Skip to main content
Log in

An adaptive Richardson iteration method for indefinite linear systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An adaptive Richardson iteration method is presented for the solution of large linear systems of equations with a sparse, symmetric, nonsingular, indefinite matrix. The relaxation parameters for Richardson iteration are chosen to be reciprocal values of Leja points for a compact setK:=[a,b]∪[c,d], where [a,b] is an interval on the negative real axis and [c, d] is an interval on the positive real axis. Endpoints of these intervals are determined adaptively by computing certain modified moments during the iterations. Computed examples show that this adaptive Richardson method can be competitive with the SYMMLQ and the conjugate residual methods, which are based on the Lanczos process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Achyeser, Über einige Funktionen, welche in zwei gegebenen Intervallen, am wenigsten von Null abweichen, Bull. Acad. Sci. URSS, VII Série 9 (1932) 1163–1202.

    Google Scholar 

  2. S.F. Ashby, T.A. Manteuffel and P.E. Saylor, A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal. 27 (1990) 1542–1568.

    Google Scholar 

  3. C. de Boor and J.R. Rice, Extremal polynomials with application to Richardson iteration for indefinite linear systems, SIAM J. Sci. Stat. Comput. 3 (1982) 47–57.

    Google Scholar 

  4. C.F. Borges and W.B. Gragg, A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenproblem, in:Numerical Linear Algebra, eds. L. Reichel, A. Ruttan and R.S. Varga (de Gruyter, Berlin, 1993) pp. 11–29.

    Google Scholar 

  5. D. Calvetti and L. Reichel, Adaptive Richardson iteration based on Leja points, J. Comput. Appl. Math., to appear.

  6. D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetric inconsistent linear systems, in:Proceedings of the Cornelius Lanczos International Centenary Conference, eds. J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons (SIAM, Philadelphia, 1994) pp. 267–272.

    Google Scholar 

  7. G. Dahlquist, S. Eisenstat and G.H. Golub, Bounds for the error of linear systems of equations using the theory of moments, J. Math. Anal. Appl. 37 (1972) 151–166.

    Google Scholar 

  8. G. Dahlquist, G.H. Golub and S.G. Nash, Bounds for the error in linear systems, in:Semi-Infinite Programming, ed. R. Hettich, Lecture Notes in Control and Information Sciences #15 (Springer, Berlin, 1979), pp. 154–172.

    Google Scholar 

  9. J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. van der Vorst,Solving Linear Systems on Vector and Shared Memory Computers (SIAM, Philadelphia, PA, 1991).

    Google Scholar 

  10. A. Edrei, Sur les déterminants récurrents et les singularités d'une fonction donnée par son développement de Taylor, Composito Math. 7 (1939) 20–88.

    Google Scholar 

  11. M. Eiermann, X. Li and R.S. Varga, On hybrid semi-iterative methods, SIAM J. Numer. Anal. 26 (1989) 152–168.

    Google Scholar 

  12. M. Eiermann, W. Niethammer and R.S. Varga, A study of semiiterative methods for nonsymmetric systems of linear equations, Numer. Math. 47 (1985) 505–533.

    Google Scholar 

  13. B. Fischer, Chebyshev polynomials for disjoint compact sets, Constr. Approx. 8 (1991) 309–329.

    Google Scholar 

  14. R. Freund, On polynomial preconditioning and asymptotic convergence factors for indefinite Hermitian matrices, Lin. Alg. Appl. 154–156 (1991) 259–288.

    Google Scholar 

  15. W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput. 3 (1982) 289–317.

    Google Scholar 

  16. G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973) 318–334.

    Google Scholar 

  17. G.H. Golub and M.D. Kent, Estimates of eigenvalues for iterative methods, Math. Comp. 53 (1989) 619–626.

    Google Scholar 

  18. G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  19. G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23 (1969) 221–230.

    Google Scholar 

  20. W.B. Gragg and L. Reichel, On the application of orthogonal polynomials to the iterative solution of linear systems of equations with indefinite or non-Hermitian matrices, Lin. Alg. Appl. 88–89 (1987) 349–371.

    Google Scholar 

  21. M. Gu and S.C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl. 16 (1995) 172–191.

    Google Scholar 

  22. V.I. Lebedev, Iterative methods for solving operator equations with a spectrum contained in several intervals, USSR Comp. Math. Math. Phys. 9(6) (1969) 17–24.

    Google Scholar 

  23. F. Leja, Sur certaines suits liées aux ensemble plan et leur application à la representation conforme, Ann. Polon. Math. 4 (1957) 8–13.

    Google Scholar 

  24. R.B. Morgan, Computing interior eigenvalues of large matrices, Lin. Alg. Appl. 154–156 (1991) 289–309.

    Google Scholar 

  25. C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617–624.

    Google Scholar 

  26. C.C. Paige, B.N. Parlett and H.A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appl., to appear.

  27. L. Reichel, The application of Leja points to Richardson iteration and polynomial preconditioning, Lin. Alg. Appl. 154–156 (1991) 389–414.

    Google Scholar 

  28. R.R. Roloff, Iterative methods for matrix equations for symmetric matrices possessing positive and negative eigenvalues, Ph.D. thesis, Report UIUCDCS-R-79-1018, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (1979).

    Google Scholar 

  29. Y. Saad, Iterative solution of indefinite symmetric linear systems by methods using orthogonal polynomials over two disjoint intervals, SIAM J. Numer. Anal. 20 (1983) 784–811.

    Google Scholar 

  30. Y. Saad, Practical use of Krylov subspace methods for solving indefinite and nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 5 (1984) 203–228.

    Google Scholar 

  31. P.E. Saylor, Leapfrog variants of iterative methods for linear algebraic equations, J. Comput. Appl. Math. 24 (1988) 169–193.

    Google Scholar 

  32. H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. Math. 3 (1969) 127–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.H. Golub

Dedicated to Germund Dahlquist on the occasion of his 70th birthday

Research supported in part by the Design and Manufacturing Institute at Stevens Institute of Technology.

Research supported in part by NSF grants DMS-9002884 and DMS-9205531.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvetti, D., Reichel, L. An adaptive Richardson iteration method for indefinite linear systems. Numer Algor 12, 125–149 (1996). https://doi.org/10.1007/BF02141745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141745

Keywords

Navigation