tion or data field. From the header, a station can decide whether a slot is free or in 
use. Whenever  a slot passes a station, the station checks, from the address field in the 
header of  the slot, whether this is the packet's destination. If  so, it copies the contents 
of  the slot; if not, it lets the slot pass. If  a station wishes to transmit something itself, 
it waits for a free slot, takes it, and fills it with the address of the addressee and (part 
of) the message. As slots are of  fixed length, a message may have to be split over a 
number of  slots. Higher-layer protocols are assumed to take care of this splitting and 
the associated reassembly. 

There are a number of ways of freeing slots. With destination release, a station 
that received a slot frees it. The receiving station can either use the slot again imme- 
diately, so-called immediate slot reuse, or pass it to its next downstream neighbour. 
With source release, on the other hand, the sending station on seeing its message 
return after one ring rotation frees the slot. Although destination release with immediate 
reuse is the more efficient, it is generally not recommended as it can create large 
relative unfairness between stations. Another way to enforce fairness is to allow 
station i to have a maximum of only k i slots in use at any time. 

As examples, the following slotted-ring systems can be mentioned. The CFR is 
a 100 Mbps slotted-ring system operating with source release. The used slot size is 
256 bits [19,27,28]. The CFR-Variant is similar to the CFR except that it allows a 
station to take as many slots as desired at any time. Another variant of  the CFR is 
Orwell, which is a destination-release slotted ring with a slot size of  128 bits operating 
with transmission speeds up to 565 Mbps [12,28]. Orwell was intended to be used as 
the transmission facility within a packet switch. Similar usage of slotted-ring networks 
have been proposed for internal usage in ATM switches. As ATM becomes more 
important, for WAN as well as for LAN technology, slotted-ring networks might 
become increasingly important in the near future as well [20]. 

TYPICAL SLO'ITED-RING SCENARIOS 

The presented scenarios are based on system descriptions found in the literature 
(see, for instance, [23, 28]). The scenarios are summarised in table 1. 

Scenario 1: A small symmetric system. Consider a slotted-ring system which is used 
to connect M = 20 stations on a medium with length 204.8 m. The roundtrip-delay 
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Table 1 

Summary of the four scenarios. 

Scenario 1 2 3 4 

M 20 20 50 40 
Length (m) 204.8 307.2 204.8 20k 

Length (bits) 1024 1536 1024 16384 
T (Its) 10.24 15.36 10.24 100 

r (Mbps) 100 100 100 163.84 
ko 4 6 4 16 

Slots (bits) 256 256 256 1024 

~-1 10240 10240 4096 40960 
~i~1 10240 5389.47 4096 1050.26 

st/dr sr sr sr dr 
/2 i 97656.25 65104.17 97656.25 20000 

k I 1 4 1 3 
ki~ I 1 1 1 1 

"r= 10.24 ~ts, assuming a propagation speed c = 2 x 107 m/s .  With a transmission rate 
r = 100 Mbps,  the medium comprises 1024 bits or 4 slots of  256 bits each (k 0 = 4). 

Assuming a 50% loading, the overall requested transmission capacity equals 
50 Mbps.  Assuming  equal ly- loaded stations, the request rate of  slots per station, 
~,i = 50 Mbps / (20  x 256 bits per slot) = 10240. 

Given that the system operates along the lines of  source release, the time a slot 
is occupied always equals 1 roundtrip-delay, that is, #i  = 1/ ' r  = 97656.25. We assume 
furthermore that ki = 1. 

Scenario 2: A small  asymmetr ic  system. Consider a slotted-ring system which is used 
to connect  M = 20 on a medium with length 307.2 m. Furthermore,  "t'= 15.36 ~ts, 
r = 100 Mbps. Consequently,  the medium comprises 1536 bits or 6 slots of  256 bits 

each (k 0 = 6). 
Assuming a 50% loading, the overall requested transmission capacity equals 

50 Mbps. However,  we now assume that station 1 generates as much traffic as stations 
2 - 2 0  together.  Typically, such a station might  be a file-server. We have ~1 = 
25 Mbps / (256  bits per slot) = 102400 slots per second and ~,j = ~1/19 = 5389.47 slots 
per second ( j  = 2 . . . . .  20). To allow station 1 easier access to the ring, we set kl = 4 
and kj = 1, j = 2 . . . . .  20. Finally, given that the system operates with source release, we 
have #i = 65104.17. 
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Scenario 3: A large symmetric system. Scenario 3 is similar to scenario 1 except that 
now M = 50 stations are connected. The other system parameters are the same. 
Since we deal with more stations, the workload per station is smaller. We have 
~.i = 50 Mbps / (50  x 256 bits per slot) = 4096. Further, we have #i = 97656.25 and 
ki= 1. 

Scenario 4: A large asymmetric system. We now address a slotted-ring system of  
200 km in length, connecting M = 40 stations, that is, "r = 100 gs. With transmission 
rate r = 163.84 Mbps, the medium comprises 16384 bits or 16 slots of 1024 bits each, 
yielding k0 = 16. 

Assuming a 50% loading, the overall requested transmission capacity equals 
81.92 Mbps. We assume that station 1 generates 50% of the load, stations 2 - 4 0  taking 
care of  the other 50%. Consequently, we have $1 = 40.96 Mbps/ (1024 bits per slot) 
= 40960 slots per second. Accordingly, ~.j = ~.1/39 = 1050.26. The slot restriction for 
station 1 is 3 (k I = 3). For the other stations it equals 1 (kj = 1). 

If we assume a uniform destination pattern of messages and destination release, 
we find that the average slot occupancy time is half a ring rotation time, o r / 2  i = 20000. 

3. SPN models of a slotted-ring system 

We first discuss an SPN model of a slotted-ring system that does not exhibit a 
product-form solution. Then we discuss an SPN model that does have a product-form 
solution. Then we compare the two models for their computational complexity and 
accuracy. 

AN SPN MODEL WITHOUT PRODUCT-FORM SOLUTION 

Consider the Petri net model of the slotted-ring network shown in fig. 1 for the 
case when the number M of stations is equal to 4. Each station tries to use one of  the 
slots every once in a while. There are k0 available slots on the network, represented 
by tokens in place P0. Each station is represented by only three places and transitions. 
For station i (i = 1 ..... M), we have places Pi,1, Pi,2 and Pi,3 and transitions ti, 1, ti, 2 and 
ti,3. The initial numbers of  tokens in places Pi,1, Pi,2 and Pi,3 are ki, 0 and 0, respec- 
tively. The vector of  the initial numbers of  tokens is k = (k0, kl ..... kM), addressing 
only the nonzero initial markings, that is, the places P0 and Pi, l. The firing times of  
transitions ti, 1 and ti, 3 (depicted as thick bars) are exponentially distributed, with tran- 
sition r a t e s  ~ i  and #i, respectively, and transition t i ,  2 (depicted as a thin bar) is an 
immediate transition. We define Pi = '~' i /] .s  �9 This SPN model has the input and output 
bags l(ti, l) = {Pi, l}, O(tiA)= {Pi,21, l(ti,2) = {Po, Pi,2}, O(ti,2)= {Pi,3}, l(ti,3) = {Pi,3} 
and O(ti,3) = {Po, Pi, l}. 

The model may be interpreted as follows. There are k 0 slots available on the 
slotted ring to be used by the stations. The maximum number of slots that station i is 
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P4,2 

PI,2 tl,2 -Pl,3 I;I'3 

t4,3 

~4,2 
Po 

t2,2 

P2,3 

t3,3 ~3,2 ~3,1 

~ ,3  ~,2 ~ ~,1 

Fig. 1. An SPN model of a slotted-ring system with 4 stations. 

either using or requesting at any one time is k i. If there are tokens in place Pi, 1, then 
transition ti,1 is enabled. The firing of transition ti, l models a request by station i to 
use a slot. If transition ti, 1 fires, it takes a token from place Pi, t and puts one into place 
Pi,2. A token in place Pi,2 represents a request by station i to use one of the ring's 
slots. Since transition ti, 2 is immediate, whenever there are any slots available on the 
ring, that is, if there are any tokens in place P0, station i will take a slot immediately, 
putting a token in place Pi,3 to signify that the station is using a slot. If there are no 
slots available on the slotted ring, that is, place P0 is empty, then the station will wait 
for a slot to become available, at which point it will immediately take that slot. If  
more than one station is waiting for a slot when it becomes available, then each station 
has an equal probability of getting that resource. The number of tokens in place Pi,3 
represents the number of slots that station i is using. If there is at least one token in 
place Pi,3, then transition ti, 3 is enabled and so may fire, signifying that the station has 
finished using one of the slots it is using. Once station i has finished using a slot and 
ti,3 fires, a token is put back into k 0' signifying that the slot is available, and a token 
is put back into Pi, 1, signifying that this station has finished using the ring and may 
make another request. 

The operation sketched can be used to model systems with source as well as 
with destination release by adjusting the time it takes to fire transitions ti,3. In all 
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cases, immediate reuse of the slot by the releasing station is possible. The fact that 
the firing time of transitions ti, 3 is exponentially distributed is an approximation, since 
with source release the slot-usage time is exactly one roundtrip delay. For destination 
release, the slot-usage time is dependent on the traffic pattern between sources and 
destination. In this case, at least some randomness occurs, which makes this approxi- 
mation less severe. In the case of the simpler model to be discussed in section 3, this 
approximation becomes exact due to insensitivity properties of the product-form 
solution. 

Generally, Z/M= i ki > ko, so that there is competition amongst the stations to take 
as many slots as needed. Whenever  Z/m= I ki < k0, the stations do not influence each 
other; they can operate and be analysed totally independently. 

AN SPN MODEL WITH PRODUCT-FORM SOLUTION 

Let us now consider a more abstract SPN model of the slotted-ring system (see 
fig. 2 for the case M = 4). This model  resembles the previous one; however, it is 
assumed that a request for a slot that cannot be fulfilled immediately is discarded and 
does not queue. This implies that each station is now represented by only two places 
and transitions. For station i we have places Pi,1 and Pi,2 and transitions ti, 1 and ti,2, 

Pi,1 
"~1,1 Pl,2 tl,2 

P4,2 

,~ ~:4,1 

t2,1 

P4,1 ( ~3,2 
~3,1 

P3,2 

Fig. 2. An SPN model of a non-queueing slotted-ring system with 4 stations. 
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both with exponentially distributed transition firing times with rates 2, i and #i, respec- 
tively. The available slots are still represented by tokens in place P0. The values Pi 
and k = (ko . . . . .  kM) are defined as before. This SPN is now specified by the input and 
output bags I(t i ,1) = {P0, Pi,1 }, O(ti ,  l)  = {Pi ,2},  I(ti ,2) = {Pi,2} and O(ti ,2)  = {P0, Pi. 1 }. 

This model can be interpreted as before except that there are no places for 
tokens to queue between requesting a slot and using it. This gives a model that has a 
product-form solution and so results for this network can be found fairly efficiently 
using, for example, a mean-value analysis. 

It also turns out that this model is insensitive to the service-time distributions, 
so a slotted-ring network with fixed service-time distributions will be modelled as 
accurately as one with exponential service-time distributions, only the mean service 
times, that is, the mean slot-usage times, being of importance. Thus, the simplified 
model is more accurate as far as slot-usage times are concerned for both the source 
and the destination release strategies. 

The state of the SPN can be defined as n = (no, n 1 . . . . .  riM), where no = (no) and 
ni = (ni, 1, hi.2), with no the number of tokens in place P0 and ni, j the number in place 
Pid (i = 1 ..... M; j = 1, 2). We then have the product-form solution 

M p?, ,2  f i  D nL2 
r c ( n ) = G ( k ) - l l ' - [  with G ( k ) =  ~ 11  '-' (1) 

i=l ni,2! n~S(k) i=l  hi, 2! 

for the steady-state probability distribution [11, 13,16, 17]. 
This can be verified easily by showing that this product form satisfies the 

partial-balance equations 

flux into n by firing ti, 1 = f l u x  o u t  ofn  by firing ti ,2, 

flux into n by firing ti, 2 = f l u x  o u t  of n by firing ti , l ,  

which are equivalent to 

:r(n + 1, h i ,  1 , n l ,  2 . . . . .  hi, 1 + 1, hi, 2 -- 1 . . . . .  riM,2 )~i  -~ 7g(n0 ,  n l , l  . . . . .  riM,2 ) n i , 2 # i ,  

/ l : (n  0 --  1, h i ,  1 , n l ,  2 . . . . .  ni,1 - 1, hi, 2 + 1 . . . . .  riM,2 ) (ni,2 + 1 ) ~ i  = 7g(n0 ,  n l , l  . . . . .  riM,2 )&i.  

Note that it is because the partial-balance equations are satisfied that the model de- 
scribed here is insensitive to the service-time distribution functions. 

C O M P A R I S O N  O F  T H E  T W O  M O D E L S  

Measures  o f  interest. There are a number of interesting measures that can be derived 
for the above two models. Care should be taken to compare measures that, in some 
way, are equivalent to one another. As both models are not completely the same, 
some measures might be useful for one model, but less so for the other model. The 
following measures do not cause any difficulty: 
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�9 mi, l(k): the average number of outstanding messages at station i (that is, in Pi, 1); 

�9 mi,2(k): the average number  of slots being used by station i (that is, Pi,2 in the 
case of the product-form model (PF), and Pi,3 for the non-PF model  (non-PF)); 

�9 Ai, l(k) = Ai,2(k): the throughput of station i (that is, of transitions ti, l and ti, 2 in 
the PF model, and of ti, 1 and ti, 3 in the case of the non-PF model); 

�9 tr: the probability that all slots are in use (that is, t r= Pr{P0 is empty}). 

Slightly more complicated is the definition of the "blocking-probability" B i. 
For the PF model, B i is the probability that ti,1 is not enabled, that is, the probability 
that no progress can be made, due to the fact that there are no outstanding requests 
(Pi,1 empty),  or there are no slots free (P0 empty). For the non-PF model, we have 
chosen to define B i a s  the probability that Pi, l is empty, thus also disabling ti, 1. Note 
that P0 does not play a role in the latter case. Since A i = ~1,i(1 - Bi)  ( o f  course, as a 
function of k) ,  B i provides a different view at the effective throughput that is reached, 
in comparison to the throughput requested (~,i)- 

State space sizes. The  first model does not have a product-form solution and numeri- 
cal solutions for this model must be found such as those provided by the package 
SPNP [5]. The number of states in the Markov chain, however, is very large even for 
a moderate number  of stations and slots. For example, consider scenario 1, with 
M = 20 and k0 = 4. The number of states in the Markov chain is around 300 million, 
which is too large for a solution to be found. Suppose that we keep the same ring size 
but double the average interstation distance. This means that we must  set M = 10 and 
keep k0 equal to 4 (referred to as scenario 1'). The number of states in the underlying 
Markov chain then reduces to 13616. 

For the PF model, the number I S(k) l of states also increases very quickly with 
k and M; however, it remains smaller than for the non-PF model. For example, when- 
ever each k i = 1 (i ~ 0), we have 

I S(k)l=  1 " 
/ = 0  

Under the above assumptions, we have only 6196 states in scenario 1, and 386 states 
in scenario 1'. 

Analys i s  results. Scenario 1' has been analysed using both the product-form (PF-) 
and the non-PF model. The results are presented in table 2. For the non-PF model, the 
SPNP package needed about 20 minutes per evaluation (Sparc IPX), whereas the PF 
model  only took a few seconds per evaluation (also with SPNP; Sparc IPX). For an 
increasing sequence of arrival rates ~,i, we present the blocking probability Bi, the 
effective throughput A i ,  and the probability tr that all slots are in use. As can be 
observed, the PF model  is slightly optimistic over the full range of arrival rates, that 
is, the blocking probabilities in the PF-model  are slightly too small, the throughputs 
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Table 2 

Comparing the PF and the non-PF SPNs for scenario 1'; 
numerical solution using SPNP in both cases. 

Scenario 1' Non-PF SPN; fig. I PF SPN; fig. 2 

;c i B i A i cr B i A i cr 

560 0.0058 556.71 0.0000 0.0057 556.80 0.0000 
2560 0.0258 2493.92 0.0001 0.0256 2494.49 0.0001 
5120 0.0504 4861.77 0.0010 0.0504 4862.16 0.0010 

10240 0.1015 9200.46 0.0110 0.0999 9216.01 0.0094 
15360 0.1588 12920.69 0.0384 0.1515 13033.38 0.0300 
20480 0.2239 15894.50 0.0851 0.2039 16303.42 0.0616 

slightly too high, and cr slightly too small. The differences are not very large, however. 
The difference in blocking probabilities is less than 9% (worst case), in throughput 
less than 2.5% (worst case), and for o'it is smaller than 25% (worst case). In the more 
moderate case of l = 10240, these percentages are 1.5%, 0.2%, and 1.5%, respectively. 

Similar results are displayed for scenario 1" in table 3. Scenario 1" has been 
derived from scenario 1' by making the workload more asymmetric, that is, by setting 
21 = 5 .52 and ~,i = 2 /2  (i = 2 .... ,10). Notice that the overall workload for a given 
remains the same. Since station 1 is more heavily loaded, it is given more access 
opportunity, that is, by setting k I = 2, whereas all the other k i = 1 (i = 2 ..... 10). Again 
notice the enormous difference in state space size: the non-PF model has 27642 states, 
the PF model only 432. 

Table 3 

Comparing the PF and the non-PF SPNs for scenario 1"; 
numerical solution using SPNP in both cases. 

Scenario 1" Non-PF SPN; fig. 1 PF SPN; fig. 2 

Z Bl Bi AI Ai ty Bl Bi A1 A i ty 

560 0.0015 0.0030 5591.33 279.17 0.0000 0.0016 0.0028 5591.31 279.20 0.0000 
2560 0.0265 0.0132 24921.86 1263.16 0.0002 0.0265 0.0131 24920.73 1263.27 0.0002 
5120 0.0832 0.0272 46942.15 2490.41 0.0022 0.0830 0.0270 46949.28 2490.80 0.0020 

10240 0.2156 0.0642 80318.31 4791.55 0.0191 0.2136 0.0617 80529.81 4804.17 0.0166 
15360 0.3369 0.1155 101852.03 6792.40 0.0572 0.3291 0.1052 103042.94 6872.94 0.0462 
20480 0.4394 0.1787 114816.83 8410.27 0.1130 0.4221 0.1534 118355.20 8669.39 0.0857 

The observed differences between the PF- and the non-PF model can be under- 
stood as follows. Let us first address differences with respect to tr. In the PF model, 
ti, 1 is only enabled if both Pi, 1 and Po are non-empty. Therefore, whenever P0 is empty, 
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new requests for slots are effectively not produced. On the other hand, in the non-PF 
model, ti, 1 only requires Pi, 1 to be non-empty. Thus, even if P0 is empty, requests might 
queue. As a consequence, whenever P0 becomes non-empty, there might be immedi- 
ate transitions enabled that directly empty P0 again. In the PF model, this is not 
possible, since only at the time when P0 becomes non-empty again, new arrival epochs 
taking exponential time will start. Thus, the probability that P0 is empty will be larger 
in the non-PF models than in the PF models. The larger the utilization of the system, 
the larger this difference will grow. 

Regarding the throughputs, it can be observed that they are larger in the PF 
models. This is due to the fact that the extra delay per cycle, that is, the waiting for 
an empty slot (next to the standard delay introduced by the service and interarrival 
processes), only takes place when P0 is empty. Since the latter is true in the PF models 
with smaller probability, the probability on such an extra delay due to congestion is 
smaller in these models. Therefore, the time for a customer to cycle once around is 
smaller, thus making the throughput larger. 

Comparing the blocking probabilities is the most difficult. At first instance, one 
is tempted to assume that Bi is smaller in the case of the non-PF models, simply 
because it sums the probability of fewer states, that is, B i = Pr{#P0 = 0 v #Pi, l = 0} 
(in the PF case), whereas B i = Pr{#Pi, I = 0} (in the non-PF case). This is, however, not 
true. Although in the non-PF models fewer states are taken into account, their sum is 
larger. This must then be due to the fact that the different model structure divides the 
probability mass in a different way over the states. A more precise explanation can 
not be found for this phenomenon. 

In conclusion, we can state that, also when using SPNP, a large computational 
gain is attained when using the PF model, at the cost of only limited loss of accuracy. 
Furthermore, an even quicker solution is available for the PF model using a mean- 
value analysis. This will be demonstrated in section 4. 

4. Mean-value analysis recursion 

In this section, we derive an MVA for the SPN models presented in section 3. 
A general MVA for product-form batch-movement  queues has been presented (rather 
compact) in [9]; the derivation here operates along similar lines; however, it is tailored 
towards product-form stochastic Petri  nets and provides more details on the individual 
computational steps to be taken. We first present the place invariants (for the model 
presented in section 3) and then derive expressions for the mean place occupancies. 
We also pay special attention to the actually employed and implemented recursion 
scheme. 

PLACE INVARIANTS 

To derive the MVA recursion scheme, we first obtain the S-invariants of the 
model (see fig. 2). There is one such invariant for each station i: 
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S i : ni, 1 + ni, 2 = k i ,  i = 1 . . . . .  M. 

There is also a "global" place invariant: 
M 

SO 't/O + Z ni, 2 = ko"  
i=l 

Note that Si and So are not disjoint. The set S(k) of all possible states is now given as 

S(k) = {n ~_ N2M+IISo,SI . . . . .  SM}. 

AVERAGE PLACE OCCUPATION 

We now proceed with the derivation of the average number of tokens in places 
Po, Pi, l and Pi,2, given k, which we denote, respectively, by mo(k ), mi, l (k)  and m i , 2 ( k  ). 

First we address mi, l(k). The expected number of tokens in Pi, l is 

k~ 
mi, l ( k ) =  Z I  �9 Z 7r(n), (2) 

l = l n e .gq'i,t ( k ) 

where 3Vi,l(k) is the set of states with I tokens in place Pi, 1, that is 

ffgi,t(k ) = {n ~ ~/2M+ll So, S1 . . . . .  S i_l ,  l + ni, 2 = k i, Si+ 1 . . . . .  aM}. 

Substituting (1) into (2), we obtain 

M pnhh.2 
1 Z 1- I 

mi,1 (k) - G(k) t=l , , ~ . ,~k )  h=l nh,2 ! 

M Ph h'2 
H h = l  G(k - e i ) ki -1 nh,2 ! 

G(k) ~(1+I). ~ G(k - e i )  
l = 0 n e,9r t (k - e  i ) 

G(k - e i ) 
G(k) 

1-[M=l nh,2----~, ki-I l'IhM1 nh,2-----~. 

l" Z G ( k _ e i  ) + Z Z G ( k _ e i )  �9 
~ l=O ne.,%ri.t(k-ei) l=O ne.?Ci. t (k-el)  

Here, ei is an (M + 1)-vector with unity in place i (0 < i < M) and zeros else- 
where. By the definition of G(k), the second sum in the parentheses equals 1. The 
first term equals the average numer of tokens in place Pi, 1 given that there are initially 
k - e i tokens. Consequently, we have 
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mi, 1 ( k )  - G ( k  - e i )  G ( k )  [ m i ' l ( k  - e i )  + 1]. (3) 

In a similar way, we derive 

m o ( k )  - G ( k  - e o )  [mo (k - eo) + 1]. (4) 
G(k) 

The derivation of mi,2(k)  is only slightly more complicated. Let 9V/i,l(k) be the set of 
states with l tokens in place Pi,2, that is 

JVli, l ( k ) 

= {n 6 N2M+lln0 + 

Now we have 

Z rig, 2 +l  = k o ; S 1 ; . . . ; S i _ l ; n i ,  1 +l  = k i ; S i + l ; . . . ; S  M . 
g = l , g ~ i  

ki 
m i , 2 ( k )  = G(k) -1 ~ I. 

l = l  

M phh,2 

Z 17 , 
na.%ii,l(k) h=l nh,2" 

= G ( k ) - l ~ . ~ l  �9 ~_~ 
1=1 n~Mi,t(k)~,h=l,h:~ i nh,2[ l[  

k i - 1 
= a(k)  Y .  

l : 0  

M phh,2 

Y. 17 
n~.~ l i , t ( k -eo-e i )  h=l rth,2 [ 

G ( k  - e i - eo )  
= Pi G ( k )  

For convenience, we introduce the ancillary quantities 

and 

70 ( k )  - G ( k  - eo )  
G ( k )  , 7 i ( k ) -  

G ( k  - e i )  

G ( k )  

wo(k) = m o ( k - e o ) + l ,  

wi, 1 ( k )  = mi, 1 ( k  - e i ) -I- 1, 

Wi,z ( k )  = 1. 

(5) 

(6) 

The 7's enjoy the convenient property that 

7 i ( k  - e o ) 7 o ( k )  = 
G ( k - e o - e i )  G ( k - e o )  

G ( k  - e o ) G ( k )  

G ( k  - e i - �9 O) G ( k  - e i )  

G ( k  - e i ) G ( k )  
- 7 0  ( k  - �9 i )7i ( k ) .  (7) 
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The quantity wi,j(k) can be interpreted as the waiting time of a token in place 
Pid, including its own firing time, normalised by the corresponding transition rate, 
that is, ~.i in the case of wi, l(k) and ni,2~ i in the case of wi,2(k). In this notation, the 
recursive relations for the average number of tokens can be written as 

mo(k) = 7o(k)wo(k) ,  

mi, 1 (k) = ~'i (k)wi,1 (k), 

mi,2(k) = PiTi(k - eo)7o(k).  

(8) 

From the invariant Si, we have mi, l(k ) + mi,2(k ) = k i. Substituting the expressions 
derived earlier for mi, l(k) and mi,2(k) in this S-invariant, we obtain 

~i (k  )wi,l ( k  ) + Pi~i  (k  - eo )7o (k ) = ki,  

which can be rewitten as 

~ i ( k ) [ W i , l ( k )  + PiTo(k - el)] = ki 

so that 
Yi (k)  = ki (9) 

Wi,l(k) + PiTo(k - ei ) " 

Similarly, from the invariant So we know that mo(k) + ~M=lmi,2(k) = ko. This leads to 

ko 
t o ( k )  = 

w o ( k )  + ~iM=l P i ~ i ( k  - eo ) " 
(10) 

RECURSION SCHEME AND INITIAL CONDITIONS 

Equations (6), (8), (9) and (10) provide the general step of the MVA recursion 
scheme. One of the advantages of this scheme over other analytic techniques is that 
the values calculated at each stage of the recursion are relevant to the system being 
analysed. For example, assume that a slotted ring has a fixed set of arrival and trans- 
mission rates and the number of stations is to be chosen such that certain performance 
requirements are met. The mean-value analysis need only be performed once, the 
performance measures needed at each stage being calculated using those from the 
previous stage. If this problem is solved using some other technique, for example 
solving the underlying Markov chain using SPNP, a new analysis must be peformed 
each time we change the number of stations in the network. 

It remains to supply initial conditions. For k = heo, with h > 0, the process has 
only the singleton state heo and from (1), G(k) = 1. Hence, by definition 

7o(hoeo )= l  for h0 >0 .  
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Similarly, we find 

Yi(hlel  + ' " + h M e u ) = l  (h i > 0 ; h i  > O , j  ~ i ) .  

Likewise, when only station i generates requests and there are slots available, the 
normalised waiting times for station i equal 1, that is 

wi, (he 0 + �9 i) = 1 (h > 0), 

wi,2(heo + ei) = l (h > O). 

We note that when k is an invalid state, then ~(k) = 0 (i = 0 .....  M). 

TRANSITION THROUGHPUT 

Because of the infinite number of servers, the throughput Ai,2(k) of transition 
ti, 2 is equal to the average number of customers in Pi,2 multiplied by the service rate. 
That is, 

Ai, l(k ) = mi,2(k)l.t i = tq, i~ i (k  - e o ) Y o ( k  ). 

Due to the structure of the SPN, we have Ai, l(k ) - -Ai ,2(k  ). 

IMPLEMENTATION CONSIDERATIONS 

For ease of computation, we can perform the mean-value analysis using only 
the y's. The relevant equations are 

to(k) = 

ko 

k 0 - 7'o(k - eo)~/M1PlYl(k  - 2eo) + E M I  P l Y l ( k  - Co) 
and (11) 

kl l = l  . . . . .  M. 
Y l ( k ) =  k l + P l Y o ( k - e i ) [ 1 -  ~ l ( k - e  0 - e l ) ] '  

The initial conditions are 

~ l ( k )  = 0 if k < 0 (l = 0 . . . . .  M), 

y o ( k ) = O  for k0 = 0 ;  ki ->0 ( i = l  . . . . .  M), 

y o ( k ) = l  for k0 > 0 ;  ki = 0  ( i = l  . . . . .  M), 

y l ( k ) = O  for kt = 0 ;  ki > 0  ( i , l = l  . . . . .  M),  

~ l ( k )  = 1 for ko = 0; kt > 0; ki > 0 ( i , l  = 1 . . . . .  M).  

The blocking probability B i for transition ti, 1 is given by 

(12) 

B i = 1 - )'o ( k ) ~ i  ( k  - e o ) .  
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The program used to obtain the results in this paper has been written in C and 
uses a straightforward procedural recursion scheme. Savings can be made when the 
MVA problem possesses some symmetry. Equation (11) calculates in turn ~'l(k- 2e0), 
~2(k-  2e0) . . . . .  In some cases, these will be the same and so only one needs to be 
calculated, thereby saving some computation time. 

5. Numerical examples 

In this section, we apply the MVA approach to the modelling of the various 
slotted-ring configurations discussed in section 2. First, we compare our solution tech- 
nique with a numerical solution approach performed with SPNP [5]. We then focus 
on the performance of the slotted-ring systems themselves. Finally, we comment on 
the validity and exactness of  the model. 

EVALUATION OF THE MVA APPROACH 

Scenario 1 can be analysed numerically using SPNP as well as with our MVA 
algorithm. For the purpose of comparison, we propose two variants of  this scenario. 
In scenario 1A, the ring is lengthened to exactly 5 slots, that is, z = 12.8 Its and 
#i = 78125. In this scenario, we also give more access rights to station 1, that is, we 
set k 1 = 4, whereas every other kj = 1. Scenario 1B resembles scenario 1A; however, 
we set kl = 4 and kj = 2. Table 4 summarises the three used scenarios. 

Table 4 

Summary of scenarios 1, 1A and lB. 

Measure Scenario 1 Scenario 1A Scenario IB 

10.24 12.8 12.8 
k0 4 5 5 
/.t i 97656.25 78125 78125 
kl 1 4 4 

ki~ I 1 1 2 

All other parameters as in scenario 1 

We present the results of these analyses in table 5. The results for the SPNP- 
based and the MVA-based solution techniques are exactly the same, for the cases 1, 
1A and 1B, as expected. We comment on column 1B* below. Without entering into 
details now, we observe that the total carried traffic (row ~,iA.i) is smaller than the 
50 Mbps actually requested by the application. This is due to competition for the slots. 
The overall bandwidth obtained for station 2 to 20 in scenario 1B is increased in 
comparison with 1A because kj = 2. 
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Table 5 

Some performance measures for scenarios 1, 1A, 1B and IB ~ 

Measure Scenario 1 Scenario 1A Scenario 1B Scenario 1B* 

mr. 1 (k) 0.9114 3.8759 3.8791 3.9017 
mj.l (k) 0.9114 0.8888 1.8796 1.9020 

ml,2(k) 0.0886 0.1214 0.1209 0.0983 
mj,2(k) 0.0886 0.1112 0.1204 0.0984 

Al,l(k ) (slots/sec) 8.6553 x l03 9.6910 x l03 9.445 x 103 7.6790 x l03 
Aj.l(k) (slots/sec) 8.6553 x l03 8.6880 x 103 9,406 x 103 7.6597 x 103 

~iA (Mbps) 42,262 42.666 45.937 37.4056 

B I (k) 0.1548 0.0536 0.0776 0.2501 
Bj (k) 0.1548 0.1516 0.0820 0.2520 

Table 6 

The runtime (in seconds) and the sizes of the underlying Markov chains, for the MVA, 
the SPNP, and the SPNP* solution approach (measured on a SUN SPARC 4/65). 

Solver Measure Scenario 1 Scenario 1A Scenario 1B Scenario IB* 

MVA time < 0.1 0.2 0.3 - 

SPNP time 137.9 383.9 788.2 - 
states 6196 23071 48740 

transitions 46400 211478 401098 - 

SPNP* time 0.5 0.7 - 0.8 
states 16 35 - 45 

transitions 52 128 - 172 

Table  6 compares  the solut ion t imes for  the MVA and the S P N P  approach  ( row 

MVA, and the two rows  for  SPNP).  We measure  only the solution part  in the S P N P  

case,  not  the compi la t ion  and const ruct ion part.  We also indicate the n u m b e r  o f  states 

and transi t ions in the under ly ing  M a r k o v  chain. It  appears  that the MVA method  is 

the m o s t  favourable .  
However ,  as a l ready ment ioned  in section 4, the MVA approach takes symmetr ies  

in the mode l  into account ,  which  the SPNP approach  does  not. W h e n  we take these 
symmet r i e s  into account  in the S P N P  models ,  by ama lgama t ing  3 to 20 and keep ing  

1 and 2 separate ,  as representa t ives  o f  the high and low load stations, we  obtain  the 

solut ion t imes o f  table 6 ( rows for  SPNP*).  The  SPNP approach,  now denoted  SPNP*,  

is now a lmos t  as fast  as the MVA. It  should be noted that  the adapted  S P N  yields  
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exact results only for scenarios 1 and 1A. For scenario 1B* it gives the approximate 
results given in column 1B* in table 5. This is because in scenario 1B*, the request 
rate for slots for the amalgamated stations is nonlinear in the number of token in place 
P3,1 which represents these stations. However, linearity was assumed in the SPNP 
model. In the case kj = 1, that is, scenarios 1 and 1A, the above linearity does hold. 

As a final remark here, it should be noted that the results derived in section 3 
(tables 2 and 3) have been derived using the above symmetries. By the fact that in the 
employed scenarios there k i = 1, for all i, this symmetry exploitation is exact. 

PERFORMANCE RESULTS FOR SLOTTED-RING SYSTEMS 

First we analyse scenarios 2--4. Then we perform a sensitivity analysis of the 
blocking probabilities and throughputs when we vary the offered load. We also study 
the influence of the slot size on the blocking probabilities and throughput. 

Scenarios 2 to 4. Table 7 shows the results for scenarios 2 to 4 obtained with the 
MVA approach. The computation for scenario 4 took a very long time to complete. It 
can be observed that in all cases the asymmetry has influence on the bandwidth divi- 
sion between stations. Further, in all cases, the requested bandwidth is not reached 
(50 Mbps for scenarios 2 and 3, and 81.92 Mbps for scenario 4). 

Table 7 

Some performance measures for scenarios 2, 3 and 4. 

Measure Scenario 2 Scenario 3 Scenario 4 

ml,2(k ) 1.1451 0.0367 1.6022 
mjo2(k) 0.0735 0.0367 0.0500 

AiA(k) (slots/sec) 94.49 • 103 3.581 • 103 32.04 • 103 
Aj, l(k ) (slots/sec) 4.787 • 103 3.581 x 103 1.000 x 103 

YqAi (Mbps) 45.274 43.708 69.379 

B1 (k) 0.0773 0.1249 0.2177 
Bj(k) 0.1120 0.1249 0.0500 

Changing the offered load. We now evaluate scenario 2 under a varying load. In the 
basic scenario, we put a total load of 50 Mbps on a 100 Mbps slotted-ring network. 
The overall throughput turned out to be about 45 Mbps (see table 7). 

Figure 3 shows the blocking probabilities B1 and Bj ( j  = 2 ..... 20) with varying 
imposed load. Note that the x-axis depicts the load on station 1, or equivalently, the 
sum of the loads on the other stations. Consequently, to the right of 50 Mbps we 
overload the system. The blocking probabilities with therefore increase to 1. Notice 
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Fig. 3. The blocking probabilities B~ and Bj for scenario 2 with varying imposed load. 
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Fig. 4. The offered load versus the obtained throughput. 

that B1 < Bj whenever the system is not ovedoaded and that the opposite holds once 
the system becomes heavily saturated. 

Figure 4 shows the offered load to station 1, or equivalently, to all the other 
stations together, versus the obtained throughput, for station 1, the other stations 
and all stations together. As can be observed, the slotted-ring mechanism divides 
the available bandwidth amongst the stations according to the ratios of  their requested 
throughputs. 

The choice of the slot size. One of the parameters that influences the performance of 
a slotted-ring system is the number of slots into which the medium is divided. Having 
large slots implies that the number of slots to be used for a given application data 
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packet is small. On the other hand, having large slots implies having few slots given 
a fixed medium length. Consequently, the time it takes to get access to a slot is large. 
This trade-off has been observed before and has been the motivation for the design of 
a slotted-ring system with adjustable slot sizes [22, 23]. 

Consider a system with M = 50 stations which are assumed to behave identically. 
With a limitation of 1 slot per station at any time, that is, k i = 1, the number of slots 
the medium can be sensibly divided into ranges from 1 to 50. We assume that all 
divisions are possible and interpolate where this implies having slots with non-integral 
sizes. 

Now assume that the offered load is such that whenever the number of slots 
equals k0 = 10, the ratio Pi = ~,i/12i = 0.1 Without loss of generality, assume that J2 i ~ -  1. 
Whenever we increase the number of slots by a factor f, the slot size decreases by a 
factor f. Consequently, the rate  ~i at which slot requests arrive has to increase by a 
factor f in order to ensure the same amount of application data is transmitted. 

Table 8 shows the blocking probability Bi, 2i and Ai,  2 as  a function of the 
number of slots k0. The first thing to observe is that Bi shows a minimum for ko = 7, 
whereas Ai,  2 is increasing with k0. Thus, the above-mentioned trade-off is indeed in 
operation. We observe further that Ai, 2 = ~i (1  - Bi). Since the MVA only gives results 

Table 8 

The blocking probability Bi, ~.i and Ai, 2 as a function of the number of slots ko. 

ko ~i Bi Ai, z ko &i Bi Ai,2 

1 0.01 0.3333 0.0067 8 0.08 0.0892 0.0729 
2 0.02 0.2048 0.0159 9 0.09 0.0925 0.0817 
3 0.03 0.1460 0.0256 10 0.10 0.0973 0.0903 
4 0.04 0.1151 0.0354 11 0.11 0.1032 0.0987 
5 0.05 0.0987 0.0451 12 0.12 0.1097 0.1068 
6 0.06 0.0908 0.0546 15 0.15 0.1310 0.1304 
7 0.07 0.0882 0.0638 50 0.50 0.3333 0.3333 

within reasonable time up to the case k0 = 15 (which took 8 CPU minutes on our 
SPARC IPX workstation), we might use this equation to calculate Ai, 2 in the case 
k 0 = 50, as follows. 

When k0 = 50, the stations operate independently. The only reason for station i 
to block is the unavailability of a token in place Pi. 1 because no > 0 as long as ni, 1 > O. 
The probability of this equals that of  having one customer in an M / M / 1 / 1  queue 
with customer arrival rate )~i and service rate ].~i. Consequently, we have B i = ~i,i/Q2 i + iq, i)  

= Pi / (  1 + Pi) = 0.3333. Thus, Ai, 2 = 0.5(1 - 0.3333) = 0.3333. 
In the asymmetric case, we observe similar behaviour. Figure 5 shows the 

blocking probabilities B1 and Bj ( j  ~ 1) as a function of the number of slots in the 
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Fig. 5. The blocking probabilities B l and Bj (j ~ 1) as a function of the number of slots k o. 

system. As before, we adapted the request rates so that the overall application data 
volume to be transmitted remains constant. The other parameters are as follows. We 
have M = 11 stations, and the request rate of station 1 is as high as the sum of the 
request rates of stations 2 to 11. We set kj = 1 ( j  ~ 1) and kl = min{4, k0}. In this way, 
we allow station 1 to take at most 4 slots or all slots (if less than 4) at any time. 

It is interesting to observe that the optimum number of slots is different for 
station 1 and the other stations. For station 1, k0 = 5 would be the best choice, whereas 
for stations 2 to 11, k 0 = 4 would be best. Notice that the number of slots that gives 
rise to the smallest blocking probability also gives rise to the largest throughput, by 
the simple relation Ai, 2 = )],i(1 - n i ) .  

In this case, we were able to calculate the blocking probabilities for up to 
ko = 15, that is, the "independent" case, with our MVA. In order to check the MVA 
results, we also calculated Bj from the probability of having one customer in an 
M / M / l / 1  queue with customer arrival rate Ai and service rate #i as before. Indeed, 
this calculation also reveals that Bj = 0.1304. Similarly, BL follows from the probabil- 
ity of having four customers in an M / M / 4 / 4  queue with customer arrival rate AI and 
service rate k#l if there are k customers and Pl = 1.5, that is, 

B1 = K -1 p4 4 4-]- = 0.0480 with K = ~ p~/i!. (13) 
i=0 

VALIDITY AND COMPARISON OF THE MODELS 

The slotted-ring model presented here are rather abstract. Although they omit 
many system details, they do reveal behaviour patters that others have found after 
much more time-consuming simulation studies [22, 23, 28] or with numerical analyses 
[1,2,15,29]. The question is, we believe, not so much whether our models mimic 
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reality very precisely as whether they predict the overall performance behaviour, 
expressed in terms of a selection of performance measures (see section 3), correctly. 
We think our models satisfy this last requirement, also when comparing to other 
modelling attempts, as done briefly below. 

Pasch et al. [22, 23] evaluated the performance of slotted-ring system as a 
function of the slot size and studied the influence of complex (multimedia look-alike) 
workloads on the system performance. The latter studies can not be compared with 
ours, as they include much more complex workload models. The former (simpler) 
models assume Poissonian arrival streams combined with geometrically distributed 
slot-usage times (the discrete-time equivalent of our negative exponentially distrib- 
uted times). All queues, however, are assumed to have infinite length. All models are 
described and solved using a standard simulation package. In his evaluations, Pasch 
concentrates on mean delay, whereas we derive blocking and throughput measures. 
Still, Pasch derives similar trade-offs as we do, albeit at much larger cost (simulation 
time): he also observes the trade-off that exists between having many short slots or a 
smaller number of longer slots, as we observe in section 5. 

Zafirovic-Vukotic and Niemgeers present very detailed analytical slotted-ring 
models for the Cambridge Fast Ring and Orwell [28, 29]. In their models, they include 
higher-layer protocol aspects by modelling so-called batch arrivals. A single application- 
oriented packet is then, at its arrival instance, split into mini-packets that are just large 
enough to fit into a single slot. Although the employed models can not be compared 
directly, also these authors observe similar trade-offs as we (and Pasch) have observed 
(see e.g. [29, fig. 16]). 

Finally, Ajmone Marsan et al. [1,2] present SPN-based models of multi-server 
systems which closely correspond to our models. However, the models presented 
all suffer from largeness problems. These problems are overcome by exploiting 
symmetries. When not exploiting symmetries, only configurations with up to 6 
stations and 3 slots can be evaluated; the presented curves in [1], however, are not 
derived for realistic parameters. When exploiting symmetries, much larger models can 
be addressed; however, numerical results are not reported in [2]. The symmetries 
exploited by these authors correspond to the symmetries that De Goei studied and 
evaluated using the standard UltraSAN symmetry exploitation methods (reduced base- 
model construction, see [7]). Unfortunately, also De Goei does not evaluate his models 
for realistic settings. 

6. Summary and conclusions 

In this paper, we have presented an MVA approach for the solution of product- 
form stochastic Petri net models suitable for the analysis of slotted-ring systems. We 
have presented the exact product-form solution and derived the MVA recursion 
scheme. Apart from the MVA recursive relations, we have also indicated how to 
implement these relations. Our MVA differs from earlier ones in that it allows for 
non-disjoint S-invariants and the batch-movement of tokens. We have also compared 
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our model outcomes with those of a more detailed non-product-form SPN. The 
much more costly-to-derive results from that model are roughly the same as from 
our product-form model. 

The advantage of the MVA approach is that it allows for much larger models 
to be solved than would an alternative technique based on the global-balance equations. 
This is partly because less detailed performance measures are derived (only mean 
values, no marginal probabilities) and partly because symmetries in the models are 
easily exploited in an MVA implementation. It should be noted, however, that one 
can still construct models for which also the MVA approach becomes unattractive. 

Another advantage lies in the fact that the MVA approach is numerically very 
stable and does not suffer from overflow problems as convolution and other numerical 
algorithms often do. Finally, the MVA approach might allow for intuitively-appealing 
approximations if the number of tokens per S-invariant is very large, as suggested in 
[24] for queueing network models. 

A question that remains is why the PF approximation does so well? This 
question is very difficult, if at all possible, to answer. Let us touch upon a number of 
issues that play a role in the accuracy of PF approximations; for a more elaborate 
treatment of this, we refer to the book by Van Dijk [10]. 

We first of all have to note that the proposed approximate model is not the only 
possible PF approximation. One could, for example, also consider the approximate 
model (starting from the SPN in fig. 1) where all the transitions ti,2 are made timed 
with a very high rate, and where arcs are added from P0 to ti, 1 and from ti, 1 back to P0. 
Also this model has a PF solution; whether it is better or worse than the one we 
employed is left for further study. Thus, the obtained accuracy with a PF approxima- 
tion depends on the amount of non-PF characteristics the original model has, that is, 
on the amount of "PF repair" required to change the non-PF model into a PF variant. 
Secondly, the extent in which the non-PF characteristics surface in the measures of 
interest plays a role, as well as the actual numerical values used in the model. As can 
be understood, all these issues are very much case dependent. 

Regarding slotted-ring systems, we have observed the following. With the slot 
limitations per station, that is, the k i values, we are able to "control" the admission to 
the medium. The choice of the slot size highly influences the blocking probabilities, 
and therefore the throughputs, for the various stations. Moreover, the optimum number 
of slots differs from station to station in asymmetrically-loaded systems. 

Our product-form results can easily be used for the analysis of ATM-based 
networks [20] (as also suggested by one of the reviewers). With the fixed cell/slot 
size standardised for ATM, that is, 53 octets or 424 bits, at the standardised transmis- 
sion speed of 155 Mbps [21] and the usual propagation speed c = 2 • 107 m/s ,  every 
cell comprises a length of 54.7 m. Depending on where the ATM network is going to 
be used, that is, in a LAN, MAN or WAN context, different medium lengths (number 
of slots), number of attached stations and station workloads and access rights can 
quickly be evaluated with the presented MVA. 
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