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Estimates in Quadratic Formulas

Gene H� Golub� Zden�ek Strako�s y

August �� ����

Revised version

Abstract

Let A be a real symmetric positive de�nite matrix� We consider
three particular questions� namely estimates for the error in linear
systems Ax � b� minimizing quadratic functional min

x
�xTAx � �bTx�

subject to the constraint k x k� �� � �k A��b k� and estimates for
the entries of the matrix inverse A��� All of these questions can be
formulated as a problem of �nding an estimate or an upper and lower
bound on uTF �A�u� where F �A� � A�� resp� F �A� � A��� u is a
real vector� This problem can be considered in terms of estimates in
the Gau	
type quadrature formulas which can be e�ectively computed
exploiting the underlying Lanczos process� Using this approach� we
�rst recall the exact arithmetic solution of the questions formulated
above and then analyze the e�ect of rounding errors in the quadrature
calculations� It is proved that the basic relation between the accuracy
of Gau	 quadrature for f��� � ��� and the rate of convergence of the
corresponding conjugate gradient process holds true even for �nite
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precision computation� This allows us to explain experimental results
observed in quadrature calculations and in physical chemistry and
solid state physics computations which are based on continued fraction
recurrences�

� Introduction

Throughout the paper� A denotes a real N by N symmetric positive de��
nite �SPD� matrix� ��� ��� � � � � �N its eigenvalues and u�� u�� � � � � uN its corre�
sponding orthonormalized eigenvectors� � 	 diag��i�� U is the orthonormal
matrix with columns �u�� u�� � � � � uN�
 To simplify the notation we assume�
without any loss of generality� that the eigenvalues of A are distinct� i
e
�
� � �� � �� � � � � � �N 


We consider the following problem
 Let u be a real vector with N com�
ponents
 We want to estimate

uTF �A�u����

where F �A� is a given function of the matrix A
 Often one wishes to deter�
mine upper and lower bounds on ���� namely


� � uTF �A�u � �����

We note that the more general case

vTF �A�w�

where v and w are real vectors with N components� v �	 w� can be easily
converted into the symmetric case ��� using the identity

vTF �A�w 	 ���vTF �A�v� wTF �A�w� �v � w�TF �A��v� w������

In this paper we are particularly interested in the case F �A� 	 A�� and
F �A� 	 A��
 We will give three speci�c examples below
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Problem �I�

Given a system of linear equations�

Ax 	 b

where b � RN is an arbitrary right hand side
 Let x� be an initial approxima�
tion to the solution x
 We wish to determine an estimate� upper and lower
bound for the Euclidean resp
 A�norm of the error

k x� x� k resp� k x� x� kA �

Considering the initial residual r� 	 b�Ax��

k x� x� k�	 �r��TA��r�����

k x� x� k�A	 �r��TA��r�����

Upper and lower bounds on ��� and ��� were developed in DEG�����
DGN����
 Moreover� the approach proposed in DGN���� led to determining
upper and lower bounds for the A�norm in the k�th step of the conjugate
gradient algorithm
 This problem is closely related to the convergence of
continued fractions


Problem �II�

Consider the problem of minimizing the quadratic functional

min
x

�xTAx� �bTx����

subject to the constraint

k x k	 �����

where b � RN is a given nonzero vector and � is choosen so that

� �k A��b k ����

We use the method of Lagrange multipliers
 De�ning

�



h�x� 	� 	 xTAx� �bTx� 	�xTx� ���

we see that the equation gradxh�x� 	� 	 � leads to the linear system

�A� 	I�x 	 b���

where the multiplier 	 is determined from the condition xTx � �� 	 � and
this leads to

bT �A� 	I���b 	 �������

i
e


�UTb�T �� � 	I����UT b� 	 ��

which can be rewritten as

NX
i��

�ui� b��

��i � 	��
	 �������

In order to �nd the Lagrange multiplier 	 we need to solve this equation �the
condition ��� quarantees that 	 
 ��
 To construct ����� we must know all
the eigenvalues and eigenvectors of A
 For A large and sparse� this can be a
di�cult problem which we prefer to avoid


In most cases� we do not need to solve ���� precisely
 An approximate
solution of ���� can be found using an estimate for bT �A� 	I���b
 Problem
�II� is considered in detail in GM���� where the comprehensive description of
solving constrained least squares and of minimizing quadratic forms subject
to the constraint kxk 	 � is given
 For some details see also GS����
 We are
not going to repeat these considerations here


Problem �III�

Finally� in some situations we want to estimate the individual entries of the
matrix inverse in terms of the entries of the original matrix
 This problem
was studied in RW����
 The diagonal entries can be written as

�A���ii 	 eTi A
��ei�����

�



where ei is the i�th unit vector
 This is again� a particular example of ���

For the other entries �A���ij� i �	 j� one may use the identity ��� with v 	 ei�
w 	 ej


All these problems can be formulated as a problem of estimates in the
Gau��type quadrature which can be solved in an elegant way using the con�
nection to the underlying Lanczos process


This paper is organized as follows
 In Section � and � we summarize very
brie�y some classical results about the Gau� and Gau��Radau quadratures
and their close relations to the Lanczos algorithm and Jacobi matrices
 In
Section � we recall the known solutions to Problems �I� and �III� assum�
ing exact arithmetic and present some simple alternative proofs
 For the
more detail exposition we refer to the report GS���� and to the papers Ga�
���� Sz����� DR����� Pa����� HS����� S����� Go����� DEG����� DGN�����
GM����� RW����� GM����� FG����
 In Section �� we analyze the e�ect of
rounding errors
 Based on the backward error results developed in Gr����� it
is proved that the basic relation between the accuracy of the Gau� quadrature
for f��� 	 ��� and the rate of convergence of the corresponding conjugate
gradient �CG� process holds true in �nite precision arithmetic� even though
the computed quantities may di�er signi�cantly from their exact precision
counterparts
 As a consequences� we show how this approach can be used
for �reconstructing� the A�norm of the error in the �nite precision CG run
which is illustrated by numerical experiments
 We note that the particular
case of ���

uT ��I �A���u�����

where � is outside the A�s spectrum� is of great importance in physical chem�
istry and solid state physics computation
 The Lanczos method and method
of continued fractions are succesfully used in this context for years� see e
g

MF����� MP����� R����� HSa����� HSa����� AB����� H����� H����
 The
results presented in this paper o�er a comprehensive insight into the riddle of
this computation
 Section � explains some well known practical observations
concerning the e�ect of rounding errors
A summary is given in Section �


Throughout this paper matrices� vectors and functions are real


�



� Gau� and Gau��Radau Quadratures

In this section we recall some basic results from the theory of Gau� and
Gau��Radau quadratures


Let � � ��� �N � �� �j �	 �� j 	 �� �� � � � � N 
 We consider a distribution
function ��� with the N points of increase ��� ��� � � � � �N � de�ned by

��� 	 � for � � � � ��

��� 	
lX

j��

��j for �l � � � �l��� l 	 �� �� � � � � N � ������

��� 	
NX
j��

��j for �N � � � ��

Suppose that f�x� is a function which is continuous at each �j � j 	 �� �� � � � � N 

Then the Rieman�Stieltjes integral of the function f��� over the interval h�� �i
with the distribution function ��� reduces to the �nite sum

Z �

�
f���d��� 	

NX
j��

��jf��j������

Nevertheless� we will keep the �integral� notation in some places for its con�
venience


Let q����� q����� � � � � qN���� where qi��� is of exact degree i� i 	 �� �� � � � � N �
be a sequence of monic orthogonal polynomials with respect to the inner
product induced by ����� i
e


Z �

�
qi���qj���d��� 	 � � i �	 j� � � i� j � N�

qN��� 	 �� � ������ ��� � � � ��� �N ��

Let

�i 	 �
Z �

�
q�i ���d����

����� i 	 �� �� � � � � N � ��

�N 	 �N���

�



Then p����� p����� � � � � pN ��� de�ned by

pi��� 	 �iqi���� i 	 �� �� � � � � N�

is the corresponding sequence of orthonormal polynomials


Theorem ��� �Gau� quadrature� � Let � � n � N � There exist n points
�j � j 	 �� �� � � � � n� � � �� � �� � � � � � �n � �� and n positive weight
coe�cients �� � � � � n such that for any f � C�n�� ��

Z �

�
f���d��� 	

nX
j��

jf��j� �Rn�f������

Rn�f� 	
Z �

�
f��� ��� ��� ��� �� � � � � �n� �n�q

�
n���d��� 	

	
f ��n����

��n��

Z �

�
q�n���d���� � � ��� ���

f��� ��� ��� ��� �� � � � � �n� �n� is the �n�th divided di�erence of a function f
with respect to the abscissas �� ��� �� � � � � �n� �n �see e�g� �DR��	
� Section 	���
pp� ������ or �Ga���
� p� ����

The abscissas are equal to the roots of the polynomial qn���
 The weights j
can be determined using the following particular choice of f �

Z �

�
qn�����

qn���

� � �j
d��� 	 jqn����j�q

�
n��j��

and using the orthogonality

Z �

�
qn�����

qn���

� � �j
d��� 	

Z �

�
q�n�����d��� 	 ���n���

Consequently�

j 	
���n��

qn����j�q�n��j�
� j 	 �� � � � � n�����

For the theory of the Gau� quadrature and related topics we refer to
the excellent classical monography Sz����� chapters ��� and ��� and to the
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deep survey paper Ga���� from the book devoted to the E
B
 Christo�el
�it is worth to note that this book contains many other remarkable contri�
butions�
 They include many historical remarks and references to original
papers
 A comprehensive survey of the Gau� quadrature may be found in
DR����� including the error analysis
 DR���� deals with the weighted Rie�
mann integral
 Because the basic statements concerning integration rules of
the Gau� type �chapter �
�� rely on the theory of interpolation and the �rst
mean value theorem �cf
 DR���� p
 �� and Section �
���� they can be easily
reformulated for the more general case of the Riemann  Stieltjes integral


Orthonormal polynomials p����� p����� � � � � pN ��� and the corresponding
monic orthogonal polynomials q����� q����� � � � � qN��� satisfy three term re�
currences

p���� 	 �� q���� 	 �

�i��pi��� 	 �pi����� � �ipi����� � �ipi������ i 	 �� � � � � N � ������

pN ��� 	 �pN����� � �NpN������ �NpN������

qi��� 	 �qi������ �iqi������ ��
i qi������ i 	 �� � � � � N�

where

p����� 	 q����� 	 ��

�i 	
R �
� �p

�
i�����d���� i 	 �� � � � � N �

�� 	 ��

�i�� 	 �
R �
� ��pi�������ipi�������ipi�������d����

���
� i 	 �� �� � � � � N � �


Then

�� 	 �

�i 	 �
iY

j��

�j���
�� i 	 �� �� � � � � N � ������

�N 	 �N���

Using quadrature formulas� we wish to determine computable upper and
lower bounds for the integral ����
 We consider an integration formula of
Gau� type with one preassigned abscissa �� � �� ���

�



Z �

�
f���d��� 	 �f���� �

nX
j��

jf��j� �Rn�f�����

where the n abscissas ��� ��� � � � � �n and n�� weights �� �� � � � � n are to be
determined so that the rule is exact for polynomials of the highest possible
degree �that is �n�
 As described below� we are interested in the special cases
�� 	 � or �� 	 � 


Theorem ��� �Gau��Radau quadrature� � Let � � n � N � �� Let
�� � �� �� be a �xed preassigned abscissa� Then there exists a quadratic rule
so that for any f � C�n���� ��

Z �

�
f���d��� 	

nX
j��

jf��j� �Rn�f�����

Rn�f� 	
Z �

�
f��� ��� ��� ��� ��� ��� � � � � �n� �n���� ���

nY
i��

�� � �i�
�d����

where f��� ��� ��� ��� � � � � �n� �n� is ��n� ��th divided di�erence with respect
to the abscissas �� ��� ��� ��� � � � � �n� �n� If �� 	 � resp� �� 	 �� then

Rn�f� 	
f�n�����

��n� ���

Z �

�
��� ���

nY
i��

�� � �i�
�d���� � � ��� �������

It is known that the abscissas ��� � � � � �n are equal to the roots of the poly�
nomial !qn����� which is given by the relation

!qn����� 	 ��� !�n���qn���� ��
n��qn����������

where the unknown coe�cient !�n�� is determined using the condition !qn������ 	
��

!�n�� 	 �� � ��
n��

�
qn����

qn������

���
�����

and for �n 	 qn�����qn������� we have the recurrence

�� 	 �� � ��� �j 	 �� � �j � ��
j ��j��� j 	 �� � � � � n�

�



The weights �� �� � � � � n are given by

j 	

n��Q
k��

��
k

qn��j�!q�n����j�
� j 	 �� �� � � � � n�����

For proofs see� e
g
 GS����

As it is shown in next sections� we are interested particularly in computing

upper and lower bounds for the integrals

Z �

�
���d��� and

Z �

�
���d��������

Let � 
 �
 If f��� 	 ���� resp f��� 	 ���� then from ���� it is clear that
for �� 	 � both Rn����� and Rn����� are negative and for �� 	 � both
Rn����� and Rn����� are positive
 Consequently� the Gau��Radau rule ����
gives for �� 	 � the desired upper bounds while for �� 	 � the desired
lower bounds
 Moreover� from ���� it follows that for f��� 	 ���� resp

f��� 	 ���� the truncation error Rn�f� of the Gau� quadrature is always
positive
 Consequently� the Gau� rule gives for both these functions always
lower bound for ����


In the next section� we recall an elegant way of computing weights and
abscissas of Gau� and Gau��Radau quadratures based on reformulating the
problem in the context of the Lanczos algorithm


� Connection to Jacobi matrices

It is well known that the Gau� and Gau��Radau quadratures imply the
fundamental orthonormality property� i
e
� the �rst m polynomials p����� � � � �
pm����� orthonormal with respect to the innerproduct induced by ���� are
also orthonormal with respect to the discrete m�point quadratic form

�f� g�m 	
nX

j�j�

jf��j�g��j�����

where j � �j are the weights and abscissas of the quadrature formula� j� 	 �
and m 	 n for the Gau� � j� 	 � and m 	 n � � for the Gau��Radau rule

Using the duality between orthonormal polynomials de�ned by ���� and the
Euclidean geometry �which was demonstrated in a similar context in the

��



classical paper HS����� we can determine the quadrature parameters simply
as the characteristics of the following Jacobi matrix !Tm�

!Tm 	

�
BBBBBBB�

����
����


 
 
 
 
 
 
 
 


�m���m
�m !�m

�
CCCCCCCA
�����

where for the Gau� rule !�m is identical to �n given by ����� while for the
Gau��Radau rule !�m 	 !�n�� which is given by ����


Let S be the orthonormal matrix with the normalized eigenvectors of !Tm
denoted by sj� j 	 j�� � � � � n� as its columns
 Then

j 	 �eT� sj�
� 	 s��j� j 	 j�� � � � � n�����

i
e
� the weights in the Gau� �resp
 Gau� Radau� rule are the square of the
�rst elements of the normalized eigenvectors of the Jacobi matrix !Tm given
by ����
 The abscissas are identical to the eigenvalues of !Tm


This result can be found in W����� but it was known earlier� cf
 Ga�
���
 In GW���� the three term recurrency was related to the matrix of
moments and the QR algorithm was proposed for computing the eigenvalues
and eigenvectors of !Tm
 In Go���� the problem of computing !�n�� in the
Gau� Radau quadrature was considered as the inverse eigenvalue problem
for the matrix !Tm
 Clearly� all the entries of !Tm except !�m 	 !�n�� are given�
and !�n�� is to be determined from the condition that �� is a given !Tm�s
eigenvalue
 Then

!�n�� 	 �� � �n�����

where �n is the last entry of the vector z 	 ���� ��� � � � � �n�T which is the
solution to the linear system

�Tn � ��I�z 	 ��
n��en�����

where Tn is the n by n leading principal submatrix of !T 
 For the other related
results we refer to Ga����� DEG����� Go����� DGN����� Ga����� KG�����
GK����� K����
 A comprehensive discussion of the problem of numerically

��



generating the recursion coe�cients of orthonormal polynomials can be found
in Ga����


For computing the Gau� or Gau� Radau approximations to the integrals
���� one does not need to determine the eigenvalues and the �rst entries of
the !Tm�s eigenvectors
 Indeed� for f��� 	 ��i� i 	 �� ��

Z �

�
��id��� 	

nX
j�j�

j�
�i
j �Rn��

�i�

where

nX
j�j�

j�
�i
j 	 �ST e��

Tdiag���ij ��ST e�� 	 eT�
!T�i
m e� 	 � !T�i

m ����

Z �

�
��id��� 	 � !T�i

m ��� �Rn��
�i������

Solving the m by m system

!Tmg 	 e������

one can simply determine

� !T��
m ��� 	 eT� g�����

� !T��
m ��� 	k g k� �����

The next section shows an interesting applications of the given formulas

Using the relation of the Lanczos algorithm to continued fractions� the Gau�
quadrature approximation to

R �
� �

��d��� will be computed by a simple three
term recurrence


� Estimates in quadratic formulas � exact

arithmetic

In this section we describe the solution of Problems I and III� assuming exact
arithmetic� and in the Section �� the e�ect of rounding errors will be analyzed


��



As it is shown in Section �� Problem I reduces to �nding estimates� upper
and lower bounds on

�r��TA�ir�

where r� is the initial residual� r� 	 b�Ax�� i 	 �� �
 To simplify the notation
we assume� as stated in Section �� that the eigenvalues of A are distinct� and
that r� has a nonvanishing projection in the direction of every eigenvector
uj of A� i
e


�j 	 uTj r
��k r� k �	 �� j 	 �� �� � � � � N�����

The extension of the results presented below to the general case is trivial

Considering the eigendecomposition A 	 U�UT � ��� and ��� become

k x� x� k�	k r� k�
NX
j��

��j
��j

����

k x� x� k�A	k r� k�
NX
j��

��j
�j
�����

Using the distribution function ��� de�ned by ���� for some �� �� � � ���
�N � �� ���� and ���� can be written as

k x� x� k�	k r� k�
Z �

�
���d�������

k x� x� k�A	k r� k�
Z �

�
���d��������

The desired estimates� upper and lower bounds can be found by comput�
ing the Gau� and Gau� Radau quadratures ���� which can be easily done by
using ���������
 The coe�cients �j� �j��� j 	 �� �� � � � � n� de�ned by ���� are
identical with those given by n steps of the Lanczos process for the original
matrix A with the initial vector h� 	 r�� k r� k�

h� 	 �� �� 	 �

�k 	 �Ahk � �kh
k��� hk�����

!hk�� 	 Ahk � �kh
k � �kh

k��

��



�k�� 	k !hk�� k
hk�� 	 !hk����k��� k 	 �� �� � � � � n�

n � N � �
 For n 	 N �N�� 	 �� and the Gau� quadrature formula
is identical with the original integral ����
 Thus� for computing estimates�
upper and lower bounds on ���� and ���� we run n steps of the Lanczos
process ����� then set m 	 n and determine the Gau� estimate using �����
����� or set m 	 n��� m � N��� compute !�n�� for a properly choosen �� �
�� �resp
 �� � �N � from ��������� and determine the Gau��Radau upper and
lower bounds from ���������� cf
 DGN����
 Note� that for approximating ��
we can use the information about the location of the extremal eigenvalues ��
and �N obtained from the Lanczos process ����


The described approach leads to two questions which we give below

First� let TN be the tridiagonal matrix given in N steps of �����

TN 	

�
BBBBBBB�

����
����


 
 
 
 
 
 
 
 


�N
�N �N

�
CCCCCCCA
�����

Then

k x� x� k�A	 �r��TA��r� 	k r� k� �e��TT��
N e� 	k r� k� �T��

N ���

and ���� gives

�T��
N ��� 	

NX
j��

��j
�j
�����

It is well known �cf
 Sz���� HS������ that ���� can be expanded into a
continued fraction�

��



NX
j��

��j
�j

	 CN 	
GN

EN

	
�

�� �
��
�

�� �
��
�






�N�� �
��
N

�N

�����

where the numerator EN and denominator GN are given by the three term
reccurences

E� 	 �� E� 	 ��� Ej 	 ��jEj�� � ��
jEj��

G� 	 �� G� 	 �� Gj 	 ��jGj�� � ��
jGj��� j 	 �� � � � � N�����

The Gau� estimate for
R �
� �

��d��� is given after n steps of ����� n � N � ��
by �T��

n ���� where Tn is the n�th leading principal submatrix of TN 
 Tn can
be considered as a result of the n�dimensional Lanczos proces applied to the
matrix Tn with the initial vector v� 	 e�
 Therefore �T��

n ��� can be expanded
into the continued fraction

�T��
n ��� 	

nX
l��

l
�l

	 Cn�����

where Cn is the n�th convergent of CN 
 It can be determined simply by

Cn 	
Gn

En
�����

Gn� En are given by ����

Summarizing� the Gau� estimate �T��

n ��� for ���� can be computed using
the three term recurrences for continued fractions ����
 This gives rise to the
question�
Can we describe in a simple way the rate of convergence of Cn to CN � or�
equivalently� �T��

n ��� to �T��
N ����

Note that we are not interested in the convergence of individual pairs
�l� l to some �j� ��j here
 For the detailed �but still incomplete� discussion
of the last problem in both the exact and �nite precision arithmetic we refer

��



to SG����
 In a recent paper FF���� it is shown that� roughly speaking�
a very good approximation �in some sense� to the eigenvalue and weight
distribution f�j� ��jgj�������N can be obtained after only few iterations of the
�exact arithmetic� Lanczos algorithm
 The approach by Freund and Fischer
FF���� is also based on the connection of the Lanczos algorithm to the
Gau� quadrature
 In FH���� a general complex non�Hermitian matrices are
considered" the Arnoldi process and the nonsymmetric Lanczos algorithm are
associated with Gau� quadratures in the complex plane


It should also be emphasized that the association of the Gau� quadrature
with the continued fractions described above is known from the original work
by Gau� at the beginning of the ��th century
 His approach was based on
the theory of continued fractions associated with hypergeometric series� see
the survey paper Ga����


Second� instead of using the Lanczos process ����� we can run the corre�
sponding conjugate gradient �CG� process for A� r��

d� 	 r��

�k�� 	 �rk��� rk�����dk��� Adk���

xk 	 xk�� � �k��d
k������

rk 	 rk�� � �k��Ad
k��

�k 	 �rk� rk���rk��� rk���

dk 	 rk � �kd
k��� k 	 �� �� � � � � n�

and then compute Lanczos coe�cients �k� �k�� from the well�known formulas

�k 	
�

�k��
�
�k��

�k��
�����

�k�� 	
�
���
k

�k��
� k 	 �� �� � � � � n�

where �� 	 �� ��� 	 �
 In this way� we can compute not only the estimates
and bounds for the initial errors ����� ����� but we obtain also the n�th
conjugate gradient approximation xn� minimizing the A�norm of the error
among all the polynomial acceleration �or Krylov subspace� methods �cf
�e
g
�
HY����� Chapter ��
 This gives rise to the question�

��



Can we give a simple formula �based on the computed quantities� for the
A�norm of the error k x � xn kA at the n�th step of the conjugate gradient
process�

These two questions are in fact identical
 They were originally solved
�using the theory of moments� in DGN����� by proving the identity

k x� xn k�A	k r� k� �T��
N ��� � �T��

n ���������

The original proof is quite di�cult� as is that one based on the Cayley�
Hamilton theorem presented in GS����
 Formula ���� is� however� a straight
consequence of Theorem �
� �Gau� quadrature� for the distribution function
��� de�ned by ���� and f��� 	 ���
 Indeed�

Z �

�
�����d��� �

NX
i��

��i
�i

	
nX
l��

l
�l

�Rn����������

i
e
�

�T��
N ��� 	 �T��

n ��� �Rn����������

From �����

Rn����� 	
Z �

�

q�n���

��
nQ
l��

�l��
d��� 	

NX
i��

��i q
�
n��i�

�i�
nQ
l��

�l��
�

because for f��� 	 ���

f��� ��� ��� � � � � �n� �n� 	 ��
nY
l��

�l�
�����

which is easy to prove by induction
 Considering

q�n���

�
nQ
l��

�l��
	
k rn k� p�n���
k r� k� �

the error in the Gau� quadrature is written in the form

Rn����� 	
�

k r� k�
NX
i��

��i k rn k� p�n��i�
�i

	

��



	
�

k r� k�fk r
n k pn�A�h�gTA��fk rn k pn�A�h�g 	

	
�

k r� k� k x� xn k�A �

For details see GS����

An alternative proof� which is very elegant� was proposed by the referee

�this proof is based on the similar idea as the original one in DGN����� but
uses di�erent polynomial expansion�
 Consider the polynomial depending on
n�parameters � 	 ���� � � � � �n���T

p��� �� 	 � � �
n��X
j��

�jpj����

The conjugate gradient method minimizes the A�norm of the error� which
may be viewed as a minimization problem in �

kx� xnkA 	 krnkA�� 	 min
�

��r��Tp�A� ��A��p�A� ��r�������

After a simple manipulation�

�r��Tp�A� ��A��p�A� ��r� 	 �r��TA��r� � �kr�k��� � kr�k��TTn������

It is clear that the minimal solution !� is given by

Tn!� 	 kr�ke������

which� substituting to ���� and ����� gives ����

Thus� the convergence of �T��

n ��� to �T��
N ��� is determined by the con�

vergence of the A�norm of the error in the corresponding conjugate gradient
process� and vice versa
 At the step n � N we do not know� of course� the
value �T��

N ���� but we can easily compute its Gau��Radau bounds
 In this
way� ���� can be used for computing bounds for k x � xn k�A
 A di�erent
approach to the energy error approximation is used in D����


In practice� however� rounding errors may crucially a�ect the computa�
tion
 Are the accuracy of the Gau� quadrature for f��� 	 ��� and the
convergence of the corresponding conjugate gradient process related in the
way similar to ���� even in the �nite precision case# The e�ect of rounding

��



errors is analyzed in the next section� and the positive answer to this question
is given


The solution of Problem III is in fact already given by the above consider�
ations
 The approach based on the Gau��Radau bounds may also serve as a
powerful tool for �nding �in an easy way� analytical bounds on the entries of
the matrix inverse expressed explicitly in terms of the entries of the original
matrix
 We demonstrate this on the next example


We want to determine upper and lower bounds for �A���jj 
 One step of
the Lanzos process ���� with h� 	 ej gives �� 	 eTj Aej 	 ajj � ��

� 	
P

l��j a
�
lj �	

��we avoid the trivial case
P
l��j

a�lj 	 ��
 From ���������

!�� 	 �� �
��
�

ajj � ��

and ���� becomes the � by � system

�
B�

ajj �
P
l��j

a�lj�
���

�
P
l ��j

a�lj�
��� !��

�
CA g 	

�
�
�

�
�

from which after some manipulations

�eT� g� 	
�

��
� ��� � ajj��

����
P
l��

alj�� � ��ajj�
�

Assuming � � �L� � �� and �U� � �N � where �� is the smallest and �N the
largest eigenvalue of A� we receive the bound

�

�U�
� ��U� � ajj��

�U� ��
nP
l��

alj�� � �U� ajj�
� �A���jj �

�

�L�
� ��L� � ajj��

�L� ��
nP
l��

alj�� � �L� ajj�
�����

which was originally published in RW����

For the o��diagonal entries the identity

A��
ij 	 eTi A

��ej 	 ����A��
ii �A��

jj � �ei � ej�
TA���ei � ej������

can be used to develop bounds similar to ���� in a quite analogous way
 As
expected� it will result in rather complicated formulas


��



� Rounding error analysis

The e�ect of the rounding errors in the Lanczos process may crucially depend
on the distribution of the eigenvalues of A and on the components of the
initial vector in the directions of the eigenvectors of A � cf
 St����� GS�����
SG����� N���� �
 As a consequence� computed Lanczos coe�cients �elements
of the tridiagonal matrix� may di�er substantially �even several orders of
magnitude� from their theoretical counterparts


It was observed in atomic physics and physical chemistry calculations
that� despite this numerical di�culty� the method of continued fractions
HSa����� HSa����� and other methods used for computing ����� see� e
g
�
MP����� frequently give very precise results
 Similar behavior was observed
in Lanczos process based Gau� quadrature calculations


In the previous sections� we have shown that both of these observations
are of the same origin because the problem of computing ���� can be formu�
lated as the problem of computing the Gau� quadrature for f��� 	 ���
 In
exact arithmetic� the accuracy of the Gau� quadrature for f��� 	 ��� and
for the distribution function ��� with the �nite points of increase� de�ned
by ����� is determined by the energy norm of the error in the corresponding
conjugate gradient process� see ����
 In this section� we derive an analogy of
���� for the computed values in �nite precision arithmetic
 For the di�erent
approach to the rounding error analysis of the Gau� quadrature cf
 K����


We preserve the notation of previous sections for the theoretical exact
arithmetic values� while denoting the actually computed quantities by the
superscript $
 The abscissas �j and weights j of the n�point Gau� quadra�
ture� j 	 �� �� � � � � n� are in Sections ��� determined as the eigenvalues and
the square of the �rst elements of the normalized eigenvectors of the Jacobi
matrix Tn computed as a result of the n steps of the Lanczos or conjugate gra�
dient algorithm
 In exact arithmetic� the Lanczos and CG algorithms �����
and ���������� produce the same tridiagonal matrices Tn
 In the presence
of rounding errors� the results computed by the Lanczos run may slightly
di�er from the corresponding results of the CG run
 Though there are many
theoretical arguments supporting the conjecture that these di�erences are
small �see Si���a�� Si���b�� Gr������ and it is in a good agreement with
many experiments �see� e
g
 St������ the rigorous theoretical quanti�cation
is still missing
 The detailed discussion of this question is out of the range of
this paper
 We are interested in the relation between the error in the �nite

��



precision Gau� quadrature and the rate of convergence of the CG process

Therefore� henceforth we assume that all the actually computed quantities
are determined by the �nite precision CG run� i
e
� using the formulas �����
����


As $Tn di�ers from its theoretical counterpart Tn� the values $�j � $j may
be very di�erent from �j� j � and the actual error of the computed Gau�
quadrature can no longer be expressed as in ����


We note here that we are primarily interested in the error in determin�
ing the abscissas and weights� caused by rounding errors in the CG process
����
 We consider all the other rounding errors in computing the quadrature
negligible �it concerns ����� the error in determining $�j � $j from $Tn� errors
in the computation of function values and in forming sums" for more details
we refer to DR����� Chapter �� and we do not take them into account
 This
assumption will simplify our analysis remarkably and� unless the precision
of the quadrature is close to the machine precision� it does not a�ect the
correctness of the proved results


Rounding errors in the Lanczos algorithm were thoroughly investigated
by Paige in his Ph
D
 Thesis Pg���� and in subsequent papers �see� e
g
� Pg�
���� Pg����� Pg������ and then by many other authors �for a partial survey�
see� e
g
� Si���a�� Si���b�� GS�����
 Our analysis is based on the backward
error results developed by Greenbaum Gr����
 According to that� for a given
�xed n� the Lanczos matrix $Tn� produced in n steps of the �nite precision
CG process for the matrix A and the initial residual r�� is identical to the
Lanczos matrix Tn� generated in n steps of the exact CG algorithm applied
to a certain larger matrix An� having possibly many more eigenvalues then
A� but whose eigenvalues all lie within tiny intervals about the eigenvalues of
A� with a certain initial residual r�n
 The matrix An �the exact distribution
of An�s eigenvalues� and the initial vector r�n of the exact CG process depend
on the actual rounding errors in the steps � through n of the original �nite
precision run
 The dimension of the �equivalent� exact CG proces is denoted
by N � N � N 
 We emphasize� that An� r�n� and even the dimension N �
depend on n
 For the Lanczos method the result can be formulated quite
analogously


We turn to the analysis of the e�ect of rounding errors in computing the
Gau� quadrature
 Let n be �xed� n � N 
 Based on the results by Greenbaum
�cf
 Gr������ the problem of approximating the original sum

��



NX
i��

��i f��i�����

by the n�point Gau� quadrature approximation computed in the 	nite pre�
cision arithmetic�

nX
l��

$lf�$�l������

may now be considered as a problem of computing the exact n�point Gau�
quadrature approximation ���� to the �original� sum

NX
j��

��jf��i������

de�ned by An� r�n

If f��� has a reasonably bounded �rst derivative in the neigborhoods of

each �i� i 	 �� �� � � � � N � then ���� is close to ����
 To show this� we need to
quantify the relations between the eigenvalues and the squared �rst elements
of the normalized eigenvectors of the matrices TN and TN 
 Resulting from
the exact CG processes for A� r� and An� r

�
n� the Jacobi matrices TN and TN

have the same eigenvalues as A and An� respectively
 Using ����� the weights
may be written as

��i 	 s��i� ��j 	 s��j� i 	 �� � � � � N� j 	 �� � � � � N�

where si and sj are the normalized eigenvectors of TN and TN � respectively

Henceforth� O�x� denotes the product of x with a constant independent

of x
 We recall two theorems� and then we prove Theorem �
�� which relates
���� to ����
 By kAk we denote the spectral norm of A


Theorem 
�� �Gr���� For each eigenvalue �j of the Greenbaum matrix
An� constructed for the n steps of the �nite precision CG process for A� r��
there is some eigenvalue �i of A so that

j�j � �ij 	 min
l
j�j � �lj � O�N

�
�� k A k�����

where � is determined in �Gr��
� pp� ����	� ������

��



Theorem 
�� �St���� For each eigenvalue �i of A� there is some eigenvalue
�k of An so that

j�i � �kj 	 min
l
j�i � �lj � O�N �� k A k

j�ui� h��j �����

where � is as in Theorem ���� h� 	 r�� k r� k�

For proofs see G����� p
 ��� Theorem � �p
 ���� and Theorem �� �p
 ���
and St����� Theorem �
� �p
 ����
 � represents a quite complicated quan�
tity which is hard to describe without giving details of the complicated and
di�cult proof of Theorem �
�
 Such exposition is hardly possible here� see
G����


Theorem �
� gives a bound on the size of intervals about the eigenvalues
of A containing all the eigenvalues of An
 Numerical computations Gr����
suggest that this bound is a large overestimate� and that the eigenvalues of
An are actually contained in much smaller intervals than the proven bounds
would suggest
 Based on the thorough discussion in GS����� we will assume
that the size of these intervals is proportional to the machine precision �

Though not formally justi�ed yet� this assumption appears to be very realis�
tic
 Moreover� we believe that the formal proof is possible and we will return
to this point elsewhere
 Theorem �
� proves that for any eigenvalue of A�
�i� there is some eigenvalue �k of An close to it �we suppose that j�ui� h��j is
nonnegligible�


Let fJ�� J�� � � � � JNg be a partitioning of the set of indices f�� �� � � � � Ng
such that the eigenvalues f�l� l � Jig are within �i to �i� where �i is a mod�
erate multiple of the machine precision �� and Ji is nonempty� i 	 �� �� � � � � N
�existence of such partitioning is in fact guaranteed� under the assumption
mentioned above� by Theorems �
�� �
��
 We assume that �� � �� 
 �� and
the eigenvalues of An are ordered so that

� � �� � �� � � � � � �N �����

Let f��j� � C��
SN
i���i��i� �i��i�� and jf ����j � �� � � SN

i���i��i� �i��i�

Then for j � Ji

f��j� 	 f��i� �O����i�����

and the sum ���� can be rewritten as

��



NX
j��

��jf��j� 	
NX
i��

X
j�Ji

��jf��j� 	
NX
i��

�f��i� �O����i�
X
j�Ji

��j �

From Gr����� relation ��
��� on p
 ���

X
j�Ji

��j 	
X
j�Ji

s��j 	 �ui� h
��� �O�N

�
�� 	 ��i �O�N

�
���

Finally� combining the above results� we have proved the following theo�
rem�

Theorem 
� The sums ���� and ���� are related by

NX
j��

��jf��j� 	
NX
i��

��i f��i� � Pn�f������

Pn�f� 	 O���
NX
i��

�i�
�
i �O�N

�
�� k A k �

NX
i��

�f��i� �O����i�������

As mentioned above� numerical computations justify that it is realistic to
consider that �i� i 	 �� � � � � N � and � in ���� are modest multiples of the
machine precision �
 For any nonvanishing function f with a reasonable
bounded �rst derivative� i
e
 �� ���� ���� is therefore close to ����


We will characterize the truncation error �see DR����� ��
�
��� of the
exact n�point Gau� quadrature for ���� computed by the exact CG process
for An� r�n

Using �����

NX
j��

��jf��j� 	
nX
i��

$lf�$�l� �Rn�f������

Rn�f� 	
NX
j��

��jff��j� $��� $��� � � � � $�n� $�n�
nY

k��

��j � $�k�
�g�����

As a consequence� we receive the following corollary to Theorem �
��

��



Corollary 
�� Consider the n�point Gau� quadrature for the sum �����
Then the total error of the Gau� quadrature approximation computed in �nite
precision arithmetic via the CG method is determined by the formula

NX
i��

��i f��i� 	
nX
l��

$lf�$�l� �Rn�f� � Pn�f������

where P �f� is given by ���� and Rn�f� is given by �����

Corollary �
�� in fact� formulates the basic result describing the e�ect
of rounding errors to the Gau� quadrature computed via the CG process
�for the Gau��Radau quadrature the result is analogous�
 Formula ���� is
analogous to ���� with one but very substantial di�erence
 The main part of
the error� i
e
 Rn�f�� is given by f��� $��� $��� � � � $�n� $�n�$q�n��� integrated not
using the original �integral� ����� as in ����� but using the �integral� �����
determined by the actual values of rounding errors in steps � through n of
the �nite precision CG process for A� r�


Note that the total error �including the roundo� error� of the Gau�
quadrature for ���� computed in �nite precision arithmetic is expressed as
the truncation error of the Gau� quadrature for a di�erent problem ����

We emphasize that Rn�f� and Rn�f� may di�er substantially
 That is as
much as we are able to say for a general function f 


For the particular case f 	 ��� the situation is more transparent
 Indeed�
using ���� and ����� ���� becomes

NX
i��

��i
�i

	
nX
l��

$l
$�l

�Rn����� � Pn���������

or
�T��

N ��� 	 � $T��
n ��� �Rn����� � Pn����������

where Pn����� is given by ����� and

Rn����� 	 ��� k r�n k�� k x� xn k�
An

�����

Because An� r� and Rn����� are not available during the actual �nite preci�
sion computation� we want to replace Rn����� in ����� ���� by some quantity
which is easily computable from the original data �i� �i� i 	 �� � � � � N � �or
A� r��
 We use the bound

��



Rn����� 	 ��� k r�n k�� k x� xn k�
An

� ��� k r�n k�� k x� xn�� k�
An
�

� �

��

k rn�� k�
k r� k� �

and the relation between the relative norm of the CG residual
�k 	k rk k � k r�n k and the coe�cients of the corresponding Lanczos process

�k 	
$�k���k���k��

$�k�k�� � $�k�k��
� k 	 �� � � � � n� �� �� 	

$��
$��
� �� 	 ������

Gr����� relation ��
��� on p
�� �note that all the quantities in ���� are con�
sidered as determined by the exact process for An� r�n�
 The coe�cients
$�k� $�k are computed by ����� from which

�k � $�k 	k $rk k � k r� k� k 	 �� �� � � � � n� ��

As a consequence� we derive the following bound

Rn����� � $��n��
��

�����

Replacing �� by the smallest Ritz value $��� computed at the step n� we can
write ���� in the �nal form suitable for computation

Rn����� 	 O���
$��n��
$��

�����

Thus�

�T��
N ��� 	 � $T��

n ��� �O���
$��n��
$��

� Pn����������

Using this formula �and considering j P ����� j small�� one can check the
accuracy of the computed quadrature �or the convergent of the continued
fraction� during the computation
 In our experiments the value $��n�����
always gave an actual upper bound for the total error� unless it was of the
order of the machine precision
 Some examples of experimental results are
presented below


��



As mentioned in Section �� we want to derive an analogy of ���� for
actually computed quantities� i
e
� to relate the accuracy of the computed
Gau� quadrature for f��� 	 ��� to the rate of convergence of the �nite
precision CG run
 For that� we need to express Rn����� in terms of the
energy norm of the error of the actual CG run for A� r�
 This can be easily
done using the results proved by Greenbaum


Let � � O�N
�
�� k A k be the largest distance from an eigenvalue of An

to the closest eigenvalue of A
 From Gr����� proof of Theorem �� pp
 ���
��� and ��
��� on p
 ��� and assuming that �� � � and �N � � are closely
approximated by the Ritz values $�� and $�n computed at the n�th step�

j k r� k� � k r� k� j 	 k r� k� $�n
$��
O��������

j k x� $xk k�A � k x� xk k�
A
j 	 k $rk k� $�n

�$����
O���� k 	 �� � � � � n�����

where

� 	 ���� �O���NN
�
������

If �� is su�ciently well separated from zero� i
e
� if ���� is a modest multiple
of the machine precision �� then ���� and ���� imply that k r� k is close to
k r� k and k x� $xk kA is close to k x� xk kA


Combining ����� ����� with ���� and ���� gives

�T��
N ��� 	 � $T��

n ���� k x� $xn k�A � k r� k� �$�n
$��
O�

�
��� Pn����������

where O�
�
�� counts for the resulting small terms which are proportional to

�
 ���� is the desired �nite precision analogy of ����

As a consequence� the total error of the Gau� quadrature for ���� com�

puted via the CG method �or� equivalently� the convergence of the continued
fraction $Cn 	 � $T��

n ���� computed by the �nite precision CG process� to the
value CN 	 �T��

N ���� cf
 ���������� is determined by the actual A�norm of
the error in the �nite precision conjugate gradient process


Using ����� one can also explain the e�ect of rounding errors in comput�
ing Gau� quadrature for f��� 	 ��� and the distribution function ��� with

��



�nite points of increase �or� equivalently� in computing corresponding contin�
ued fraction�
 Computed results of the Gau� quadrature �or the continued
fraction calculation� are a�ected considerably by rounding errors if and only
if the same is true for the energy norm of the error of the underlying conju�
gate gradient run
 For a general function f���� the e�ect of rounding errors
is described by the di�erence between the values of Rn�f� and Rn�f� given
by ���� and ����


This approach can be used for �reconstructing� the A�norm of the error in
the �nite precision CG run
 Rewriting ���� for the special case f��� 	 ����
and using ����� we obtain

k x� xn k�
A
	 k r� k�

h
�T

��
N ��� � � $T��

n ���
i
�����

Considering ����������

k x� $xn k�A 	 k r� k�
h
�T

��
N ��� � � $T��

n ���
i
�

$�n
$��
O�

�
�������

where O�
�
�� counts for the small terms proportional to �
 The value �T

��
N ���

is unknown� but it can be approximated by � $T��
k ��� for some k 
 n

�T
��
N ��� 	 � $T��

k ��� �O���
$��k��
$��

�����

where $�� is� from now on� the smallest Ritz value computed at the step k �we
assume $�� 
 �
 Note that the Ritz values are not double�indexed� i
e
� we
omit the index of the iteration step
 This simpli�cation is possible because
the meaning is clear from the context�
 Finally� ���� and ���� give �with
replacing $�n by $�k�

k x� $xn k�A 	 k r� k� � $T��
k ��� � � $T��

n ���� �O���
k $rk�� k�

$��
�

$�k
$��
O�

�
�������

� $T��
k ��� and � $T��

n ��� can be easily computed as the continued fractions $Ck

and $Cn

The relation ���� can be interpreted in the following way
 Let for n 	

�� �� � � � � nk the �rst term in ���� is dominating� i
e


��



$tn�k 	 k r� k� � $T��
k ��� � � $T��

n ���� � k $rk�� k�
$��

�
$�k
$��
O�

�
�������

Then �$tn�k���� is a good approximation to k x� $xn kA� n 	 �� � � � � nk� and it
�restores� the behavior of the energy norm of the actual error in the �rst nk
steps
 For nk � n � k� the value of �$tn�k���� can be considered as a lower
bound� and k $rn k �p$�� as an upper bound for k x� $xn kA


This is� of course� only a curiosity� without a practical application
 Indeed�

k x� $xk kA 	 O���
k $rk�� kp

$��

implies that nk � k� and we cannot gain a reasonable information about the
energy norm of the error at the k�th step from ����
 Moreover� ���� does not
provide us with any approximation to k x� $xn kA under the level� say�

O�k x� $x� kA�
p
������

which is the square root of the rough estimate of the roundo� in computing
the value of $tn�k from $�l� $�l


We illustrate the behavior of $tn�k by the following experiments
 For the
�rst example we consider a diagonal matrix A 	 diag���� � � � � �N � from the
class of matrices described in St���� and used in GS����
 We used the
dimension N 	 ��" �� 	 ���� �N 	 ���
 The distribution of eigenvalues was
choosen so that the e�ect of rounding errors had been crucial �it corresponded
to the parameter � from St���� set to � 	 ������
 Figures ��� show the actual
A�norm of the error k x� $xn kA �solid lines�� the computed value of �$tn�k����

�dashed lines� and the �precise� value of �$tn�k���� �dotted lines�
 The last one

is computed from ���� with � $T��
k ��� replaced by T��

N � which is determined
from the �exact�� i
e
 doubly reorthogonalized� process� see GS����
 Figure �
corresponds to k 	 ��� Figure � to k 	 �� and Figure � to k 	 ��
 The
dashed�dotted lines denotes

max�k $rk�� k �p��� ���	������

where ���	 substitutes for the ultimate limiting precision level ����

Figures ��� were plotted for a randomly choosen solution vector" for the

other choices the situation was similar
 We point out that above the level

��



���� �$tn�k���� �restores� the value of k x � $xn kA precisely �dashed� dotted
and solid lines almost coincide�� while below this level the computed value
of �$tn�k���� gives for k $rk�� k �p$�� 
 ���	 the lower bound for k x � $xn kA

For k $rk�� k �p$�� � ���	 it contains no useful information


As a second example we used the model problem with the ��point di�er�
ence approximation to Laplacian on the mesh ��	�� �N 	 ����
 Results are
for the solution vector ��� �� � � � � ��T � k 	 ��� �� and �� shown on Figures ���
�the dotted line was not computed�


� Concluding remarks

In this paper we emphasized relations between quadratures� orthogonal poly�
nomials� Jacobi matrices� continued fractions� Lanczos and conjugate gradi�
ent methods
 We have shown that the problem of estimating quadratic forms
can be considered as a problem of computing Gau� and Gau��Radau quadra�
tures� and that it can be solved in an elegant way using the Lanczos method

Exploiting relations between the areas mentioned above� we can easily refor�
mulate a question from one area into the language of the other area
 This
approach can simplify the original problem and make its solution very easy


We analyzed the e�ect of rounding errors to the Gau� quadrature cal�
culations for the distribution function with �nite points of increase
 Using
the backward error analysis of the conjugate gradient method �developed
by Greenbaum�� we proved that the total error of the Gau� quadrature
computed via the CG method in �nite precision arithmetic can be described
as the truncation error of the Gau� quadrature for a di�erent distribu�
tion function
 As a consequence� we have shown that for the particular case
f��� 	 ���� the total accuracy of the Gau� quadrature� computed by the
�nite precision CG process� is determined by the energy norm of the error of
the CG process
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