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Abstract

First-order logics allows one to quantify over all elements of the universe.
However, it is often more natural to quantify only over those elements which
satisfy a certain condition. Constrained logics provide this possibility by intro-
ducing restricted quantifiers Vx.g £ and 3x.g ' where X is a set of variables,
and which can be read as-“F holds for all elements satisfying the restriction R”
and “F holds if there exist elements which satisfy R”, respectively.

In order to test unsatisfiability of a set of such formulas using an extended
resolution principle, one needs a procedure which transforms them into a set of
constrained clauses. Such a procedure causes more problems than the classical
transformation of first-order formulas into a set of clauses. This is due to the
fact that quantification over the empty set may occur. Especially, a modified
Skolemization procedure has to be used in order to remove restricted existential
quantifiers.

In this paper we will give a procedure that transforms formulas with restricted
quantifiers into a set of clauses with constraints preserving unsatisfiability. Since
restrictions may be given by sorts this procedure can, e.g., be applied to sorted
logics where empty sorts may occur. The obtained clauses are of the form (|| R
where (' is an ordinary clause and R is a restriction, and which can be read
as “CC holds if R holds”. They can be tested on unsatisfiability via constrained
resolution. Finally, we introduce so-called constraint unification which can be
used for optimization of constrained resolution if certain conditions are satisfied.
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1 Introduction

1.1 Motivation

Intelligent problem solving is based on the representation and the use of domain specific
knowledge. However, deductive systems based on the classical resolution principle
in general do not allow the incorporation of methods for domain specific problem
solving: A set of (first-order) formulas is transformed into a set of clauses which then
is tested on unsatisfiability by a more or less blind search. Thereby the formulas are
transformed into clause form regardless from the fact whether or not there exist special
purpose algorithms for solving certain subproblems efficiently. Suppose, for example,
the following part of a knowledge base to be given

(A) Elizabeth is a queen
(B) Every queen is a woman
(C) Every woman likes to wear elegant clothes

and we are interested in the query whether Elizabeth likes to wear elegant clothes.
Expressing these sentences and the query in clause form we obtain the following result:

1) queen (Elizabeth)

2)

3) - woman (z;) V likes-to-wear-elegant-clothes (z,)
1)~ likes-to-wear-elegant-clothes (Elizabeth).

- queen (1) V woman (1)

(
(
(
(

Of course, it is not a hard problem to prove unsatisfiability of this clause set by applying
a few resolution steps. But, in general, large numbers of clauses have to be handled,
and the search for a refutation becomes very expensive. Thus it seems to be more
appropriate to apply efficient algorithms to treat subproblems, c.g., for dealing with
persons and relationships between them. However, the framework of classical resolution
does not support the integration of those algorithms; everything has to be proved by
a uniform blind search.

Based on this observation an extended resolution principle, so-called constrained
resolution, has been developed in [Bur91], [Biir93]. It generalizes a couple of former
approaches like resolution with E-unification [Plo72] or with sort-unification [Wal88]
and enables the integration of domain specific algorithms into the refutation procedure.
The main idea is to equip each clause C with a restriction (or “constraint”) K which is
an open formula with n free variables. For sake of readability we will restrict ourselves
to unary restrictions in the introduction. These restrictions represent domain specific
knowledge and restrict the possible assignments to the variables occurring in €. One
| R, and which
intuitively can be read as “C holds if R holds”. In principle, constrained resolution

then obtains so-called constrained clauses which are written as



works as follows: Given two constrained clauses C'y|| Ry and (|| Rz, a new constrained
clause C || R is generated, where (7 is obtained from ('} and C; by classical resolution.
Therefore, a most general unifier o of the two resolved literals in €'} and C; 1s computed.
The restriction R is then obtained by applying o to the conjunction of R; and R,.

Of course, problems are usually not given as sets of constrained clauses. We suppose
problems to be given by a restriction theory, which represents domain specific knowl-
edge, and a set of extended first-order forinulas where domain specific information
can be represented explicitly in restrictions. ‘This is done by generalizing the classical
quantifiers Vz F(z) and dx F'(x) to so-called restricted quantifiers Vo gy F'(ir) and
Je:mz) F(x), where R is a restriction and Fis a formula. The interpretation of such
formulas is given by “F holds for all elements satisfying R” and “/" holds if there ex-
ists an element that satisfies R”, respectively. Here, satisfaction of the restriction R is
meant with respect to the (“built-in”) restriction theory. These extended formulas are
then transformed into a set of constrained clauses which are tested on unsatisfiability
by the constrained resolution principle.

The problem of how to transform formulas with restricted quantifiers imto con-
strained clauses is only sketched in [Bir91]. In Section 3 we will present such a trans-
formation algorithm. This algorithm differs from the classical transformation of first-
order formulas into clauses since quantification over the empty set may occur. This is
the case if a restriction R is interpreted as the empty set in some interpretations /, 1.e.,
R!(u) is false for every element w in the universe ol I. The transformation algorithm
has to handle both the case in which the interpretation of a restriction R is the eimpty
set, as well as the case that the interpretation ol R is a non-empty set. Since the truth
values of Vo.p(z) ' and 3..p(z) ' depend on [7 in interpretations which interpret R as
non-empty set, but do not depend on F in interpretations which interpret R as empty
set, this task is not obvious. To overcome this problem, we introduce the method of
quantifier splitting which makes the distinction between quantitication over empty and
non-empty sets explicit (see Subsection 3.1).

For the transformation of formulas with restricted quantifiers into constrained
clauses, the restricted existential quantifiers have to be eliminated. But in contrast to
classical Skolemization we cannot use a free interpretation of Skolem function symbols,
since we have to take the restrictions of the restricted quantifiers and the restriction
theory into account. When doing this we obtain tuples of Skolem functions which have
Ry x...x R, as domain if the actual restricted existential quantifier occurs in the scope
of restricted universal quantifiers having restrictions Ry, ..., R,. The range of such a
tuple is given by the restriction R of the existential quantifier to be eliminated. Af-
ter Skolemization, which is described in Subsection 3.2, the formulas are transformed
into a conjunctive normal form. From this normal form constrained clauses can be
generated immediately (see Subsection 3.3).



Let us now reconsider the main idea of constrained resolution in more detail: I'irstly,
a certain part of information is represented separately, namely the part of information
for which we possess of special purpose representation and inference algorithms. We
assume this information to be given by a set of first-order formulas over some signa-
ture A, called restriction theory. Formulas over A can then be used as restrictions of
constrained clauses. A set C of constrained clauses is tested on unsatisfiability by suc-
cessively adding new constrained clauses to C using the constrained resolution principle.
But, in contrast to the classical resolution principle, the derivation of a single empty
constrained clause is in general not sufficient to prove unsatisfiability of C. Note, that
O|| R can be read as “there is a contradiction if R holds”, i.e., there is a contradiction
in cach model of the restriction theory which satishies K.

In Section 4 we present a refutation procedure for a set of formulas with restricted
quantifiers and some of optimizations. This procedure, given in Subsection 4.1, is
based on the constrained resolution principle and the results of Section 3. In [Bar91],
[Bir93] it is shown that a constrained clause C'|| R, whose restrcition R is not satisfied
in any model of the restriction theory, cannot contribute to prove unsatisfiability of
a constrained clause set. Thus, as a source of optimization, these constrained clauses
can be omitted. In Subsection 4.2 we introduce constraint unification which provides a
generalization of this optimization if the restriction theory satisfies a certain condition
(see Subsection 4.3). It will be shown that this condition is satisfied if the restriction
theory does not contain equations, and restrictions do neither contain equations nor
disequations.

The results of the present paper have some interesting applications. As argued
above, constraint resolution can be used as a method to incorporate domain specific
problem solving into the resolution principle. But moreover, since sorts can be seen
as unary restrictions, Subsection 3.2 provides an algorithm for Skolemization in sorted
logics where empty sorts may occur. Thus, Section 3 gives an algorithm for translating
first-order formulas with sort information into a set of constrained clauses. In this case,
the sort theory is represented in the restriction theory. Additionally, since we allow
the restriction theory to have an arbitrary first-order axiomatization, we can allow
operations like, e.g., union and intersection to define sorts. In [BHL93] we show how
to use the well-know concept language ALC (which can be seen as a generalized sorted
logic) to define a restriction theory.

1.2 Related Work

The idea of clauses with restrictions has already been introduced by Hohfeld and Smolka
[HS88] who did not aim at a refutation procedure, but in query answering for logic
programming. Thus they do not need Skolemization. The basis of our approach is
[Bir91], where a logic with restricted quantifiers and rules for constrained resolution



and constrained factoring have been introduced. However, the problem of how to
transform formulas with restricted quantifiers into RQ-clauses has only been sketched
there.

As mentioned above, constrained resolution generalizes several approaches of build-
ing in theories into resolution based deduction systems (see [Biir91], [Biir93]). For one
of them, sorted logics, which have been introduced as a basis for restricted quantifica-
tion by Oberschelp [Obe62], there are results on Skolemization. The differences to our
approach are that sorts are unary predicates, i.e., atomic open formulas that restrict
only single variables, and that the constraint theories are just sort hierarchies. Our
restrictions can be arbitrary open formulas constraining tuples of variables. In addi-
tion, sorts are usually assumed to be non-empty. Hence, Skolemization is not really
a problem; it is rather similar to the classical case (cf., for example, [Wal87], [Wal88],

[Sch89]).

In [WO90] a many-sorted logic is presented which allows potentially empty sorts.
For this logic a transformation of formulas into clause normal form is given. Building
upon this work, [Wei92] presents a sound and complete resolution based calculus for
a sorted first-order language, where sorts may denote empty sets and conditioned sort
declarations are allowed. For this calculus a new unification algorithm is introduced and
it is shown that the sort declarations this algorithm is built upon have to be changed
dynamically during the deduction process. In order to distinguish between empty and
non-empty interpretations of sorts their calculus i1s equipped with specialized rules.
In contrast to that, our quantification splitting approach is based on an a priori and
explicit case distinction on the interpretations of restrictions as empty and non-empty
sets.

Cohn [Coh92] discusses a many-sorted logic with possibly empty sorts, but starts
with a set of clauses and thus does not give a Skolemization procedure. Finally, in
[FFS90] and [FS91], transformation of modal logic sentences into a logic with restric-
tions i1s treated. They give a systematic transformation of certain modal logics into
constrained first-order logics. But they only address logics which allow a “classical”
Skolemization procedure.

The use of terminological logics as restrictions is discussed in [BBH*90]. But in
this approach, problems have been assumed to be given as a set of constrained clauses
without function symbols, together with a restriction theory. For this case, algorithms
for deciding satisfiability and validity of restrictions have been given. In [BHL93] we
will show that testing satisfiability and validity becomes more complicated if problems
are not given by a constrained clause set but by a set of first-order formulas with
restricted quantifiers together with a restriction theory. The reason for this lies in
the fact that function symbols may be introduced by Skolemization and we thus need
algorithms to test satisfiability and validity of restrictions containing function symbols.



2 A Logic with Restricted Quantifiers

In this section we introduce a logic with restricted quantifiers (RQ for short). Firstly,
in Subsection 2.1, we give the syntax of RQ-formulas and RQ-clauses. The semantics is
given in Subsection 2.2. Finally, in Subsection 2.3, we introduce a resolution principle

for RQ-clauses.

2.1 Syntax

A signature ¥ consists of three pairwise disjoint sets of symbols: a set Fy, of function
symbols, a set Vi of variables, and a set Py of predicate symbols.

Every function symbol f has a nonnegative arity and every predicate symbol p has
a positive arity. Function symbols of arity zero are called constant symbols. A term
is either a variable or a string of the formi f(sy,...,s,), where f is an n-ary function
symbol and s;,...,s, are terms. A term without variables is called ground. The set
of all terms w.r.t. ¥ is denoted by Tx(V'), the set of all ground terms by Tx. An atom
is a string of the form p(#y,...,%,), where p is an n-ary predicate symbol and #,...,1,
are terms. A formula is either an atom or a string of the form —F, F' (G, V2 F or
dzF, where F, (& are formulas, x is a variable, and x € {V, A, &, —}.

The scope of the quantifier Q@ € {V,3} in QzF is the subformula F' except all
subformulas Vz(G or d2G of F' which start with a leading quantifier over the same
variable z. A variable & occuring in the scope of a quantifier Qz F' is bound, otherwise
it is free. A formula without any free variable is closed, otherwise it is open. Given
a formula F' with exactly the free variables x,...,x,, then VF denotes the universal
closure Vz,...Vz,F of F and 3F denotes the existential closure dz;...3da,F of
the formula F'.

Following our icea of incorporating methods for domain specific problem solving we
will distinguish between background knowledge (i.e. domain specific knowledge) and
the foreground information. Because of this distinction we will use a restricted quan-
tification system (RQS) to represent the background knowledge and an RQ-signature
which extends the RQS by foreground language symbols. An RQS consists of three
parts, that is, a signature A, a set of (open) A-formulas, the admissable restriction
formulas, and a restriction theory, which represents the possible interpretations of the
restrictions.

A restricted quantification system (RQS) R consists of

o a signature A with equality,



e aset of (open) A-formluas, the restriction formulas or restrictions which are
closed under conjunction and instantiation of variables, and

e a theory over A, the restriction theory.

The restriction theory can be given either as a set of axioms or as a sct of A-
structures. Note that in the latter case the restriction theory needs not to have a
first-order axiomatization.

A signature with restricted quantifiers or an RQ-signature ¥ consists of an
RQS R together with an additional set of predicate symbols Py and an additional set
of function symbols Fyx, both disjoint from the symbols of A. In order to simphly
our notation we will use the prefix “2-" if we denote objects- -terms, atoms, lormulas,
etc.. that are built upon symbols of Fx and Pg, and variables of V only.

Given such an RQ-signature ¥ we now define formulas with restricted quantifiers
w.r.t. ¥. Therefore we allow quantifiers to be indexed not only by variables, bul by
pairs of a variable set X and a restriction formula R. These extended quantifiers are
written as Vy.g and Jx.g, and we call them restricted quantifiers. Note that the
restrictions represent background information and the E-formulas loreground informa
tion, respectively. We define RQ-formulas over ¥ by

L. all ¥-atoms are RQ-formulas,

2. Vx.pF and Ix.g L are RQ-formulas, where F'is an RQ-formula, R is a restriction,
and X contains at least the free variables in R,

3. Vo F, 3aF, FAG, FV G, ~F, I — G, ' & G are RQ-lormulas, where 7, (7 arc

RQ-formulas, and a is a variable.

Note that in second definition the formula F' may contain free variables of X that
are now bounded by the restricted quantifiers Vx.gr or dx.z. The formula R is called
the restriction for the variables of X and can be seen as a sieve that filters out the
admissable assignments of elements to these variables.

Example 2.1 Let R be an RQS with the predicate symbols Po = {p,¢} and the
function symbols Fa = {f}. Assume that the restrictions are given by the A-formulas
p(x,y) and ¢(z). Then p(f(x),y) and q(z)Aq(f(f(x))) are restrictions because restric-
tions are defined to be closed under instantiation of variables and conjunction. Let us
now extend R to an RQ-signature &, which introduces the additional predicate symbol
Py = {r} and the additional unary function symbol F5 = {g}. Then V, , ..p(,)7(9(2))
and r(g(z)) are RQ-formulas, but V..., 7(¢9(z)) and p(g(z)) are not since the func-
tion symbol ¢ € Fy must not occur in a restriction, and the predicate symbol p € Py

must only occur in restrictions.



We now introduce RQ-clauses (or constrained clauses) which consist of a ¥-
clause C, the so-called kernel, together with a restriction R. Such a clause is written
as C || R and represents the RQ-formula Vy.gr(", where X contains exactly the free
variables in C and R. If C is empty we call it an empty RQ-clause, written as O || R.

In our RQ-signature ¥ e.g. v(f(z)) V r(f(y)) || p(z,y) and O || p(z,y) A q(z) are
RQ-clauses.

Without loss of generality we can assume that the set Fg of foreground function
symbols is empty. We can always achieve this by modifying an RQS as follows: the first
step is to extend the background signature A by the symbols in Fy. But after doing
this we are neither allowed to use these symbols in our foreground language (since Fg
1s empty now ), nor to use them in a restriction, because the set of restrictions does not
contain any formula over these function symbols up to now.! Of course, we want to be
able to express the same facts before and after the extension of Fj. To guarantee this
we use unfolding, i.e., we replace every ¥-term, e.g. f(x), by a new variable z, and
then we enlarge the set of restrictions by the equation = = f(z). Therefore the second
step is to extend the set of restrictions such that it contains in addition all equations
of the form = = 1, where z is a variable and # 1s a ¥-term. Finally we expand the
restriction theory by the new function symbols.

Example 2.2 Let us reconsider the RQS R and the RQ-signature ¥ of example 2.1,

l.e..

Pa = {p,q}, Fa = {[} and Py ={r}, Fr = {g}.

We already know V., ..p(z)7(g(x)) to be an RQ-formula. After the extension of F5 by
the additional function symbol ¢ we obtain

PA:{P>([}7FA:{fa.(/} and PE:{T'}»FEZQ)

After doing this V. , ...z.,)7(g(2)) is no longer an RQ-formula, since (¢(z)) is not a ¥-
formula w.r.t. the modified RQ-signature. However, by the extension of the restrictions
by z = f(z) and unfolding we obtain the formula V. ; ,.p(zy)az= )7 (2), which is an RQ-
formula w.r.t. the modified RQ-signature. ]

2.2 Semantics
We first recapitulate the semantics of first-order formulas (with equality) by using -

structures and Y-assignments. Then, we extend these X-structures to RQ-structures,
which gives a semantics of RQ-formulas.

'Note that the original signature A of the RQS did not contain any of these additional function
symbols, and restrictions are (open) formulas over this original signature A.



Let ¥ be a signature. A Y-structure A consists of a non-empty universe [’ and
maps each n-ary function (predicate) symbol to an n-ary function (relation). A X-
assignment o maps each variable € Vg to an element u € U4,
extended to terms as usual: if-41 = f(#;,...,1,) is an arbitrary term, then we define

a(f(t, .. 1)) = fA((t), ., a(tn)).

To simplify our notation we will use some abbreviations: Flzy,...,.r,] denotes a

This mapping 1s

formula F' that contains at least the free variables @y,..., x,. With Flx « 1] we denote
the formula which is obtained from F' by replacing every free occurrence of the variable
x by the term t. Analogously, I'[x, « t;,..., v, « 1,] denotes the replacement ol every

[ree variable z; by the term 1;, 2 = 1,... ,n. If v is an element of the universe, then

a[z—y) denotes the T-assignment o with the exception of the exphcit assignment of

3

to z. As above, this abbreviation is extended to afp, —u, ... vy —u,], Where .. a, and
uy,...,u, are variables and elements of the universe, respectively.

Given a EL-structure A and a M-assignment « we define satisfiability of a formula
recursively as follows:

(A, ) = plia, .. b)) G0 pAalty),. .. alt,)

(Aa)l=s=1 iff  «a(s) und a(f) are identical in A

(A, ) = F VG iff (A o) E For(Ae)kECG

(A, 0) EFANG iff (A ) Fand (A,a) =G

(A, o) = -F iff not (A4,«a) E F

(A, ) = F - G iff (A,a) = F implies (A,«a) E G

(A,a) | F & G iff (A,0) = Fiff (A0) =G

(A, ) = VaF iff for every u € L4 holds (A, opyy) I

(A, a) = JaF iff there is a u € {4 such that (A, o) E I
Furthermore, (A, «) |= true and (A, «) [£ false for every L-structure A and every

Y-assignment c.

A E-structure A i1s a E-model of a formula F, written A4 = F| if and only if
(A, a) |= F holds for every Y-assignment «. A formula F'is called valid if and only
if every Y-structure A is a ¥-model of F'. Two formulas are equivalent iff they have
exactly the same models.

For the semantics of restricted quantifiers can be given by relativization, that is,
one can transform any RQ-formula into an equivalent first-order formula by replacing

Vx.rF by Vay...Vz,(R — F)
dx.pF by dzy ... Fz (RAF)

where X = {zy,...,2,} is a set of variables.

We will use an alternative characterization which maintains the separation of fore-
ground and background symbols. Since an RQ)-signature X is the extension of an under-

10



lying RQS R, and since we already know the A-models given in the restriction theory
of R, we only need to iterpret additionally the new symbols of the RQ-signature.
Therefore we interpret RQ-formulas in structures that expand the A-structures of the
restriction theory by the new symbols of ¥. The variables of the restricted quantifiers
have of course to be assigned only with elements of those structures which satisfy the
restrictions. Let us define this more precisely.

Let ¥ be an RQ-signature over the RQS R. An RQ-structure over ¥ is a
Y-structure A such that the restriction of A to A, written A|a, 1s one of the A-
models in R. As we assumed that ¥ introduces only new predicate symbols but no
function symbols, we obtain the different RQ-structures by expanding every model of
the restriction theory with all possible interpretations of theses new predicate symbols.
If the restriction theory is given by a A-axiomatization, RQ-structures are exactly
those structures that satisfy the axioms ol R, considered as formulas over the extended
signature.

Let A be an RQ-structure over the RQ-signature ¥, o be a Y assignment, and
X = {xy,...,0,} be aset of variables. The satisfiability of an RQ-formula /7 is
defined as an extension of the satisfiablity of first-order formulas by:

(A, o) |=Vy.pl iff forallu,...,u, € /4 with
(Ala, Ay =y oen—un)) = 1 holds

(AvO[Il‘—“-v---»-"n‘““n]) ): F

(A, o) |= Iy g iff there are uy, ..., u, € U4 such that
(A|A7(Y[J'l«—ul,.'."Tn’—“n]) IZ [? an(l
(Ava[l'l'—ul »»»»» In‘_“-"]) !: I"

A closed RQ-formula F' s RQ—satisﬁable if and only if there is an RQ-structure
A such that (A, o) = F for each X-assignment «. In this case, A is a Y-model
of F', wntten A = F. The RQ-formula F' is called RQ-valid if and only il every

RQ-structure A is a Y-model of /.

Given a restriction R, we say R 1s RQ-satisfiable (RQ-valid) if and only if the
existential closure 3K of R is RQ-satisfiable (RQ-valid).

If we consider RQ-structures as normal structures over the signature ¥ U A we
obtain the following obvious relativization proposition.

Proposition 2.3 The RQ-formulas ¥, . vrE and iz, .. 3.1 are logically equiv-
alent to the formluas ¥V, .. . Vz,(R — F) and 3z, ... 32, (R A F'), respectively.

11



2.3 RQ-Resolution

Given a set C of RQ-clauses we need an appropriate resolution calculus, which allows
one to check C on unsatisfiability. Such a calculus is given in [Biir91] and consists of
the following two rules:

RQ-resolution rule (RR)

p(z1,...,zn) VC1 V...V || R
“p(y1,-- s Yn) VDL V...V D, || S
CiV..VCVDV.. VD, ||[RANSAT

if RASAT is RQ-satisfiable

where I' 1s the conjunction of the equations z; = y;, 2= 1....,n.

That means we can infer the third RQ-clause, which is called RQ-resolvent, from the
first two RQ-clauses if R A S AT is RQ-satisfiable.

RQ-factor rule (FR)

p(zi,.. .,z )V...vpal, . . .2 )VCV...VCL|| R
1

(] SRVEGAY VO [RAT if RAT is RQ-satisfiable
IERREE /1 e 3

where I" is the conjunction of the equations z! = :1:{, 1=1,...,nandjy=2,...
The infered RQ-clause is called RQ-factor.

Example 2.4 Let C be the set

C: (1) qglz,x) || p(z)
(2) —qlz,y) |l ply) A (2 = b)

of RQ-clauses. Then we obtain the RQ)-resolvent

(1),(2): B[ p(z) Ap(y) Az =b) A (:

=
Il
™y
Se—
>
&
|
<
—

For sake of simplicity we will sometimes use constant symbols in the kernels of RQ)-
clauses, though we assumed that the foreground language introduces new predicate
symbols only.? In the above example we would therefore simply write

q(z,z) || p(z)  and  =q(b,y) || p(v)

?Note that in Subsection 2.1 we required the set Fy of additional foreground function symbols to
be empty.
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and, by reasoning on the equations as well, O || p(b).

An RQ-resolution step C — C’ transforms a set C of RQ)-clauses into a sct C’ by
either choosing two suitable clauses in C and adding their RQ-resolvent, or by adding
an RQ-factor to C. An RQ-derivation is a possibly infinite sequence Cy — C; — Cy —

. of RQ-resolution steps. An RQ-refutation of a set Cy of RQ)-clauses is an RQ-
derivation which starts with Cy and satisfies the following condition: For each model
A of the restriction theory there is an RQ-clause set C; in the derivation containing
an empty clause O || R, whosc restriction is satisfied by this model, i.e. A = JR. In
contrast to the classical resolution principle we need in general more than one empty
RQ-clause to prove the unsatisfiablility of an RQ-clause set. To see this let us consider
the following example [Biir91].

Example 2.5 Suppose a restriction theory to be given by the set {p(a),p(b) V p(c)},
and a set C of RQ-clauses to be given by

C: (1) gqlz,z) | p(z)
(2) —qlb,y) || ply)
(3) —qlc,2) |l p(=)

By RQ-resolution we can derivate exactly the following two clauses:

(1),(2) = 81 p(b)
(1),(3): Ol p(e)

Since A |= p(b) or A |= p(c) for every RQ-structure A (because of the restriction
theory), we can conclude that C is unsatisfiable: if A &= p(b) we have a contradiction
because of the first resolvent; if A |= p(¢) we have a contradiction because of the
second resolvent. Note that both restrictions, p(b) and p(c¢), are RQ-satisfiable but
not RQ-valid. Therefore, none of both RQ-resolvents respresents a contradiction in all
RQ-structures. [ |

RQ-resolution has been proved to be sound and complete in the following sense (cf.

[Bur9i)):

Theorem 2.6 A set C of RQ-clauses is RQ-unsatisfiable iff for each RQ-structure A
there is an RQ-derivation of an empty RQ-clause O || R from C, such that A |= 3R.

Obviously, this theorem is not very satisfactory from a practical point of view when
we are interested in an implementation of a theorem proving system for RQ-formulas.
For this purpose one has to find answers to the following two questions:

13



1. As we have seen before, we need in general more than one empty RQ-clause to
prove RQ-unsatisfiability of an RQ-clause set C. In which cases it is sufficient to
derive a finite number of empty RQ-clauses to prove RQ-unsatifiability 7

2. Let C be a set of RQ-clauses. Does C contain for every RQ-structure A an empty
RQ-clause O || R such that A =3R 7

The second question will be imvestigated in this paper (Section 4). An answer to the
first question has already been given in [Btr9l]:

Theorem 2.7 Let ¥ be an RQ)-signature such thal the restriction theory is first-order
ariomatizable. Then:

A set C of RQ-clauscs is RQ-unsatisfiable iff there exists a finite sel of emply RQ-
clauses O || Ry, ..., O|| R, dcriviable from C, such that Ry V...V R, is RQ-valid, i.c.,
for each RQ-structure A we have Al=3R, V...V 3R,.

Since we arc interested in a refutation procedure for RQ-formulas we will restrict
our attention in the following to restriction theories which are first-order axiomatizable.
Well-investigated classes of such theories are terminological logics, sort hierarchies, and
equational theory. If the restriction theory has a first-order axiomatization, the RQ-
unsatisfiability test of an RQ-clause set reduces to the test whether the disjunction of
all restrictions of the already derivated empty RQ-clauses is RQ-valid. If this is the
case we have found a refutation, otherwise we need further empty RQ-clauses.

3 Transformation into RQ-Clauses

In this section we describe a procedure which transforms RQ-formulas into RQ-clauses
preserving RQ-satisfiability. The idea behind our procedure is basically the same as
for the well-known transformation of first-order formulas into clauses. However, two
problems which do not appear in the classical case, have to be solved. On the one
hand, quantification over the empty set may occur, which is not possible in first-order
logics; on the other hand, typed Skolem functions have to be introduced by Skolem-
izing RQ-formulas. Subsection 3.1 is concerned with the first problem, quantification
over the empty set; Skolemization of RQ-formulas is discussed in Subsection 3.2. In
Subsection 3.3 we show how the Skolemized formulas can be transformed into a set of
RQ-clauses. Since Skolemization extends the restriction theory by typed Skolem func-
tion symbols and since all variables in RQ-formulas are restricted, it is convenient to
introduce typed function declarations for the function symbols occuring in RQ-formulas
as well. This is discussed in Subsection 3.4.

14



3.1 Quantifier Splitting

In contrast to first-order logics, RQ-formulas may contain quantification over the cimpty
set. Given a restricted quantifier Vx.g or dx.;z, the quantification obviously ranges
over the empty set in those S-structures A where R4 = 0. The lollowing proposition

shows two properties this kind ol quantifications have:

Proposition 3.1 LetY be an RQ-signature, A a X-structure, and R a restricltion such

that RA is the cmpty set. Then A= Vg I and AW Ix.z I for cach RQ-formula I

The proposition, which can easily be proved via relativization, states that an RQ-
formula Vy.p F' (Jx.p F) evaluates to true (false) for any F'in those structures where
R* is the empty set.

In order to transform RQ-lormulas into RQ-clauses preserving satisfiability, one has
to consider both cases-—the structures in which the restriction denotes the empty set
as well as a non-empty set. This observation motivates the definition of the quantifier
splitting rules:

I. VYxpfF 2w (R=0—true) A(RZWD > Vyx.p I

20 Axp F 23 (R=0— false) A (R#0 — 3x.p I7)

For sake of readability we use R = @0 — F and R # 0 as abbreviations for the RQ-
formulas Vx.—p I and Jx.g true. Moreover, we will sometimes use 2 = 0 and 12 £ () as
abbreviations for the first-order lormulas Vay ... Va, “R[ay, ... a,) il X = {xy,...,z,}
and dx, ... 3z, Rlxy, ... x,], respectively. The term (R =0 — true) in the —yi-rule is
obviously redundant; we therefore always use the —y-rule in a simplified form, defined
as:

1’. \7/,\';}2 f" Hv(R#(O—’V‘,\':R f‘)

On the other hand, we do not simplify the —3-rule—the right hand side of the rule is
equivalent to (R # ) Adx.gr F')—for the following reason. To obtain a set of RQ-clauses
for a given RQ-formula, we transform the formula into conjunctive normal form. The
conjunctive normal form of the right hand side of the —3-rule has the form

(R #* 0 v false) A (R=0Vv3x.r F)

In Subsection 3.3 we will see that the first conjunct (R # 0 V false) is translated into
the RQ-clause false || R = 0, written as O || R = 0, which can be read as follows: We
have derived an empty clause for every structure A such that R* is the empty set.
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Thus, if we would have simplified the —3-rule as described before, this contradiction
would no longer be represented explicitly by an RQ-clause.

The following proposition, which is an immediate consequence of Proposition 3.1,
shows that the application of a quantifier splitting rule to an RQ-formula preserves
equivalence.

Proposition 3.2 Let F' be an RQ-formula. If F' is obtained from F' by application of
the —g-rule or the —y-rule. then F' is equivalent to F.

Both quantifier splitting rules seem to be defined unusually, because the restricted
quantifier on the left hand side of a rule occurs also on the right hand side. There 1s,
however, an essential difference between both occurrences: the restricted quantifier on
the left side of a rule may quantify over the empty set as well as over a non-empty
set. In contrast, the restricted quantifier on the right side of a rule can be treated
as if it has to handle the non-empty case only, because quantification over the empty
restriction is already expressed by the first conjunct of the right hand side of a rule.
This discrimination has, of course, to be done only once for each restricted quantifier.

We are interested in RQ-formulas where each restricted quantifier has been splitted.
Let £ be an RQ-formula. A quantifier splitting of F' is an RQ-formula obtained
from F' by application of the —3-rule or —y-rule such that a rule has been applied to
every restricted quantifier in F at least once.

Let F' be an RQ-formula which contains n restricted quantifier. It is easy to see
that a quantifier splitting of F' can be obtained by n applications of the quantifier
splitting rules. Since each rule application preserves equivalence (Proposition 3.2).
every quantifier splitting of F' is equivalent to F.

3.2 Skolemization

Our next task is to eliminate restricted 3-quantifiers in RQ-formulas. We do this by
introducing Skolem functions, which, however, have a more complex structurc then
those in classical first-order logics.

In classical first-order logics Skolemization is established according to the following
rule: If an existentially quantified variable occurs in the scope of V-quantifiers, e.g.
Vz,...Vz,3Jy Fly], then each occurrence of y in F'is replaced by the term f(xy, ..., z,),
where f: U x...xU +— U is a new n-ary function symbol (a so-called Skolem function).

In our logic with restricted quantifiers we obtain Skolem functions which are “typed”
in the following sense: Suppose that the restricted 3-quantifier 3y,.5¢,) F'[y] occurs in
the scope of V(z,}:R,(z,), - - - » V{zn}:Rn(zn)- L hen each occurrence of 4 in F' will be replaced
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by a Skolem function f: Ry x ... x R, — S, in other words Vz; ...V, Ri(z:) A... A
R.(z,) — S(f(x1,...,2,)).

In contrast to such unary restrictions, we have to generalize this consideration in or-
der to deal with n-ary restrictions. Assume the formula 3¢y, u.y:s501,v) Fly1s - -5 Ukl

to appear in the scope of Vi1 x}}:Rl(z},...,x})»---vv{r;‘ _____ 7 }:Ro (2], zp,)- 1N this case
each variable y; in F' has to be replaced by a Skolem function with all these univer-
sally quantified variables as arguments. We thus obtain a vector (fy, ..., fi) of V-ary
Skolem functions if z},...,r7 are N variables.

These Skolem functions are, of course, not independently from each other; they
have to satisfy the following condition (Cond):

‘v’x}...‘v’:c,’,;(l?.l(:r},...,x})/\...
S(filzy, oo x), oo fulzg, .o 2l)

Note that this condition restricts the possible interpretations of the introduced Skolem

ANR, (2}, .. . 2 )) —

n
m

functions.

By Skolemization such a condition is generated for each restricted 3-quantifier;
after Skolemization we therefore only want to consider structures which satisfy them
all. Thus, a simple approach seems to be an extension of the restriction theory by
these conditions. The following example, however, shows that (Cond) in general is too
weak.

Example 3.3 Let F' be the RQ-formula Jyy.50) (p(z) V —p(z)) and let RT be the
empty restriction theory. The quantifier splitting of F' is given by

(S=0— false) N (S #0 - a5 (plz) V -pla))).

By Skolemization we obtain
F'= (S =0 — false) A (S # 0 — (p(a) V ~p(a))

and the extended restriction theory RT’ = {S(a)} where a is a new Skolem constant.
That means, S has to be interpreted as a non-empty set in every model of RT’ (and
we only consider structures which satisfy the restriction theory). In contrast, however,
there are models A of RT with S* = . Since these are structures which do not satisfy

F', we conclude that F'is not RQ-valid w.r.t RT while £’ is RQ-valid w.r.t. RT'. N

This example shows that such an extension of the restriction theory may influence
RQ-satisfiability of RQ-formulas. To overcome this problem, in the above example we
do not want that S is interpreted as a non-empty set in every RQ-structure w.r.t. RT'.
We therefore modify (Cond) such that a* is an element of S# only in RQ-structures
A such that S# is non-empty.

17



Generalizing this 1dea a vector (fi,..., fi) of Skolem functions has to satisfy the
condition
Az 3z Sz, ..., ) — (Cond)

which will be added to the restriction theory as the Skolem declaration

(S#DB) = (frseos fi) i By %o x Ry S

Summing up, one Skolemization step eliminates the first restricted 3-quantifier in
an RQ-formula as follows: Firstly, it enlarges the signature A by the new Skolem func-
tion symbol(s), then it extends the restriction theory by the required Skolemn declara-
tion, removes the current restricted 3-quantifier, and finally replaces each occurrence of
its variables by the corresponding vector of Skolem functions. In the above example we
would obtain the Skolemized formula F' = (S =0 — false)A(S # D - (pla)V pla)))
and the Skolem declaration (S # 0) — a:+— S.

The following theorem states that, given an RQ-formula with sphtted quantifiers,
such a Skolemization step preserves RQ-satisfiability.

Theorem 3.4 Let ¥ be an RQ-signature and let I be an RQ-formula with splittcd
quantifiers, and let X', F' be obtained from X, F by onc Skolemization step. Then
there exists an RQ-structure over ¥ which satisfies Fiff there exists an RQ)-structure
over ' which satisfies F'.

Proof: We will show that for each Y-model A of F' there exists a ¥ model A" of [,
and vice versa by constructing A’ from A in an appropriate manner. That means, A’
is an RQ-structure over X' (i.e. A" is a model of the restriction theory within ¥') iff A
is an RQ-structure over X.

Suppose (G = H{yl....,yk}:S(yl,...>yk)G’[yl7 ..., Y| contains the first restricted J-quantifier
in F'. Furthermore suppose the formula G to occur in the scope of the universal

quantlﬁers V{r},,x? }:Rl(r},...,r})a s 7V{x’l",...,r"m:}:Rn(z:‘,...,z”m)-

Let A be a ¥-structure and let A’ be a ¥'-structure such that (i) U4 = U4 and
(12) A’ is an extension of A to ¥, i.e., A'lg = A. That means, A’ interprets in addition
to A the new Skolem function symbols only. Note that every ¥-assignment also is a
Y'-assignment, and vice versa (since U4 = U4 and Ve = V).

Since the interpretation of the new Skolem function symbols in A" depends on the
interpretation of the restrictions R,,..., R, and S in A, we distingiush the lollowing
four cases:

18



Case 1: S # () and each R# # (). Because of A'|z = A we also have S4" # () and each

R 4 0. If a is an arbitrary S-assignment we define

(b, ..., b)), if R (a(z)),.. ., alz})),

R¥ (a(2?),...,a(z™)), and

) . a tuple (b5, ...,b%) exists with
U el alah) = e D)
(Alaa[yle—b" yke—bz‘]) |: €
(ef,...,cf), otherwise ,
such that SA(cg, ..., ¢f) holds

If there is more than one possible value of (fy, ..., fi)* (a(z}),..., a(z™)), we choose
one of them arbitrary, but fixed.

We have to show that A is a ¥-model of F' iff A" is a ¥'-model of F'. Given an
arbitrary -assignment o we distinguish whether or not (A, «) satisfies all restrictions
Ri(zh, .. .. :rl?) of the universal quantifiers.

If there is an 7 such that (A, ) & Ri(z},...,z}) the truth value of
v{r' r;}:R,(r’l ..... z}) H

does not depend on the truth value of the subformula H (see Proposition 3.1). There-
fore, the syntactical transformation which is performed within H by Skolemization
cannot influence the truth value of the RQ-formula F.

Otherwise, since the variables ], ..., 2" are all universally quantified, it is sufficient
to show that

(Av CY) ‘: 3{1/1 ..... vk }:S(w ,...,yk)(;[yls s 7yk]
iff
(AI’(Y) ': G[yl « fl(m%v R :E:ln)a ceea Yk & fk(:'civ cey Tyy;ﬂl)]
where a is a L-assignment such that (A, ) |= Ri(2},...,2%, ) fori=1,...,n.
Suppose (A, o) = gy, S yk)(;'[gjl, ..., yk)- In this case, there exist elements

U, ... ug in U4 (= U4 such that S*(uy,...,ux) holds, ie., (A, ALy o —ui])

A

Gly1, -, Yk). Summing up we know

1. R (alal), .. alz]),. .., R (a(a?),. .., a(z?)) because of our choice of a.
2. A tuple (uq,...,ux) exists with
(a) S%(uy,...,u) and
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(b) (Alﬁa[yl‘—ul ..... ykh—uk]) |: (/:,'

and thus (A, apy, —be, _y—b2]) Glyr, .. ye] i 6 = fA(alz)), ..., alz?)) because of

.....

the definition of the vector (fi,..., fi)*. From this we can conclude that (A',«) |

n.

Glyr e filzh, o am) e ye — ful@h,oam)).

Now suppose that (A’ a) = Gly, — Ny, o2y e — fulay, o2k

m
. s A7 . . Al
Since we assumed S# to be non-empty, there are elements wuy,.. ., ux in [ such

that S4 (uy, ..., ug) holds. Especially we know that

SYUH (el @), i (aley), o ala)

holds because of the definition of the Skolem functions. Summing up, il d; 15 an
abbreviation for fA'(a(xl), ..., a(2?)). we have

'

LA oy i) |E Glyn, oo yx] and

2. SA(dy,. ... dy)

and from this we immediately obtain (A, o) = 3, 0w S0 yk)f/[jjl, Yk

[n the next cases we abbreviate 3¢, yk}:‘q(y“_‘,yk)(;'[y,, ok by G and (A"[y, “ -

Alxy,oal) ooy — filag, .. 2n)] by G

Case 2: SA = and each R* # 0. If «v is an arbitrary Y-assignment, then we define

(fryoo o S (), ol )y o= (b, be)
where the b; are in [/ arbitrary, but fixed.

We have to show that A |= F iff A" |= F'. We know that the Jy, 1S
quantifier has been splitted by the —3-rule. Therefore, G occurs on the right hand side
of the implication S # 0 — (7, and G’ occurs on the right hand side of S # ) — .
Since SA = S =@, wehave AES#0 - Gand A =5 #0 - G Since F' is
obtained from F' by replacing G by G’ only, we can conclude that A4 |= Fiff A" |= F'.

Case 3: SA % () and R? = 0 for some i. We define
(f1> s '7fk)AI(CY(‘T"})7 e 70(1;)) = (blv e 'abk)

where the b; are arbitrary, but fixed in U4 such that S4 (b, ... ,br) holds.

Then G as well as GG' occur in the scope of universal quantification over the empty
set. Therefore the truth value of F' and F” does not depend on GG and G', respectively
(Proposition 3.1). Thus A |= F' iff A’ = F' follows immediately.

Case 4: SA = § and R# = | for some i: This case can be treated similarly to (3).

20



Up to now we have shown thatl there exists a X'-model A" of F’ [or each YX-model
A of F, and vice versa. We finally show that A is an RQ-structure over ¥, i.e. Ais a
model of the restriction theory within ¥, il A" 1s an RQ-structure over Y.

Let 7 be the restriction theory of ¥, and let 7' be the restriction theory of ¥, We
firstly show that A’ is an RQ-stucture over ¥’ if A is an RQ-stucture over Y., Note that
7' contains additionally to 7 the Skolem declarations only. Since A’y = A and A is
an RQ-structure over ¥ we know that A’ satisfics 7. Therefore we only have to show
that A’ satisfies the Skolem declarations. Assume that S # 0 > (f1,..., fx) + I X

. x R, — §is a Skolem declaration in 7'. Agam, we distinguish the interpretations
of S and R,. If S*" =0, then the declaration is obviously satisfied by A’

Now suppose S # @, and therefore A’ |= (Cond) is to show. Let a be an arbitrary
S-assignment. [[ there is an 7 such that (A", a) & Ri(x], ..., 2}) there is nothing to
show. If, on the other hand, (A'. ) satisfies each Ri(x},...,z}), then (A, ) has to
satisfy S(fi(x], - al), o fiulay, .o 2h)) as well. By the definition of the Skolem
functions i Case I A’ does satisfy this condition.

Conversely, suppose A’ satisfies 7'. Then A’ satisfies 7, and therefore A = A'|s

obviously satisfies 7 since 7' contains additionally to 7 the Skolem declarations only.
Thus, the theorem is proved. 0

3.3 RQ-clause form

[n the previous subsections we have shown how to transform RQ-formulas into RQ-
formulas without restricted 3-quantifier preserving satisfiability. In this subsection we
finally describe how to obtain R€-clauses from the latter RQ-formulas. Remember
that an RQ-clause is of the form C'|| R, where ' is a £-clause and R is a restriction,
and represents the RQ-formula Vy.p C.

In order to achieve the transformation we need the following two rules, which show
how restricted V-quantifiers can be moved within RQ-formulas.

o (YxprF)VGE =, Vyr(I'VG)
if no z € X occurs free in (7.

o Vx.r(FAG)—A(Vyir FYA(Vz.rG)
if each ¥ € X occurring in F' ((7) 1s replaced by a new variable y € Y (z € Z).

[t 1s straightforward to prove that applications of both rules preserve equivalence of

RQ-formulas.

Observe that, in contrast to first-order logics, the rule (Vx.g F)ANG — Vx g (FAG)
does not preserve equivalence of RQ-formulas, e.g., Vi, y.r@p(z) A false is obviously
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RQ-unsatisfiable. while Vi, e (p(2) A false) is RQ-satisfiable. Therefore, we cannot
transform an RQ-formula into an equivalent RQ-formula which is in prenex form. The
following proposition. however, states that an RQ-formula can be transformed into
another useful normal form.

Proposition 3.5 Lel F be an RQ-formula obained by quantificr splitting and Skolem-
ization. Then F can be transformed into an equivalent formula which is a conjunction

of RQ-formulas of the form
v.\’]:Rl .. 'vXn:Rn (F] \/ .. V P"ln)

where each F; is either a S-literal or of the form R = 0 or R # ) for some restriction R.

Proof: Let F' be an RQ-formula obtained from quantifier splitting and Skolem-
ization. We prove the claim by induction on the number of restricted V-quantifiers
occurring in F'. If F' does not contain any restricted V-quantifier, then F' can be
tranformed into the required form by applying the distributivity law.

Now suppose that F' contains n + 1 restricted V-quantifiers. Then I’ has one of the
following forms:

. R=0VVy.rF,
2. (R=0VVxRrF)NG,
3. (R =0 \/\V//\’;RF') Vv G
where R is a restriction, and F’, G together contain n restricted V-quantifiers. By the

induction hypothesis we can assume that F’ and G are already of the required form;
Le., F' and G are of the form My FY A ... AM,F) and N;Gy A ... A NGy, respectively,

n
where each M;, N, represents restricted V-quantifiers, and each F/, GG, is a disjunction.

Without loss of generality we can assume that the restricted V-quantifiers contain
pairwise disjoint variables, what can be achieved by variable renaming.

(1) Assume that F' has the form R = 0V Vx.gF’. Then, by the induction hypothesis,
F can be rewritten as R = 0 VVx.g(M{F{ A ... AM,F!). By applying the —-rule,
— a-rule, and the distributivity law, we can obtain the RQ-formula

VxrM(R=10 \/Fl’) A...ANYxrM, (R=0VF).

Obviously, this RQ-formula is RQ-satisfiable if and only if F'is RQ-satisfiable.

(2) Assume that F' has the form (R = 0 VVxpF')AG or GA(R =0V Vx.rF').
Then, as described in (1), (R = 0 V Vx.gF") can be transformed into the RQ-formula
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YxaM(R=0VF)AN...AVYx.gM,(R=0VEF!), and, by the induction hypothesis, ¢
can be transformed into the form NGy A ... ANy G, Consequently, £’ can be rewritten
as

VerMR=0VE)A . AYsaM(R=0V F)ANG A ANy

(3) Assume that [ has the form (R=0VVy 3 f")VGor GV (R =0VVx.pl"). Then,

as described in (1) and by the mduction hypotheses, F' can be rewritten as
VxR Mi(R=0VEF)AN. .. AYx.g M (R=0V F)V (NG, A... ANNeGY)

By applying the —-rule, —,-rule, and the distributivity law, we can obtain an RQ-
formula

Vi MINJ(R =0V F/V GO A LAY s MUNG(R = 0V F! v (G
O

The following proposition shows that the thus obtained RQ-formulas can iinmedi-
ately be translated into RQ-clauses.

Proposition 3.6 Lel F' be an RQ-formula of the form Nx g, ... Vx, g, (F1V.. . VI,),
where each F; is either a Y-litcral or of the form R =0 or B # 0 for some restriction R.

Then F s equivalent to the RQ-clause

Fov o VI || BoN AR NE, N E,
where the F;, are cxactly the X-lilevals in I°, the I”_,j, are of the form 8 =0 or R # (),
and the R; are the vesirictions of the universal quantifiers.

Proof: An RQ-clause (' || R is represents the RQ-formula Vy. g (7, where X contains
exactly the free variables in R and (. By relativization. V. g(" s equivalent to VX (R —
(') and thus it s easy to see, that the RQ-formula Vy g, ...V, .n, ([7 V...V I),) can
be writlen as I, V...V I, || Ry A... AR,

Because of the application ol the quantifier splitting procedure the F; may contain
restriction-information ol the form R = 0 and R # 0, respectively. Since (/) —
(G5 V (3) 1s logically equivalent to (G A —(7y) — G5 for arbitrary formulas (7, we can
transform

R=0VE V.. VEJIRAN...AR, into F{V...VE,||RZLZOAR A...ANR,,
REOVF V.. VF, ||RiA...AR, into F,V.. VI |R=0ARA...AR,.

3Remember that restrictions are assumed to be closed under conjunction.



With the help of these rules the formula 17 can be transformed into an RQ-clause
of the required form. Since both rules transform RQ-formulas into equivalent RQ-
formulas the proposition is proved. O

With this result we are now able to transform an arbitrary RQ-formula 7 into a
set C of RQ-clauses such that Ci1s RQ-satisfiable if and only il " 1s RQ-satisliable. We
still have the possibility of simplification of the obtained RQ-clauses. This can be
done by the following three rules:

("WV ...V, false || R — V.o oNVO R

false || 17 ok
YV VO RANSAS #0) o V.o ovO | BEAS

I

where 2,9 are restrictions.

The first two vules ave obvious. We will give a prool sketch why the thivd rule
preserves equivalence as well. By delinition the RQ-clause ¢V ..oV Oy || BRAS A
S #F 0 represents the RQ-formmla Yy jpasady, - 3um St y (Y Vv O
contains exactly the free variables o 2. S, and in the (7, and the y; are not in X
By relativization we obtain YX(RA S A dyr oo Aya Sy, oo csym)) — Cr v VO,
By classical first-order transformations this formulais equivalent to VXV, .. Vi, (RA
SASW, - yw)) > Cr vV O Sinee the y; do not appear in X we can obtain
the equivalent formula VX ([F A S) — (', v ..o v (', which represents the RQ-clause
vV VO RAS.

‘‘‘‘‘ , where X

We have now reached the aim ol this section: we are able to transform an arbitrary
RQ-lormula /7 mto a set € ol RQ-clauses such that C is RQ-satisliable if and only if
s, To perlorm this transformation we first have to replace e and -, and to shilt
negation inside. I'he second step s to compute the quantifier sphitting. To the thus
obtamed formula we apply our Skolemization procedure and obtain an RQ-lormula [
without existential quantifiers. and a modified RQ-signature X0 The final step s to
transform /' into the form of Proposition 3.6 and to translate cach conjunction into

an RQ-clause.

We have seen, that /is RQ-satisfiable wort. X il and only if C is RQ-satisfiable w.r.t.
' Building upon this will in the following give a procedure for testing RQ-satisliabilty
of C wat. ¥\

3.4 Function Declarations

If we transform arbitrary RQ-formulas into RQ-clauses, these RQ-clauses may contain

function symbols because of Skolemization. IFor example, the transformation ol the
RQ-formula
Yo p:riz) Iy st P, 1)
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results in the RQ-clause set

plz,y) || R(x)AY = fsrolem(T) NS # 0
O || R(IAS=0 _

and an extension of the restriction theory by the Skolem declaration

(S ?é 0) - fSkolFm :Rm— S

Analogously, RQ-clauses may contain function symbols which have been introduced
in RQ-formulas as, e.g., in

v male(father(z))

{z}:human

where human is a unary restriction, male is a predicate, and father a function symbol.
Up to now we interpreted these function symbols free, i.e., we assumed a Y-structure
A to map each n-ary function symbol f to a function fA: U4 x ... x U — U4, where
U4 is the universe of A. Indeed, since all variables in RQ-formulas are constrained, it
1s convenient to take restrictions into account when interpreting function symbols. In
the above example it is more intuitive to define the unary function symbol father to
map from human to human instead of mapping arbitrary elements of the universe to
the universe.

Analogously to the Skolem function declarations one therefore can extend the re-
striction theory by a function declaration for each function symbol occurring in a set
of RQ-clauses (RQ-formulas). If f is an n-ary function symbol and R,,..., R,, R are

restrictions, a function declaration is of the form
f:Ry x...x R, — R.

A straightforward semantics of these function declaration for the case that R is a unary
restriction is characterized by the following property:

‘v’a:i...‘v’xf,‘l(]?l(a:},...,m})/‘\.../\Rn(:zt?,...,a:" )) —
R(f(xy,...,2m), .., filey, .oy 2)

There are, of course, a lot of possible extensions of this straight-forward semantics
for function declarations. There are two aspects that have to be taken into considera-
tion when choosing a semantics. Firstly, for a concrete application some semantics may
be more intuitive than another one. And, secondly, finding algorithms to decide satis-
fiability and validity of restrictions may be more or less expensive (or even impossible)
depending on the choosen semantics.
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4 The General Refutation Framework

In the previous section a metheod for transforming RQ-formulas into a set of RQ-clauses
preserving RQ-satisfiability has been described. To these RQ-clauses we can apply RQ-
resolution (see 4.1). In Subsection 4.2 we introduce constraint unification which can
be used to reduce the number of derived RQ-clauses. However, this optimization can
only be applied if the RQS satisfies a certain condition introduced in 4.3.

Some of the proofs in this section need techniques from mathematical logics and
model theory. We will give them in the appendix.

4.1 The Refutation Procedure

To prove RQ-unsatisfiablity of an RQ-clause set C we can use the RQ-resolution and
the RQ-factor rule which succesively add new RQ-clauses to C. This process is iferated
until a set of empty RQ-clauses O || Ry, ..., 01| R, is derived such that B, V...V R,
1s RQ-valid (see Lemma 2.6).

By definition, the RQ-resolution as well as the RQ-factor rule only add new RQ-
clauses to C whose restrictions are RQ-satishable. It is easy to show that this is an
optimization which reduces the search space, but which does not alfect refutation
completeness of the RQ-resolution principle: I we apply the RQ-resolution or the RQ-
factor rule to an RQ-clause with an RQ-unsatisfiable restriction, then the restriction
of the resulting RQ-clause is RQ-unsatisfiable as well. Furthermore, if we have derived
empty RQ-clauses O || Ry,..., 0| R,, and O|| R is an empty RQ-clause with an RQ
unsatisfiable restriction 7, then obviously £, V...V R,V Ris RQ-valid iff &y V... VR,
is RQ-valid. Thus, an RQ-clause with an RQ-unsatisfiable restriction R is redundant
when testing RQ-unsatisfiability of a clause set C.

This idea can be generalized as follows: If a concrete restricted quantification system
is given it may be the case that there are more RQ-clauses redundant for testing RQ
unsatisfiability than those having an RQ-unsatisfiable restriction. For example, in the
next subsection we will introduce a technique, called constraint unification, and we will
show that RQ-clauses whose restrictions are not constraint unifiable are redundant for
proving RQ-unsatisfiability if the restricted quantification system satisfies a certain
condition. In the general refutation procedure below we will therefore use a slightly
modified version of the RQ-resolution and the RQ-factor rule. Thereby we will use
the predicate redundant which has an RQ-clause C' || R as input and is interpreted
w.r.t. the actual RQS as follows: redundant (C || R) is true iff the inconsistency of a
clause set C can be proved without adding C' || R to C. For example, an RQ-clause
C'|| R is redundant if R is RQ-unsatisfiable (cf. definition of the RQ-resolution and the
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RQ-factor rule). Thus, we obtain the following generalized versions (RR’) and (FR’)
of the RQ-resolution and the RQ-factor rule

RQ-resolution rule (RR’)

plzy,y. .., 0)) VOV ..V R
_‘p(yl)"~7yn)\/Dl V...V Dm ”S

if not redundant (C'l|RASAT
CiV .. VO VD V.. VD, [|[RASAT if not redundant (C’|| )

where ("is (', V... VOV Dy V.oV D, and T s the conjunction of the equations
T =y, tr=1,...,n.

RQ-factor rule (FR’)

)V.oovpl, .o ay VO VL. VO R

) n

1
1
platy . @) VOV . VO || RAT

Al

RAT)

il not redundant (¢

where (" is p(x), ..., 2} )V (V.. VO, and 1 is the conjunction of the equations

T = ]

! £

c=1,...,nand y=2,... ,m.

Obviously, il we only know these RQ-clauses to be redundant whose restrictions are
RQ-unsatisfiable we obtain the RQ-resolution and the RQ-factor rule of Subsection 2.3.

The general refutation procedure has a set S of RQ-formulas as input and
works as follows: Firstly, S is transformed into a set C of RQ-clauses preserving RQ)
satisfiability (according to the results of the previous section). Then non-redundant
RQ-clauses are derived by the rules (RR’) and (FR’) until the RQ-unsatisfiability ol
C has been proved, i.e., until a set O || Ry,..., 0| R, has been derived such that
RyV...V R, s RQ-valid. This procedure, given in I'igure 1, returns inconsistent iff the
input 1s not RQ-satisfiable, and either returns consistent or does not terminate else.

Correctness and refutation completeness of this procedure follow immediately from
Theorems 2.6 and 2.7.

4.2 Constraint Unification

In this subsection we introduce constraint unification. This unification procedure can
be used as an instance of the redundant predicate in the general refutation procedure
if the restricted quantification system satisfies a certain condition, called (TM) which
is introduced in the next subsection.

To give a definition of constraint unifiability we need the notion of an equational
restriction which is an equation of the form s = ¢ where s and ¢ are terms. Restrictions
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Input: A set S of RQ-formulas and

a background theory 7 which has a first-order axiomatization
Output: inconsistent iff S 1s not RQ-satisfiable

consistent or the algorithm does not terminate, else

Initializing

Transform S into a set C of RQ-clauses while preserving RQ-satisfiability.
Delete each RQ-clause C' || R in C such that redundant (C'|| R) is true.

Testing

L. If T || Ry,...,0]| R, are the empty RQ-clauses in C, and R, V...V R,
is RQ-valid w.r.t. 7, then return inconsistent.

2. If there is an RQ-clause to which the RQ-factor rule (FR’) is applicable,
but has not yet been appled, then apply the RQ-factor rule to this RQ-
clause and add the RQ-factor to C.

3. Find two RQ-clauses which can be resolved against each other by the RQ-
resolution rule (RR’) (of course the two RQ-clauses have to be choosen by
a fair strategy). If there does not exist such a pair of RQ-clauses, return
consistent. Otherwise, add the RQ-resolvent to C (after an appropriate
variable renaming) and goto 1.

Figure 1: The general refutation procedure.

which are not equational restrictions will be called non-equational restrictions. Let
now R = Fy A...NE, NNy A ... NN, be a restriction, where F;,...,F, are the
equational restrictions in R. Then R is constraint unifiable with substitution o
iff there exists an RQ-structure A and a Y-assignment o such that

1. Ei1 A ... A E, 1s unifiable with o, and

2. (A ) Ea(Ny) AL AT(N,,).

[f the restriction R is constraint unifiable with ¢ we call o a constraint unifier
of R. If a constraint unifier o 1s a most general unifier of the equational restrictions
in R we call 0 a constraint mgu of K. We say R is constraint unifiable iff there
is a substitution o such that R is constraint unifiable with o. If o and o’ are unifiers
we say o < o’ (o is more general than ¢') iff there exists a substitution A such that
o'(x) = Mo(x)) for all variables z. We say o < o’ iff 0 < ¢, but ¢’ # 0.
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Example 4.1 Let A and B be predicate symbols of a background signature A, and let
R be the restriction (y = f(2))AA(x)A B(y), where f is a function symbol. Obviously,
the only equational restriction in R, y = f(z), is unifiable with mgu o = {y « f(z)}.

1. Let f have the function declaration f: A+ —B. Since function declarations are
part of the restriction theory, each RQ-structure A has to satisfy f : A — —B,
e, fAu) € BAif u € AA By definition, R is constraint unifiable with o
iff there exists an RQ-structure A4 and a A-assignment « such that (A, «a) &
a(A(z)) A a(B(y)). This is the case iff a(z) € A* and fA(a(z)) € BA. Because
of the function declaration such a pair (A4, o) cannot exist, 1.e., R is not constraint
unifiable with o.

2. If f has the function declaration f: A — A, then R is constraint unifiable with o
iff there exists an RQ-structure A and a A-assignment « such that a(z) € A* and
fA(a(z)) € BA. Because of the function declaration we know fA(a(z)) € A# if
a(z) € AA. Thus R is coustraint unifiable with o if there exists an RQ-structure
A such that A4 N BA # . [ |

By definition of constraint unifiability the test whether or not a restriction R is
constraint unifiable depends on finding an arbitrary constraint unifier o of K. The
following proposition states that it is sufficient to test constraint unifiability of R only
with constraint mgu’s of R.

Proposition 4.2 A restriction R is constraint unifiable iff there exists a constraint

mgu of R.

Proof: We will show the following: If R is constraint unifiable with ¢’ which is not an
mgu of the equational restrictions in R, then there exists a unifier ¢ such that o < ¢
and R 1s constraint unifiable with o.

Let R be given by 3 AL AE, AN AL AN, where Ey, ... E, are the equational
restrictions in K. Furthermore, let A be a substitution such that ¢’ = Ao o, 0 < ¢,
and o is a unifier of 1 A ... A E,. Such a A exists because ¢’ is a unifier, but not an
mgu of the equational restrictions F;. Since R is constraint unifiable with ¢’ we know
that there exists a pair (A, o) such that (A, «) | o'(V,) for 2 = 1,...,m, and because
of ¢/ = Ao o we thus obtain (A, 0 X) |= o(N;). Thus we know (z) £y A ... A E, is
unifiable with ¢ (by the construction of A), and (i7) there exists an RQ-structure 4 and
a A-assignment 3 = a o A such that (A, 8) = o(N;) for « = 1,...,m. By definition,
that means R is constraint unifiable with substitution o. O
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4.3 Using Constraint Unification as Optimization

In this subsection we show that constraint umfication can be used to define the redun-
dant predicate in the general refutation procedure, provided that a certain condition,
called (TM), holds. To formulate this condition we need the notion of a term-model.
If S is a set of formulas over some signature A, then A is a term-model of S over A
iff A= S, all elements in the universe [/ are interpretations of A-ground terms, and
two different A-ground terms denote different elements in (/4.

The property (TM) the RQS has to satisly is given by: Let 7 be a satisfiable
background theory and let Ry, ..., R, be a set of restrictions, then ("T™M) is defined by

TR V...VR,)
(TM) iff
there exists a term-model A of T such that A = 3R, V...V I?,)

For technical reasons we will sometimes use an equivalent formulation of this property,
called (TM’), which is given by

TU{V=R, |1 =1,...,n} is satisfiable
(TM") i
T U{V=R,|2=1,...,n} has a term-model

The following theorem gives a sufficient condition which guarantees property ('TM):
A background theory 7 and a set Ry, ..., %, of restrictions satisfy (TM) if

L. 7T does not contain equations, neither explicitly nor nnphcitly, and

2. each restriction R; can be written as £; A N;, where E; is a conjunction of equa-
tiong and N; does not contain equations nor disequations, neither explicitly nor
implicitly.

This condition is, e.g., satisfied if the background theory 7 is a sort hierarchy
(i.e., given by formulas of the form S(«) and VzS(z) — T(z)), and restrictions are
conjunctions of equations and of formulas S(1) only (where S is a sort and 7 is a term).
The concept language ALC satisfies this condition as well (see [BHLI3]).

Theorem 4.3 Lel 7 be a salisfiable background theory, and let Ry, ..., R, be a sel of
restrictions such that

1. T does not contain (explicitly or implicitly) equations.
2. Fach restriction R; can be written as FE; N N;, where E; 15 a conjunction of

equations and N; does neither contain (explicitly or implicitly) equalions nor
disequations.
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Then T and Rq,..., R, satisfy condition (TM).

Proof: By presumption, 7 does not contain equations such that for all ground terms s
and 7 obviously HT |= s = tifl s and t are identical. Analogously, if 7/ := T U{V-R; |
t=1,...,n}, then 7’ = s = 1 ilf s and 7 are identical, since 7' does not contain any
equations as well. Thus Theorem A.3 1 the appendix can be applied.

We will now show that propery (TM’) holds, 1.e., T U{V-R, | ¢ = 1,....n} is
satisfiable iff 7 U {V-R; | ¢ = 1,...,n} has a term-model. If 7" := 7T U{V-R, |1 =
I,...,n} is not satisfiable, this set obviously doecs not have a term-model. Conversely,
if 7' 1s satisfiable, then 7' has a term-model over the signature A U (7, if A is the
background signature and (' is a countable infinite set of new constants (see T'heorem
A3 in the appendix). Since properties (TM) and (T'M’) are equivalent. the theorem is
proved. O

To show that constraint unification can be used to define the redundant predicate,
provided that condition ('TM) holds, we have to show two facts:

I. If a restriction R is RQ-satisfiable, then R is constraint unifiable as well.

2. RQ-clauses whose restriction is not constraint unifiable are not needed to prove
RQ-unsatisfiability of an RQ-clause set.

[t is easy to sce that the constraint unification test subsumes the RQ-satisfiability
test of restrictions, 1.e.;1f a restriction R is constraint unifiable, then 2 is RQ satisfiable
as wcll. To sece this, let us reconsider the definition of constraint unifiability: £ is
constraint unifiable iff the equational restrictions in R are unifiable with some substi-
tution, say o, and if there exists an RQ-structure A and a A-assignment o such that
(A Q) |F o(N) A...0(Ny), where the N; are the non-equational restrictions in K. If
(A, a) |= o(N) for some non-equational restriction N, then (A, o0 0) | N. Further-
more, if I/ 1s an equational restriction in R, we already know (A, «) |= o(L) for each
RQ-structure A and for each A-assignment o (since o is a unifier of F). That means,

(A.aoo) E R, ie., Ris RQ-satisfiable.

Now we will show that a restriction R 1s not needed to prove RQ-unsatishabilty ol
an RQ-clause set if R is not constraint unifiable.

Theorem 4.4 Let A be a signature, let T be a satisfiable set of a A-formulas, and let
Ry, ..., R, be restrictions such that property (TM) holds. Then T |= IRy V ...V R,)
T = IR, V...V Ry, ), where Ry, ..., Ry, are the constraint unifiable restrictions
m Rla---an'
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Proof: If T |= 3(Ry, V...V Ry,,) then obviously 7 |= 3(R; V...V R,). Conversely,
let now 7 |=3(R, V...V R,), i.e, the set

T :=TU{V-R, |i=1,...,n}
is unsatisfiable. But let us assume that 7 = 3(Ky, V...V Ry, ), i.e., the set
T =TU{vV-Ry |j=1,...,m}

is satisfiable. Since 7 and Ry,..., R, satisfy (TM), for all ground terms s, ¢ holds
TU{¥Y-Ry, |j=1,...,m} | s =tiff s and ¢ are identical. Thus 7j} has a term-model
A over the signature AC which extends A by a countable infinite set (" of new constants
(see Theorem A.3 in the appendix). We will show that in this case 7’ also has a term-
model over A and thus is satisfiable, what contradicts 7 |= 3(R, V...V R, ). Thereby,
note that each restriction R; is a conjunction of equational restrictions By, ..., Fy, and
non-equational restrictions Cy, ..., Cy, (with k; + [, > 1).

If ag 1s an arbitrary but fixed Aq-assignment then (A, ag) = 7}, and thus especially
(A, ap) = ~E;V-C,; foreach j € {1,...,m}. Let now Ry = ENACn, 1 <N <m, be
a restriction whlch is not constraint nmﬁable. By definition of constraint unifiability,
there are two possibilities: Firstly, let Ey not be unifiable. Since unifiability of a
set F of equations is equivalent to satisfiability of the existential closure of £ in each
term-model, in this case we have (A, a) = —Fy for each Ac-assignment «, and thus
especially (A, ap) = —-Ey. That means, (A, aq) = ~En V -Cy. Secondly, let Ey
be unifiable, say with mgu o, but let ¢Cy be unsatisfiable. I (A, a¢) E En, then
obviously (A, ao) E —En V ~Cn. 1If, on the other hand, (.A,(_yo = En, then ag 1s
a unifier of Ky and hence oy = 3o o for some 8. If (A,ap) E 'y as well, then
(A,Boo) = Cn and thus (A, 3) |= oCn which contradicts the unsatisfiability of o('y.
That means, (A, ap) = ~Cy, and therefore (A, ap) E ~En V -Chy.

Summing up, (A, ay) = Ry if Ry is a restriction which is not constraint unifiable,
and A |= 7 since A |= T/. Since qy is an arbitrary but fixed Ag-assignment, A is a
Ac¢-model of 77, and thercfore 7' has a A-model (since 7' contains A-formulas only).

This contradicts the presumption 7 |= I(R; V... V R,) and thus we can conclude
7 E=3IRy, V...V Ry,). a

The next theorem shows us how to use the constraint unifiable restrictions in order
to prove the unsatisfiability of a set of RQ-clauses.

Theorem 4.5 Let A be a signature, let T be a satisfiable set of A-formulas, and let
Ry,..., R, be restrictions such that condition (TM) is satisfied. If each restriction
R, s given by By, Ao NE, ANCy NN Gy, where By By are the equational
restrictions in R;, and if each conjunction E;) A ... A E;_ s unifiable with the mgu o;,

then T l= BV ...V R f T NGy V..V 0nCy).
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Proof: Let R be the restriction £ A C, where £ and (' are abbreviations for the
conjunction of the equational restrictions and the conjunction of the non-equational
restrictions in R, respectively. Furthermore, let R be constraint unifiable. Firstly, we

will show: If E is unifiable with the mgu o, then 7 |= 3R iff 7 |= 30 C.
Let T |= 3R, i.c., the set

T =T U{V-EV (]}
1s unsatisfiable. Suppose 7 = Jo (7, 1.e., the set
T, =T U {V-o(}

is satisfiable. Then, since for all ground terms s, # obviously 7) = s == 1 iff s and /
denote the same ground term, 7 has a term-model A over the signature Ag which
extends A by a countable infinite set of new constants (Theorem A.3 in the appendix).
We will show that in this case 7’ has a term-model over A¢ and thus is satisfiable.

If ag is an arbitrary but fixed Ag-assignment, then (A, ap) E —o (" and thus (A, ayo
o) = ~C. If, on the one hand, (A, o) |= 2 F, then (A, «p) = =F VvV =C. 1. on the
other hand, (A, o) = E, then ag is a unifier of F since A is a term-model. It 1s a
well-known fact that
(*) Qyp =0y 00

if ap is a unifier and o is the mgu of a set £ of equations.® Because of (A, agor) = ~C
we obtain therefore (A, ay) E —C e, (A, ap) = ~F V =C. Sunming up, il 7 = IR
then 7 1s satisfiable and thus 7 = Jo (.

Conversely, let 7 |= o7, 1.0, the set T! := T U {V=0o('} is unsatisfiable. Suppose
T = 3R, e, the set 7' := T U{V-E Vv =} is satisfiable. Analogously to the first
case we then know that 7’ has a A¢-term modecl. say A, and we will show that then
7. has a term-model over A¢ as well and thus is satisfiable.

If ap is an arbitrary but fixed Ag-assignment, then (A, o) = ~F V =(/. Again we
distinguish two cases. If, on the one hand, (A, ay) = £ then obviously (A, ay) = ~C.
But because of (x) we can conclude (A, ag o) | ~C, and thus (A, ag) = oC'. Let, on
the other hand, (A, o) £ £ and suppose (A, ag) E oC. Since g is an mgu of £ we
know (A, ) |= o £.° That means (A, ) | o £AoC. But since we assumed A to be a
term-model of TU{V=EV~("} we know (A, «a) = =EV ~C for each Ap-assignment a.
This contradicts our assumption (A, «g) = oC'. Summing up,if 7 |= JoC', then the sct

Without loss of generality, one can assume that mgu’s are idempotent, i.e., ¢ o ¢ = ¢ for each
mgu o of a set E of equations. Thercefore oy = foo = focoo = agoo if ¢ is the mgu and g = Boo
is some unifier of K.

If o is a mgu of a set E of equations, then A |= Vo E for each structure A, ie., (A, «)  oF for
all assignments £
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7' is unsatisfiable, and that means 7 |= 3R. Thus we have shown that 7 |= 3(E A ()
iff 7= doC.

We still have to show that 7 = 3(R, V.. . VR )T = 3(0,CyVo,C,) ifeach R; is
given by the conjunction of equational restrictions F; and non-equational restrictions
(s, and o; is a mgu of E;. This is easy to verify: Obviously, 7 |= I(E; ACy) V...V
(E, N Cp) iff for each A-structure A with A |= T there exists an index 14 such that
A= 3(E;, ANC; ). This is the case iff A |= Jo,,C;, for each A-structure A that
satisfles 7, ie., 7 |= 3o Cy V...V a,C,). O

The theorem shows that the redundant predicate can be instantiated by testing
constraint unifiability if the given RQS satsifies condition (TM). By this optimization,
search space of the RQ-resolution principle may be decreased largely.

5 Conclusion

In this paper we have presented a general refutation procedure for testing a set of RQ-
formulas on RQ-unsatisfiability. For this procedure we extended the work of Burckert
[Bir91] by a transformation procedure of RQ-formulas into RQ-clauses and by a gen-
eralization of the RQ-factor and the RQ-resolution rule.

The first part of the paper is concerned with the question of how to transform a
set of RQ-formulas into a set of RQ-clauses preserving RQ-satisfiability. It turned out
that this task is not obvious since quantification over the empty set may occur, i.e.,
restrictions may be interpreted as empty set in some RQ-structures. Since the truth
values of the RQ-formulas Vx.p F' and dx.g F' depend on F in RQ-structures which
interpret R as non-empty set, and do not depend on £ 1n RQ-structures which interpret
R as empty set we introduced the method of quantifier splitting. Thereby, the possible
interpretations of restrictions as empty and as non-empty set are made explicit.

Building upon this, we investigated how to eliminate restricted 3-quantifiers in
RQ-formulas via Skolemization. Thereby, we obtained tuples of Skolem functions to-
gether with Skolem declarations which are added to the restriction theory. Since this
extension of the restriction theory must not influence its models these declarations
also have to distinguish between empty and non-empty interpretation of restrictions.
After quantifier splitting and Skolemization, the transformation of RQ-formulas into
RQ-clauses does no longer cause deep problems. This transformation procedure can,
e.g., be used in sorted logics even if empty sorts are alloed. This is due to the fact that
a sort hierarchy can be seen as restriction theory and sorts as unary restrictions.

We have introduced constraint unification, and it was shown that this unification
procedure can be used to define the redundancy predicate if the RQS satisfies condition
(TM). We proved that filtering out RQ-clauses whose restrictions are not constraint
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unifiable reduces the search space without affecting refutation completeness (providec
that condition (TM) holds).

This result is utilized in [BHL93] where the concept language ALC is taken t
define a background theory. There, it has been shown that the resulting RQS satisfie:
condition (TM) and thus restrictions are tested on constraint unifiability rather than o
RQ-satisifiabilty. Furthermore, an idea is presented how to use the general refutatior
procedure for abductive reasoning. '

Within DFKI a prototypical implementation ol a constrained resolution prove
exists, and we are still working on optimizations to handle restricted quantification
systems which satisfy condition (TM).
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A Theories with Term-models

In the following we will give proofs for the theorems on term-models which have been
used in Section 4. Most of the techniques we use are adapted from Chapter 2 of [CK90].

Basis for our argumentation is the notion of a witness. Let F be a set of A-formulas,
and let 3z R(2) be a A-formula, where z is the only free variable in R. Then a ground
term ¢t is called a witness for R in F over A iff F = 3z R(z) — R(1). We say F has
witnesses over A iff for every A-formula 3z R(z), where x is the only {ree variable in
R, there exists a witness for R over A. We will abbreviate the set of all ground terms
over a signature A by Ta.

Lemma A.1 Let F be a satisfiable set of A-formulas, let (" be a countable infinite set
of new constants, and A¢ := AUC. Then F can be extended to a satisfiable (possibly
infinite) set Fe of Ac-formulas which has witnesses over Ac.

Proof: Let Ry, Ry, R3,... be an enumeration of all Ar-formulas with exactly one free
variable, say x; in R;. Then we define a sequence Fq C F; C ... of sets of Ag-formulas

by

L. fo =F
2. F.:=F,_y U {3z, R,(x;) — R;i(t,)}, where z, is the free variable in R;, such that

(a) if there already exists a witness 1 € Ta,. for R; in F,_; over A¢, then let
751' =1.

(b) if there does not exist a witness for R, in F;_; over Ac, let ¢; be a new
constant (i.e. ¢; € (7, but ¢; does neither occur in F; nor in R;), and t; := ¢;.

Furthermore we define

]'-(7 = U}_z

Then by construction F¢ has witnesses over Ag, since for each Ag-formula Jz R(x),
where x is the only free variable in R, there exists a witness for R in Fr over A,
namely #;, if R is the ¢-th formula in the above enumeration of all Ar-formulas with
exactly one free variable.

We still have to show that F¢ is a satishable set of Ax-formulas. This can be done
by induction over z: Obviously, Fq = F 1s a satisfiable set of A, -formulas since F
is a satisfiable set of A-formulas and A¢ is an extension of the signature A. For the
induction step we thus assume F;_y to be a satisfiable set of Ag-formulas.
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By definition F; is computed from F;,_; by adding the Ag-formula 4z, R;(z;) —
Ri(t;). If, for case (a), 7; is already a witness for R; in F;_, over Acp, i.e. Fioy |E
da, Ri(z;) — R.(1,), then F, obviously is a satisfiable set of Aq-formulas.

Let. for case (b), t; = ¢; be a new constant. [f F; 1s unsatisfiable, then
]:1,—1 b: .—‘(Ell'iRl‘(.T-i) - Hl(fl))
This 1s equivalent to
Fion Bz Ri(w) A~ R(1).

As the witness £; 1s a fresh constant, 1.e. it does neither occur in F; | nor in R;, this is
equivalent to

Fioy B Va,(Ja; Ri(x;) A = Ri(x;)),and thus
,7'_7'._1 !: 317.,;1?1(.’('1;) A ‘13.'I‘iRi(Ii)),

which contradicts the satisfiability of the set F;_, of Ax-formulas. O

For the next leinma we need the notion of a term-model. If F is a set of lormula
over some signature A, then A is a term-model of F over A iff A

= F, all clements
in the universe (/* are interpretations of A-ground terms, and two different A-ground
terms denote different elements in (/4.

Lemma A.2 Lt A be a signature with equality, and let F be a satisfiable scl of A-

formulas which has witnesses over A. Then:

1. F has a model A such that each element in the universe U is an interprelalion
of a ground Lerm over A,

2. 10f, in addition, F |= s =1 «ff s and 1 denole the same ground lerm over A, then
F has a term-model over A.

Proof: Let A be a A-structure such that the universe U4 is the set of ground terms
over A, the algebra reduct® of A is the ground term algebra, and

(%) Aty ) F = p(ty, . t)

for all 1, € Tx and for all predicates p € A (including equality). We will show that
A = F by induction over the number of connectives and quantifiers in A-formulas.
Therefore we have to show that A |= Fiff F |= F for each A-formula F. If F' does

neither contain a connective nor a quantifier, then F'is of the form p(t,,...,t,) where

» VI

6The algebra reduct of a A-structure A is the part of A which does not interpret the predicate
symbols in A.
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each t; € T and pis a predicate in A. Because of () we then know A |= Fiff F = F.
We thus assume that A |= F'iff F |= F for all A-formulas F' with n connectives and
quantifiers.

The induction step for formulas of the form —F and F; A F, is trivial, and here is
nothing to show for the connective V and the quantifier ¥, since they can be expressed
by negation together with A and 4, respectively. Let now F' be of the form JzR(z),
where R contains n connectives and quantifiers. If 4 = JzR(z) then there exists
a A-assignment o such that A, |= R(z), and a(z) = t for some ground term 7.
Hence A |= R(t) and, by induction hypothesis, F |= R(t). Since R(1) — JaR(x) is a
tautology, we obtain F | dzR(x).

If, on the other hand, F |= JzR(z). Then F |= R(t) for some ground term 1
since F has witnesses over A. By induction hypothesis we obtain A |= R(7) and thus

A | JzR(z).

Suppose now F |= s =t iff s and ¢ denote the same ground terms. Because of (x)
for the equality predicate we then know that A |= s =1 iff F |=s =1 iff s and | denote
the same ground terms. That means, A i1s a term-model of F. a

Remark: The precondition of 2. of the above lemma holds, for instance, if equality
has at most negative occurrences in F. In this case just the trivial equations can be
deduced from F.

Theorem A.3 Lct F be a satisfiable set of formulas over a signature A such that
F l=s=1tf s andt denote the same ground term over A. [f C is a countable infinite
set of new constants, then F has a A-model iff F has a term-model over AU (.

Proof: Let A be the signature which consists of A and the constants in (". If A is a
term-model of F over As, then A is a A¢-model of F. Since F is a set of A-formulas
thus A also is a A-model of F.

If 7 has a A-model, then F is a satisfiable set of A-formulas, and thus F can be
extended to a satisfiable (possibly infinite) set Fr of Ac-formulas which has witnesscs
over A¢x (Lernma A.1). Obviously, if we construct F¢ from F as we did in the proof
of Lemma A.l, Fe s =t it Fl=s =1t 1e. Fc = s =1 iff s and 1 denote the same
ground terms over Ax. Thus F¢ has a term-model over A¢ because of Lemma A.2.
Since T' C T¢ therefore F has a term-model over Ap. O
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