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We derive a lower bound on the number of points of a partial linear space of girth 5. As 
an application, certain strongly regular graphs with µ=2 are ruled out by observing that the first 
subconstituents are partial linear spaces. 

1. Partial linear spaces of girth 5 

A partial linear space consists of a set of points and a set of lines (subsets of 
the point set) such that any two lines have at most one point in common. Collinear 
points are called adjacent or neighbours. The girth of a partial linear space is the 
length of a shortest circuit. 

In view of the application to strongly regular graphs we shall use k for the 
number of points and A. for the valency (of the pointgraph) of a partial linear space. 

Theorem. A connected partial linear space with girth at least 5 and more than one line 
(lines possibly of varying size) in which every point has A. neighbours, contains k ~ 
~}.(..1.+3)/2 points. 

Proof. Let L be a line of size /. Denote by T the set of points at distance at least two 
from L. Then JTl=k-l(A.+2-l), and /§:..1. since a line of size A.+1 would be 
a component. Let x; be the number of points in T having exactly i neighbours at 
distance one from L. We have 

(i) Z X1 = k-/(..1.+2-l), 
i 

(ii) Zix1~l(A.+t-l)(t-1), 
i 

Hence 

0 :::§ Z (i-(A.+2-l))2x1 = 2 Z (2i)x1-(2A.+3-21)4' ix1+(A.+2-l)2 Z X1 ~ 
J. ' ' ' 

:::§ l(l- 1)(). + 1-!)2-/{l-1)(..1.+ 1- l)(2..1. + 3-21) + (..1. +2- l)2(k- l(A.+2-l)), 
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whence 
k(A.+2-1)2 ~l(A.+2-l)((A.+2)(A.+1-/)+ 1) 

which can be written as 

k ~ _!_ 2(). 3) (2 + 2)(A.-l)(2/-3-A.) 
- 2 + + 2(A.+2-l) 

It follows that ifthere is a line of size l with /~0.+3)/2 then k~d(A.+3)/2 (with 
strict inequality unless 1=2 or l=(A.+3)/2). 

If l is relatively small then we can improve on estimate (ii). Let m be the size 
of the longest line intersecting L. We have 

(ii)' Zixi~l(l+l-1)(2+1-m). 
i 

Hence, evaluating 0:§2' (i-/)(i-/- l)xi we find 
i 

k ;:;;: (A. l)2 -/A.- 2/(m-l)(A.+1-l) 
- + l+l 

It follows that if the longest line in our partial linear space has length at most (J,.+ 1)/2 
(putting m:§/:§(}.+ 1)/2) then k ~ 0. + 1)(2 +2)/2=A.(A. +3)/2+ 1. 

In case the longest line has length (A.+2)/2, we have to estimate somewhat 
more carefully. If there is a line L of length /:§A./2 such that each line intersecting 
L has length at most )./2 then k~A.2/2+2A.+ I. This shows that for smaller k there 
are many lines of size A./2+1 ; in fact too many. 

Write IMl=l +sM for each line M. Considering the lines M distinct from 
L passing through a point xEL we see that x is at distance two from Z sM(A.-sM) 
points in T. But Z sM=2+1-l, so Z sM(A.-sM)=A.(J,.+1-/)-(A.+l-/)2+ 
+ Z sMsN~(l-1)(A.+1-l)+(nx-1)(2(A.+1-l)-nx) where nx=Z 1 is the 

M>'N M 

number of lines intersecting L in the point x. 
Let nx = 1 for j points of L, so that nx ~ 2 for the remaining /-j points 

of L. Then 

(ii)" Z ix1 ~ /(l-1)(2+1-/) +2(/ -j)(1-l). 

In particular, for l=A./2+1 we find, evaluating 0-:§Z (i-J)(i-l+I)xi. that 

k ~ ~ ;.2+2+ 1 + 4(1-21(1-j); 

On the other hand, if for some jEN each line of size /=A./2+1 intersects at least 
~ + 1 . others ~f this s.ize th~n considering j(j + 1) lines of size I intersecting such 
Imes mte~sectmg a give~ hne L we find ITl=k-/2 ~j(j+l)(/-l)/2=Aj(j+l)/4. 

This shows that if the linear space contains lines of size I= Aj2 +I then 

k ~ max min{ 2
1 A.2 +3A.-3-j 4/-S _!_A.j(j+l)+.!.;,,2+A.+1} 

O;;>j:;;l I ' 4 4 . 
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Hence, for A.=2, 4, 6, 8, 10 we find k"§:5, 15, 27, 46, 67 respectively, and 
in general putting j=f Yil we find k>J..() .. +3)/2 for ).>6. This proves the 
theorem. II 
Remark. Equality holds in the theorem iff J..=2 and k=5. (This partial linear 
space exists -it is a pentagon.) For: if there is a line of sizd./2+ I then k>).(J..+3)/2 
unless A.=2 or A.=6. But if A.=6 and k=27 one sees that each line of size 4 
intersects exactly three others and that each point in Thas three or four neighbours 
at distance one of L (where 1=4) - hence lines of size 4 do not intersect in T and 
ITf "§:18, k"§:34, contradiction. 

Hence there are no lines of size )./2 +I, but each line of size at most (A.+ 1)/2 
intersects a longer line, so there are lines of size (A.+3)/2 or ).. In the former case 
(l=() .. +3)/2) wemaysuppose A.>3. Weseethat j=l, i.e.,eachlineofsize(J..+3)/2 
intersects only lines of size (J..+1)/2. Let there be a lines of size (A+3)/2. Then 
there are (A.-a)(A.+3)/2 points not in one of these lines, and a(J.-l)(J..+3)/4 in
cidences of such points with (A.+ 1 )/2-lines. But each point is in at most two (A.+ I )/2-
lines, so (J.-a)(A.+3)"§:a(A.-l)(A.+3)/4 and a:§3. If a"§:l then we find a line 
Lwith l=(A.+1)/2 intersectingonlyonelineofsize (A.+3)/2, i.e., with j=l. From 
o~z(i-/-1)2x; onefinds /;§I, contradiction. 

Hence there are no lines of size (). +3)/2 and all lines have size 2 or ).. 
If some point is only in lines of size 2 then it has A. neighbours and ).().-I) 

:::ioints at distance 2 so that k"§:A.2 +1. On the other hand, if A.>2 and each point 
is in a line of size )., then let L be a line of size A. Each of its .A. neighbours is in a line 
of length A., and these lines cannot intersect, so ITl"§:A.(A.-1) and k"§:A.(A.+1). 
This proves our claim. 

Remark. We do not know the right order of magnitude of the lower bound. The 
Theorem gives something of order A.2/2 - on the other hand, the Moore graphs of 
diameter two are examples with k=J .. 2 +1. For small A. we have: 

A.= 2, k = 5, the pentagon. 

A. = 3, k = 10, the Petersen graph. 

A.= 4, k = 15: 

There is a unique partial linear space on 15 points with 10 lines of size 3 and 
girth 5. Its point-graph is distance regular with parameters i(4, 2, 1; l, l, 4). It is 
obtained from the generalised quadrangle GQ(2, 2) by deleting a parallel class of 
lines. It is the line graph of the Petersen graph. 

Now these three examples are regular: all lines have the same size. But for 
regular partial linear spaces these same methods yield stronger bounds: we have 
k"§:A.(A.-1+2)+1 if all lines have size!. If ).;§/(/-1) this can be strengthened to 

k "§: 12(.A.-21+3)+ /(/~ l)3 

(In case A.=/(/-1), equality would mean that we have a strongly regular graph 
with µ = 1 and discriminant (/-1) ¥5, hence equality occurs only for I= 2. In 
general equality means that we have a strongly regular graph withµ= 1 in the first 
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case and a distance regular graph of diameter at m?st three .in the ~econd case -
the linegraph of a system satisfying one bound with equality, satisfies the o.ther 
with equality. This yields very strong conditions on the parameters, and only finitely 

many examples are known.) . . . h 
An infinite family of regular examples is provided by the mc1de~ce grap s 

of finite projective planes: they have k=2(,1.2-.A.+ I), fc:ir .A.=q+ 1, q a pm~1epo~r. 
Concerning irregular examples, there are precisely two others with .?i.-3, 

k=lO namely 

and 

For A.=2, k=5 and .A.=4, k= 15 there are no irregular examples. There are no 
examples with .?i.=5, k=2l. 

2. Strongly regular graphs with µ = 2 

Let G be a graph such that two nonadjacent vertices have at !Ilost two com
mon neighbours. Let x be a fixed vertex, and H=I'(x) the graph mduc~d on the 
neighbours of x. Then each edge of His contained in a unique maximal chque, and 
points and maximal cliques of H form a partial linear space ?f .girth at least. five. 

Now if G is moreover regular of valency k and each edge 1s m exactly A. triang
les then by the Theorem, either k~J.(,1.+3)/2 or I'(x) is a disjoint union of lines 
of size ,1. + 1. It follows that (A.+ l)!k and that G itself is a partial linear space. 

In particular, this holds for strongly regular graphs with parameters v, k, .A., µ 
(as defined, e.g., in [2]) where µ=2. Thus: 

Corollary. A strongly regular graph with 11=2 and k<.?i.(A.+3)/2 is a partial quad
rangle; in particular it satisfies the divisibility condition (.A.+ l)lk. 

This Corollary rules out infinitely many feasible sets of parameters of strongly 
regular graphs that just escape the claw bound ([2], Theorem 4.7 (iii)). For example, 
if µ=2 and the smallest eigenvalue is -4 then its multiplicity is 24.?i.+210/(A.+6) 
so that A.E {O, I, 4, 8, 9, 15, 24, 29, 36, 64, 99, 204}. The claw bound rules out the 
parameter sets with A.~24. The Corollary implies that also .li.E {8, 9, 15} is impos
sible, thus leaving the parameter sets (v, k, A.)=(56, 10, 0), (99, 14, 1), (300, 26, 4). 
(The first one corresponds to the Gewirtz graph [I], the other two are unknown.) 

An infinite series of ruled out parameter sets is e.g. (v, k, .A.)= 
=(t 2(6t+11)(3t+2), 6t 2+10t-2,5t-2), admissible for t=sl, 2, 4 or 6 (mod 7) 
but excluded by the corollary for t~2. 

Looking at the table we found one parameter set that just escaped the bound, 
namely (v, k, A.)=(1944, 67, 10). But also this one is easily ruled out. Returning 
to t~e proo~ of the theorem in the special case k=67, .A.= 10 we see that there are 
no Imes of size 7, 8 or 9 and that each line of length 6 intersects at least 4 and hence 
exactly 4 other lin~s of size 6. If there is a line of size 6 then there are at least 1 +4+ 
+ 12= 1_7 . such Imes, together containing at least (2+4/2). 17 =68 points a 
contradict10n. ' 
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Hence there are only lines of size 2 or 10 and k ~ A.2 +1=101 
tradiction. ' 

again a con-

Clearly our result can also be applied to other distance regular graphs, but 
we have no examples at present. 

Table of "feasible" parameters for strongly regular graphs 
with v :§2000 and µ=2 but not with the parameters of a net 

v k A, r s f g existence 

4 2 0 0 -2 2 1 4-cycle (unique) 
16 5 0 1 -3 10 5 Clebsch graph (unique) 
56 10 0 2 -4 35 20 Gewirtz graph (unique) 
85 14 3 4 -3 34 50 ? 
99 14 1 3 -4 54 44 ? 

243 22 1 4 -5 132 110 Berlekamp-Seidel-van Lint graph 
300 26 4 6 -4 117 182 ? 
352 26 0 4 -6 208 143 ? 
456 35 10 11 -3 95 360 Ruled out by the claw bound 
630 37 4 7 -5 259 370 ? 
704 37 0 5 -7 407 296 ? 
736 42 8 10 -4 207 528 Ruled out in this note 
875 46 9 11 -4 230 644 Ruled out in this note 

1176 50 4 8 -6 500 675 ? 
1276 50 0 6 -8 725 550 ? 
1625 58 3 8 -7 754 870 ? 
1944 67 10 13 -5 536 1407 Ruled out in this note 
1961 70 15 17 -4 370 1590 Ruled out in this note 

(Herek, r, s are the eigenvalues of the graph, with multiplicities 1,/, g.) 
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