Skip to main content
Log in

On the quality of algorithms based on spline interpolation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The qualityq of a numerical algorithm using some specified information is the ratio of its error to the smallest possible error of an algorithm based on the same information. We use as information function values at equidistant points, periodicity and a bound for therth derivative. We show thatq is rather small, if the algorithm is based on spline interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Braß, Zur numerischen Berechnung konjugierter Funktionen, in:Numerical Methods of Approximation Theory, Vol. 6, eds. L. Collatz, G. Meinardus and H. Werner (Birkhäuser, Basel, 1982) pp. 43–62.

    Google Scholar 

  2. H. Braß, Universal quadrature rules in the space of periodic functions, in:Numerical Integration, Vol. III, eds. H. Braß and G. Hämmerlin (Birkhäuser, Basel, 1988) pp. 16–24.

    Google Scholar 

  3. H. Braß, Optimal estimation rules for functions of high smoothness, IMA J. Numer. Analysis 10 (1990) 129–136.

    Google Scholar 

  4. H. Braß, Practical Fourier analysis — error bounds and complexity, Z. Angew. Math. Mech. 71 (1991) 3–20.

    Google Scholar 

  5. L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1959) 247–260.

    Google Scholar 

  6. G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungsber. Königl. Preuss. Akad. Wiss. (1910) 809–847.

  7. W. Gawronski and U. Stadtmüller, On the zeros of Lerch's transcendental function with real parameters, J. Approx. Theory 53 (1988) 354–364.

    Google Scholar 

  8. G. Meinardus, Periodische Splinefunktionen, in:Spline Functions, Karlsruhe, 1975, eds. K. Böhmer, G. Meinardus and W. Schempp, Lecture Notes in Mathematics 501 (Springer, 1976) pp. 177–199.

  9. G. Meinardus, Über die Norm des Operators der kardinalen Spline-Interpolation, J. Approx. Theory 16 (1976) 289–298.

    Google Scholar 

  10. H. ter Morsche, On the existence and convergence of interpolating periodic spline functions of arbitrary degree, in:Spline-Funktionen, eds. K. Böhmer, G. Meinardus and W. Schempp (Bibliographisches Institut, 1974) pp. 197–214.

  11. M. Reimer, The main roots of the Euler-Frobenius polynomials, J. Approx. Theory 45 (1985) 358–362.

    Google Scholar 

  12. M. Reimer and D. Siepmann, An elementary algebraic representation of polynomial spline interpolants for equidistant lattices and its condition, Numer. Math. 49 (1986) 55–65.

    Google Scholar 

  13. I. J. Schoenberg, Cardinal spline interpolation, in:Regional Conference Series in Applied Mathematics 12 (Soc. Ind. Appl. Math., 1973).

  14. L. Schumaker,Spline Functions: Basic Theory (Wiley, 1981).

  15. S. L. Sobolev, On the roots of Euler polynomials, Soviet Math. Dokl. 18 (1977) 935–938.

    Google Scholar 

  16. J. F. Traub and H. Wózniakowski,A General Theory of Optimal Algorithms (Academic Press, 1980).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Mühlbach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brass, H. On the quality of algorithms based on spline interpolation. Numer Algor 13, 159–177 (1996). https://doi.org/10.1007/BF02207693

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207693

Keywords

AMS subject classification

Navigation