Skip to main content
Log in

A parallel projection method for overdetermined nonlinear systems of equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider overdetermined nonlinear systems of equationsF(x)=0, whereF: ℝn → ℝm,m≥n. For this type of systems we define “weighted least square distance” (WLSD) solutions, which represent an alternative to classical least squares solutions and to other solutions based on residual normas. We introduce a generalization of the classical method of Cimmino for linear systems and we prove local convergence results. We introduce a practical strategy for improving the global convergence properties of the method. Finally, numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.T. Banks and K. Kunisch,Estimation Techniques for Distributed Parameter Systems (Birkhäuser, Boston, Basel and Berlin, 1989).

    Google Scholar 

  2. A. Ben Israel: A Newton-Raphson method for the solution of systems of equations, J. Math. Anal. Appl. 15 (1966) 243–252.

    Article  Google Scholar 

  3. T.N. Bishop et al., Tomographic determination of velocity and depth in laterally varying media, Geophysics 50 (1985) 903–923.

    Article  Google Scholar 

  4. Å. Björck, Least squares methods, inHandbook of Numerical Analysis vol. 1, eds. P. G. Ciarlet and J.L. Lions (Elsevier/North-Holland, 1987).

    Google Scholar 

  5. C.G. Broyden, J.E. Dennis Jr. and J.J. Moré, On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl. 12 (1973) 223–245.

    Google Scholar 

  6. Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev. 23 (1981) 444–466.

    Article  Google Scholar 

  7. Y. Censor, D.E. Gustafson, A. Lent and H. Tuy, A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients, IEEE Trans. Nucl. Sci. NS-26 (1979) 2775–2779.

    Google Scholar 

  8. G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica Ser II, Anno IV 1 (1938) 326–333.

    Google Scholar 

  9. J.E. Dennis Jr. and R.B. Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  10. A.R. De Pierro and A.N. Iusem, On the set of weighted least squares solutions of systems of convex inequalities, Comm. Math. Univ. Carol. 25 (1984) 667–678.

    Google Scholar 

  11. A.R. De Pierro and A.N. Iusem, A parallel projection method of finding a common point of a family of convex sets, Pesquisa Operacional 5 (1985) 1–20.

    Google Scholar 

  12. A.R. De Pierro and A.N. Iusem, A simultaneous projections method for linear inequalities, Lin. Alg. Appl. 64 (1985) 243–253.

    Article  Google Scholar 

  13. I.S. Duff, MA28—a set of FORTRAN subroutines for sparse unsymmetric linear equations, AERE R8730 (HMSO, London, 1977).

    Google Scholar 

  14. I.S. Duff, A.M. Erisman and J.K. Reid,Direct Methods for Sparse Matrices (Clarendon Press, Oxford, 1986).

    Google Scholar 

  15. A. George and M.T. Health, Solution of sparse linear least squares using Givens rotations, Lin. Alg. Appl. 34 (1980) 69–83.

    Article  Google Scholar 

  16. A. George, M. T. Heath and E. Ng, A comparison of some methods for solving sparse leastsquares problems, SIAM J. Sci. Stat. Comput. 4 (1983) 177–187.

    Article  Google Scholar 

  17. J.A. George and J.W. Liu,Computer Solution of Large Sparse Positive Definite Systems (Prentice-Hall, Englewood Cliffs, NJ, 1981).

    Google Scholar 

  18. G.H. Golub and Ch.F. Van Loan,Matrix Computations (The Johns Hopkins University Press, Baltimore and London, 1989).

    Google Scholar 

  19. M.A. Gomes-Ruggiero, J.M. Martínez and A.C. Moretti, Comparing algorithms for solving sparse nonlinear systems of equations, SIAM J. Sci. Stat. Comput. 13 (1992) 459–483.

    Article  Google Scholar 

  20. M.T. Heath, Numerical methods for large sparse linear least squares problems, SIAM J. Sci. Stat. Comput. 5 (1984) 497–513.

    Article  Google Scholar 

  21. L.W.B. Leite and J.W.D. Leão, Ridge regression applied to the inversion of two-dimensional aeromagnetic anomalies, Geophysics 50 (1985) 1294–1306.

    Article  Google Scholar 

  22. K. Levenberg, A method for the solution of certain problems in least squares, Quart. J. Appl. Math. 2 (1944) 164–168.

    Google Scholar 

  23. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIMA J. Appl. Math. 11 (1963) 431–441.

    Article  Google Scholar 

  24. J.M. Martínez, An algorithm for solving sparse nonlinear least squares problems, Computing 39 (1987) 307–325.

    Google Scholar 

  25. J.M. Martínez, Quasi-Newton methods for solving underdetermined nonlinear simultaneous equations, J. Comput. Appl. Math. 34 (1991) 171–190.

    Article  Google Scholar 

  26. J.M. Martínez and R.J. Sampaio, Parallel and sequential Kaczmarz methods for solving underdetermined nonlinear equations, J. Comp. Appl. Math. 15 (1986) 311–321.

    Article  Google Scholar 

  27. J.M. Martínez and R.F. Santos, An algorithm for solving nonlinear least-squares problems with a new curvilinear search, Computing 44 (1990) 83–90.

    Google Scholar 

  28. J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in:Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, ed. G.A. Watson (Springer, Berlin, 1978) pp. 105–116.

    Google Scholar 

  29. J.J. Moré, Recent developments in algorithms and software for trust region methods, in:Mathematical Programming Bonn 1982-The State of Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, 1983).

  30. L.B. Pedersen, Interpretation of potential field data. A generalized inverse approach, Geophys. Prosp. 25 (1977) 199–230.

    Google Scholar 

  31. V. Pereyra, Numerical methods for inverse problems in 3-D geophysical modeling, Appl. Numer. Math. 4 (1988) 97–139.

    Article  Google Scholar 

  32. V. Pereyra and S.J. Wright, Three-dimensional inversion of travel time data for structurally complex geology, Preprint MCS P174 0890, Mathematics and Computer Science Division, Argonne National Laboratory (1990).

  33. R.J. Santos, Métodos iterativos para problemas inversos, Ph.D. Thesis, Department of Applied Mathematics, University of Campinas (1992).

  34. H.F. Walker and L.T. Watson, Least-change secant update methods for underdetermined systems, SIAM J. Numer. Anal. 27 (1990) 1227–1262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

Work supported by FAPESP (Grant 90/3724/6), FINEP, CNPq and FAEP-UNICAMP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz-Ehrhardt, M.A., Mario Martínez, J. A parallel projection method for overdetermined nonlinear systems of equations. Numer Algor 4, 241–262 (1993). https://doi.org/10.1007/BF02144106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02144106

Keywords

Navigation