Skip to main content
Log in

On multivariate attenuation factors

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce the method of discrete attenuation factors for the approximate computation of multivariate discrete Fourier transforms. We consider attenuation factors related with multivariate discrete Bernoulli functions and deduce a best approximation property of the corresponding method of attenuation factors. Choosing a unique approach to the discrete and non-discrete settings, we emphasize the close relation between both cases and interpret results in the literature from a more general point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Ber and W.N. Malozymov, The best formulae for the approximate computation of discrete Fourier transforms, Comp. Math. Math. Phys. 32/12 (1992) 1533–1544.

    Google Scholar 

  2. C. de Boor, R.A. DeVore and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993) 167–190.

    Article  Google Scholar 

  3. C. de Boor, K. Höllig and S. Riemenschneider,Box Splines (Springer, New York, 1993).

    Google Scholar 

  4. G. Brumme, Error estimates for periodic interpolation by translates, CAT Report (1993).

  5. C.K. Chui,An Introduction to Wavelets (Academic Press, Boston, 1992).

    Google Scholar 

  6. W. Dällenbach, Verschärftes rechnerisches Verfahren der harmonischen Analyse, Arch. Elektrotechnik 10 (1921) 277–282.

    Article  Google Scholar 

  7. F.J. Delvos, Periodic interpolation on uniform meshes, J. Approx. Theory 51 (1987) 71–80.

    Article  Google Scholar 

  8. A. Eagle, On the relations between the Fourier constants of a periodic function and the coefficients determined by harmonic analysis, Phil. Mag. 5/7 (1928) 113–132.

    Google Scholar 

  9. H. Ehlich, Untersuchungen zur numerischen Fourieranalyse, Math. Z. 91 (1966) 380–420.

    Article  Google Scholar 

  10. W. Gautschi, Attenuation factors in practical Fourier analysis, Numer. Math. 18 (1972) 373–400.

    Article  Google Scholar 

  11. M. Golomb, Approximation by periodic pline interpolants on uniform meshes, J. Approx. Theory 1 (1968) 26–65.

    Article  Google Scholar 

  12. M. Golomb and H.F. Weinberger, Optimal approximation and error bounds, in:On Numerical Approximation, ed. R.E. Langer (University of Wisconsin Press, Madison, WI, 1958) pp 117–190.

    Google Scholar 

  13. M.H. Gutknecht, Attenuation factors in multivariate approximation, Numer. Math. 51 (1987) 615–629.

    Article  Google Scholar 

  14. F. Locher, Interpolation on uniform meshes by the translates of one function and related attenuation factors, Math. Comp. 37 (1981) 403–416.

    Google Scholar 

  15. O.L. Mangasarian and L.L. Schumaker, Best summation formulae and discrete splines, SIAM J. Numer. Anal. 10 (1973) 448–459.

    Article  Google Scholar 

  16. G. Meinardus, Periodische Splinefunktionen, in:Spline Functions, eds. K. Böhmer, G. Meinardus and W. Schempp, LNM 501 (Springer, Berlin, 1976) pp. 177–199.

    Google Scholar 

  17. J. Meinguet, Optimal approximation and error bounds in seminormed spaces, Numer. Math. 10 (1967) 370–388.

    Google Scholar 

  18. H.G. ter Morsche, Attenuation factors and multivariate periodic spline interpolation, in:Topics in Multivariate Approximation, eds. C.K. Chui, L.L. Schumaker and F.I. Uneras (Academic Press, New York, 1987) pp. 165–174.

    Google Scholar 

  19. W. Quade and K. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen, Sitzungsbericht Preuss. Akad. Wiss. 30 (1938) 383–429.

    Google Scholar 

  20. C. Runge,Theorie und Praxis der Reihen (G.J. Göschen'sche Verlagshandlung, Leipzig, 1904).

    Google Scholar 

  21. A. sard, Optimal approximation, J. Funct. Anal. 1 (1967) 222–224; ibid. A. sard, Optimal approximation, J. Funct. Anal. 2 (1968) 368–369.

    Article  Google Scholar 

  22. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. IV (1946) 112–141.

    Google Scholar 

  23. G. Steidl, Spline wavelets over Spline wavelets over ℝ, ℤ, ℝ/Nℤ, and ℤ/Nℤ, in:Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, New York, 1994), in print.

    Google Scholar 

  24. G. Steidl, A note on error estimates for interpolation by translates, to appear.

  25. J. Stöckler, Multivariate Bernoulli splines and the periodic interpolation problem, Constr. Approx. 7 (1991) 105–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.H. Gutknecht

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steidl, G. On multivariate attenuation factors. Numer Algor 9, 245–261 (1995). https://doi.org/10.1007/BF02141590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141590

Keywords

AMS subject classification

Navigation