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Abstract - -  Zusammenfassung 

Spurious Solutions for Discrete Superlinear Boundary Value Problems. We consider finite dimensional 
nonlinear eigenvalue problems of the type A u = 2 F u  where A is a matrix and (Fu)i =f(ui), i = 1 . . . . .  m. 
These may be thought of as discretizations of a corresponding boundary value problem. We show that 
positive, spurious solution branches of the discrete equations (which have been observed in some cases in 
[I, 7]) typically arise if f increases sufficiently strong and if A -1 has at least two positive columns of a 
certain type. We treat in more detail the cases f ( u ) =  e u and f ( u ) =  u ~ where also discrete bifurcation 
diagrams are given. 
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Zusgtzliche LiJsungen yon Diskretisierungen superlinearer Randwertaufgaben. Es werden endlich 
dimensionale, nichtlineare Eigenwertprobleme der Form A u = 2 Fu mit einer Matrix A und einem Feld 
(Fu) ,=f (u) ,  i=1 . . . . .  rn betrachtet. Diese k6nnen als Diskretisierung eines entsprechenden 
Randwertproblems angesehen werden. Wir zeigen, dab diese diskreten Gleichungen dann zusfitztiehe, 
positive L6sungszweige (welche in [1, 7] heobachtet wurden) aufweisen, wennfhinreichend stark w~ichst 
und A -1 mindestens zwei positive Spalten yon einem bestimmten Typ besitzt. Ausfiihrlicher werden die 
FNie f ( u ) = e  ~ und f ( u ) = u  ~ behandelt, ftir die auch diskrete Verzweigungsdiagramme angegeben 
werden. 

1. Introduction 

Recent ly,  var ious  au tho r s  have  observed  tha t  discrete ana logues  of n o n l i n e a r  
b o u n d a r y  va lue  p r o b l e m s  m a y  have  spur ious  so lu t ions  tha t  do no t  converge  to a n y  
of the c o n t i n u o u s  so lu t ions  (cf. G a i n e s  [4],  Al lgower  [1], Bohl  [2-], Pei tgen,  Saupe,  
Schmi t t  [7],  Doedel ,  Beyn  [3]). 

Let  us consider ,  for example ,  the  n o n l i n e a r  e igenvalue  p r o b l e m  

- u " = A f ( u )  in [0 ,1] ,  2 > 0 ,  u ( 0 ) = u ( 1 ) = 0  

a n d  a discrete a n a l o g u e  of the type  

A u = 2 F u ,  u ~ " ,  2 > 0  (1) 

where  A ~ L I N " ]  is an  m x m-mat r ix  a n d  F is the  d i agona l  field 

(F (u))i =f(ui), i-- 1 . . . .  , m. 
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Then there are essentially two types of spurious solution branches for the discrete 
equation (t): 

Type I: 
Solution branches which occur for large 2 and which tend to solutions of Fu = 0 as 
) ,- ,  oo. 

Type II: 
Solution branches which occur for small 2 and which tend to infinity (in the 
maximum norm) as ) ~ 0 .  

Type-I-solutions are well understood and can be analyzed by means of the reduced 

equation F u = 0, 

which is obtained from (1) if we divide by 2 and let 2 ~  oo (cf. Bohl [2], Peitgen, 
Saupe, Schmitt [7]). 

Type-II-solutions are typical for superlinear functions f, but - apart from 
numerical results - their existence has only been proved in special cases (see 
Allgower [1] for the case f (u )  = u 4, m = 3 and note that the unbounded continua in 
Peitgen, Saupe, Schmitt [7, section4] may all consist of numerically relevant 
solutions). 

The purpose of this paper is to clarify the situation for spurious solutions of type II. 

In section 2 we show under a certain growth condition on f that any positive column 
of A-  1 which attains its maximum on the diagonal leads to a positive branch of type- 
II-solutions. The shape of the solutions on this branch is given by the respective 
column of A-  1. 

In particular, the discrete Gel'land problem (Gel'fand [5]) where 

2 - 1  

- 1  2 - 1  
A = ( m  -.I- l )2 " : ; (2)  

- I  
, f ( u )=e% 

2 - 1  

- 1  2 

has at least m distinct branches of this type. 

If rn is odd then only one of these contains the symmetric solutions which correspond 
to solutions of the boundary value problem. All the other branches are spurious. 
Moreover - as the numerical and theoretical results of section 3 show - there are 
still further positive spurious solution branches for this example. 

Our growth condition on f excludes the important case 

f ( u )  = u ~, ~ _> ! ,  

which will be treated in some detail in section 4. 

It is shown that for ~ sufficiently large, say ~>  ~1 > i, the same situation as in 
section 2 prevails. 
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Note  however that  not  any f ( u ) - u  ~, a > 1 produces spurious solutions. It follows 
from the results of Lorenz  [6] that  if A -  ~ has only positive entries there can be 
computed a number  eo = % (A - 1) > 1 for which the system (1) with f(u) = u ~, [ ~ I < ~o 
has exactly one positive solution branch. Hence, for any matrix A of this kind there is 
a critical value e*, 1 < ~o -< e* < el < o% at which spurious solutions for the system (1) 
with f ( u ) =  u ~* begin to exist (see Fig. 2 in section 4). 

2. Spurious Solutions in the General Case 

Let H [J denote the maximum norm in [~m. 

It will be convenient  to parametr ize solution branches of equation (1) by this norm, 
i.e. we look for solutions 

(u, 2) = (u (r), 2(r)) E ~ "  +1 
of the system 

A u = 2 F u ,  IJ u I[=r>-0.  (3) 

Let us assume that  B = A -  ~ exists. Then our analysis is based on the following 
reformulation of (3) 

v=#f(r )  -a F(rBv),  r>O, [I By II =1 .  (4) 

It  is easily verified that the solutions (u, 2) e 6 "  + 1 of(3) and (v, #) of(4) are related by 

(u, 2) = (r B v, r f ( r ) - I /~) .  (5) 

As we will show, equation (4) leads to a reasonable reduced problem if we let r--, oo. 

The  assumptions in the following theorem are easily seen to be fulfilled by example 
(2) (cf. section 3). 

Theorem 1 : 

(i) Let f:  (0, oo)--*(0, oo) be a Cl-function such that 

1 r 
sup f ( z  r )~0 ,  sup f '  (z r ) ~ 0  

f(r) o<~<_t 7(/'f o<~_<t 

as r-+ co holds for every t ~ (0, 1). 

(ii) Let B= A-1 exist and let Bj=(Blj , . . . ,  B,,j) r be a column of B satisfying 

Bjj> Bij>O ViA~j. 

Then there exists a continously d([.]brentiable branch of positive solutions (u (r), 2 (r)), 
r 2 ro of the system (3) which satisfies 

r -1 u(r)~B~ ~ Bj, 2 ( r ) r - l f ( r ) ~ B ~  1 as r~o�9 (6) 

Proof: 

Let  v ~ = B ~  1 e J, where d is the j - th  unit vector in N'~. Then from assumption (ii) we 
have an e > 0 such that 

1 > ( B y ) i > 0  Vi~:j, ve V = { v e  ~ :  II v - v ~  II-<g}. (7) 
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We will now apply the implicit function theorem to the equation 

T(v,s)=O, (v,s)e V x  

where T:  V x R--* ~ "  is defined by 

I v j f ( ( B v ) ~ l s [ - ~ ) f ( I s [ - ~ ) - l - v i ,  i+-j, s # O  

Ti(v,s)-=- t - v i ,  i # j ,  s = 0  
[ 

[(B v ) j -  1, i=j .  

By an elementary discussion using (7) and assumption (i) we obtain 

0 T  
T, n - - - ~ C ( V x  N,N'),  k = l  . . . .  ,m 

C/)k 

as wetl as 

Hence 

i - -  cSik , i =~j Ti (vO, 0) = (k = !, ..., m). 
O V k ~. Bjk , i = j  

[ 6  T 0 0)) det ~,~-v (v , , = (_~1)m-1 B# # 0 (8) 

and we find a continuous solution branch g(s) s V, [ s ] < 6 such that 6(0) = v ~ Since 

0 T  

0s 

this branch is also continuously differentiable for s # 0. 

Now let us define 

v(r)=ff(r-~), #(r)=vj(r)  if r > 6  -1, 

then (v (r),/1 (r)) is a solution of (4) - note that 

(B v (r))j = t > (B v (r)) i > 0 V i #:j 
and 

vj (r) = # (r) = # ( r ) f ( r ) - i  f ( r  (B v (r))j). 
Moreover 

v(r) ~ v ~ ~ (r) ~ B~ 1 as r - ,  oe 

which proves (6) if (u (r), 2 (r)) are defined via the relation (5). 

3.  T h e  C a s e  f ( u ) =  e ~ 

As an application of theorem ! let us consider the discrete Gel ' land proNem (3) 
where A and f are defined by (2). 

In this case B = A-1 is given by 

[ i (m + 1 - j ) ,  i_<j 
Bi j=(m+ t)-3 4(j(m+ l -- i) ,  i>_j. (9) 
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Assumption (i) of theorem 1 is obviously satisfied and assumption (ii) holds for each 
column of B. 

Hence there are at least m distinct positive solution branches 

(u~(r),2J(r)), r>_ ro,j= 1, ...,m 

of the discrete Gel'fand problem (3), (2) and these satisfy the asymptotic relations 

i j -  i i <_j (m + 1) 3 
R7 (r) 

"{(m+ l - i ) ( m +  l - j )  -~, i>j' 2J(r)~re-" j (m + 1 - j )  r 

In the case m = 9 we have computed these branches numerically and obtained the 
picture as given in Fig. 1. 

#o / 

2 0  - -  spur/bus b r a n c h e s  

OL J J -  P I _ _  I - ~  

0 dOaO ~ OOO 8000  x e r 

Fig. i 

The numbers j =  1 ..... 5 indicate the above branches. The branch 5 contains the 
symmetric solutions (i.e. u i = u~o-i, i = 1,..., 9) which correspond to the solutions of 
the boundary value problem. The spurious branches with indices j = 6  ..... 9 are 
related to those with j = I . . . .  ,4 by 

u{(r)=ul~ i=1  ..... 9, j = 6 , . . . , 9 .  

Therefore the branches j and 1 0 - j  coalesce in Fig. 1. 

Note that the spurious branches j = l, ..., 4 are not connected with each other but 
rather "bend back to infinity" creating another type of spurious solutions (denoted 
bye. 
The spurious solutions on the f-branches still attain their maximum in the j-th 
component. Their shape suggests that they can be represented asymptotically as a 
linear combination of two columns of B = A-  2. This observation is made precise in 
the following theorem. 
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Theorem 2: 

Consider the system (3) where f (u)= e ~. Suppose that the matrix B = A-J  exists and 
has two columns 

Bj--(Bl j, ..., B~) T, Bk=(Blk, ..., Brag) T 

with the following properties 

O<Bik<Bkk V i~k ,  O<Bij<Bjj  Y i~-.j, (10a) 

B~k <_Bjg V i # k  or Bij<_Bkj Vi~j ,  (10b) 

e z -  B~j < B~I,- Bj~, li0 c) 

Then there exists a continuously differentiable branch of positive solutions (u (r), 2 (r)), 
r >_ r o of the equations (3) which satisfies 

r -1 u ( r )~eBi+f lBk ,2 ( r ) r  - l e r ~  as r~oo 
where 

~ = A - '  (Bkk-Bjk), f l=A -1 (Bjj-Bkj),A =Bj jBk~-BjkB,  j. (!1) 

Proof: 
We will only give the main steps in the proof and leave the details ~o the reader. 

The system (4) may now be written as 

v~=pexp(r((B v)~- 1)), i=  1 .. . . .  m, ii B v II = 1. (12) 

Let us introduce the operator P : ~m+l x N - - ~ "  by 

Pi (w , s )={  wl, i4=k eNd+l, 
wk ,w , ,+ l  s , i=k '  w s 6 ~  

and the operator T: R~+I • ~ E ~ + t  by 

{ w~- wj exp(] s [-~ [(BV(w,s))~- 1]), ie {1 . . . .  , m}\{j, k} 

(BP (w, s))j-- 1, i=j  
T/(w, s)= (BP(w,s ) )k+w, ,+ts_ l ,  i = k  

Wk-- Wm+ 1 S-- Wje-wrn+ l~ i - - -m+ 1. 

The exponential term in this definition is set to zero if s=0.  Instead of (12) we 
consider the equation 

r (w,  s) = 0 (13) 

in a neighbourhood of 

s=0,  w=w~ + flek + yem+t GR "+1 

where e, fl > 0 are given by (11) and y > 0 is defined by 

fl = o~ e -~. (14) 

From (11), (14) we have T(w~ and using (10a, b) we find a neighbourhood 

W =  { ( w , s ) e ~  '~+' x ~:!1 w - w  ~ I I+Is l<~} 
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such that Te C 1 (W, R m+l) and 

ew,~+ a, (BP(w,s))i~(O, 1) V i+j,k,(w,s)~ W. 
Finally, 

det ~ w ( W ~  

and the implicit function theorem yields a continuously differentiable branch of 
solutions (w (s), s), I s l < 6 of equation (13) which satisfies w (0) = w ~ 

Now, all our assertions follow from the relation (5), because 

v(19= P(w(r- l ) , r - ! ) ,  #(r)=wj(r-l) ,  r>Max(~,6 -1) 

are solutions of the system (12). [] 

In the special case where A and B are given by (2), (9) it is readily verified that our 
assumptions (10 a - c )  are satisfied with 

m m 
J < ~ - ,  k = j + l  and j > ) - + l ,  k = j - 1 .  

Therefore, theorem 2 yields the existence of at least m -  1 (m odd), m - 2  (m even) 
spurious solution branches distinct from each other and distinct from the branches 
established by theorem 1. The corresponding solutions are unsymmetric. 

4. The Case  f (u) = u s, ~ >-- 1 

Assumption (i) of theorem 1 is obviously not satisfied if 

f(u) = u s, c~ > 1. 

However, in this case the system (4) takes the special form 

vi=#(Bv)~ , i=1,  ...,m, I1 By I1 =1 (15) 

which is independent of r. The system (15) can now be solved for (v,/2) where e is 
considered as a parameter. 

Theorem 3: 

For ~ >_ 1 consider the equations 

(Au)i=2u~[(i= 1 ..... m), ]1 u l[ = r  (16) 

and let assumption (ii) of theorem 1 hold. 

Then there exists ~1 > 1 and for every ~ > ~1 a continuously differentiable positive 
solution branch for (16): 

u(r)=ru~, 2(r)=rl-~2~, r>0 .  

Here u~ ~ ~", 2~ ~ R are independent of r and satisfy 

u~--,B[j 1Bj, 2~"-+Bfj I as  ~ o o .  (17) 

Proof: As in the proof of theorem 1 let v~ Bj~ ~ e j and choose e > 0 such that (7) 
holds. 

4 Computing 28/1 
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We consider the equation 

where T is now defined by 

T ( v , s ) = 0 ,  (v.s)e V x ~, (i8) 

t vi-vj(Bv)~ Ilsl, i# j ,  s#O 
I ri(v,s)=l vi, i~j, s = 0  

(B v)j- 1, i=j. 
We have T~CI(Vx ~,R m) and as in (8) we find 

det (v~ = ( -  1) ~-~ B; j+0.  

Hence, equation (18) can be solved by a CLfunction 

v(s)em, I s l < a ,  v ( O ) = P .  

We then obtain (v (~ - 1), ~ = v2 (0r 1)), u > a - 1 as solutions of (15) and ou~ assertions 
hold with 

The vector (u~,),~) of theorem 3 is a solution of 

(Au)~ = ~Z uL i = 1 , , . . ,  m, II u il = 1. 

Some numerical branches for this equation in the case 

m =9,  matrix A as in (2) 

are given in Fig. 2. Note that any solution in this diagram gives a complete branch 
for problem (16). 

j . 1 -  7" 
/#a ~- f" .- - / / t  

L F 

a~ seur~aus\tt\~\op~ncke 

\ I t 

*0"  regc,lar Or,#nck # 

# 

O lO o~* ZO 30 z,O 

Fig. 2 
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The numbersj = 1,..., 5 denote the branches with the asymptotic behaviour (17) and 
the branch 5 contains the symmetric solutions. Finally, the additional solutions on 
the f branches are quite similar to those for the discrete Gel'land problem as 
established by theorem 2. 
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