
.... -

Interner Bericht 

Optimization of Projection Methods for Solving 111-Posed 
Problems 

Sergei V. Pereverzev 

254/94 

Fachbereich Informatik 

Universität Kaiserslautern · Postfach 3049 . D-67653 Kaiserslautern 



Optimization of Projection Methods for Solving Ill-Posed 
Problems 

Sergei V. Pereverzev 

254/94 

Universität Kaiserslautern 
AG Numerische Algorithmen 

Postfach 30 49 
67653 Kaiserslautern 

Sept. 1994 

H b AG Numerische Algorithmen 
erausge er: S . .eh 

Leiter: Professor Dr. . Hemn 



;:: 

;:: 

Optimization of Projection Methods for Solving 
111-Posed Problems 

Sergei V. Pereverzev, Kaiserslautern 1 

Abstract 

Optimiza.tion of Projection Methods for Solving ill-posed Problems. In this paper 
we propose a modifica.tion of the projection scheme for solving ill-posed prob­
lems. We show that this modification a.llows to obtain the best possible order 
of accura.cy of Tikhonov Regularization using an amount of information which is 
far less than for the standard projection technique. 

AMS (MOS) Subject Classification: 65Jl0, 65i20 

Key words: Projection methods, Tikhonov regularization, ill-posed problems, 
fast numerical algorithms 

Optimisierung von Projektionsverfahren für die Lösung von inkorrekt gestell­
ten Problemen. In dieser Arbeit wird eine Modifizierung des Projektionsschemas 
zur Lösung inkorrekt gestellter Probleme vorgeschlagen. Wir zeigen, daß diese 
Modifizierung es ermöglicht, eine Genauigkeit der Tikhonov-Regula.risierung von 
bestmöglicher Ordnung zu erhalten, wobei man eine wesentlich kleinere Menge 
von Informationen benutzt als beim Standard-Projektionsschema. 

1 Introd uction 

Let e1 , e2 , • • • , em, · · · be some orthonormal basis of Hilbert space X, and let Pm be 
the orthogonal projector on span { e1 , e2 , • • • , em}, that is 

m 

Pmf = L ei(f, ei), 
i=l 

where (·, ·) is an inner product in the Hilbert space X and as usual, llfllx = {U, !). 
We denote by X", 0 < r < oo, the linear subspace of X which is equipped with the 
norm 

llfllz„ = llfllx + llD„fllx, 
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whcre Dr is some linear (non-bounded) operator acting from xr to X, and for any 
m = 1,2 · ·· 

where I is the identity operator and the constant c.,. is independent of m. 
In this paper we study the problem of finite-dimensional approximation of the solution 
of ill-posed problems of the form 

Ax =f, ( 1.1) 

where A is a linear compact operator from X into X and the free term f belongs to 
the Range (A) := {f : J = Ag,g E X}, i. e. equation (1.1) is solvable. However, 
as a rule, instead of the free term J we have some approximation f6 E X such that 
llh - fll.x $ 6, where 6 is a small positive number which is usually known . 
The traditional approach to finite-dimensional approximation of the solution of ( 1.1) 
lies in the following. We choose some finite-dimensional operator AN,c such that 
rank AN,c = N and llA - AN,cll.x-.x $ e , where € depends on 6. Further, as ,the 
approximate solution of ( 1.1) we take some minimizer Xä of the so-called Tikhonov 
functional 

(1.2) 

where a is the parameter of regularization depending on 6. We may define x0 from the 
Euler equation for (1.2) 

(1.3) 

where the star denotes the adjoint operator. Note that the solution of (1.3) belongs 
to the Range (A!v,e), dim Range (A!v,e) =rank AN,e = N, and finding an element x 0 

red uces to solving a system of N linear algebraic equations. 
So-called Projection Methods for solving ill-posed problems (1.1) lie in the following 
(see e. g. [4], § 6.3). In the above scheme of finite-dimensional approximation we put 
AN,e = PmAPl and define x0 from the equation 

(1.4) 

Within the framework of projection methods the question arises as to the relationship 
between m and f. In Section 2 we discuss this question for some dass of equation 
( 1.1). In Section 3 and 4 we construct a modification of projection scheme ( 1.4) which 
leads to more economical algorithms in the sense of complexity in comparison with the -
standard projection technique. 
N ow we define the dass of equations ( 1.1) which will he considered in the sequel. First 
of all it will be assumed that the operators A have some "smoothness". Namely, 

A E 'W., := {A: llAll.x-.xr:::; /1 ' llA*ll.x-.xr =$ /2, 

ll(DrA)*ll.x-.Xr $ /3} ' 1 = {'Yi, '"'f2, '"'f3), 
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where 11 · llx-xr is the usual norm in the space of all linear bounded operators from X 
into xr ; A* is such that for any /, g E X (!,Ag)= (A* f,g). 
Let us illustrate these assumptions. We consider an integral equation 

Ax(t) := fo1 

a(t,s)x(s)ds = /(t) (1.5) 

and as Hilbert space X we take the space L2 of square-summable functions on (0.1) 
with the usual norm II · 11 2 and inner product. Moreover, for r = 1 as xr we take the 
Sobolev space WJ of functions f having square-summable derivatives f' E L 2 , 

d 
11/llw~ = 11/112 +II dt/1'2-

If e1 , e2 , • • • , em, · · · is the Haar orthonormal basis, where e1 = 1, and form= 21c-t + 
j,k = 1,2,··· ;j = 1,2 · ·· ,21c-1 , 

{ 

2<1c-t)/2 , t E [(j - l)/21c-t , (j - ~)/21c-t) 

em(t) = - 2(1c-t)/2 , t E [(j- ~)/2"- 1 , j/2"-1 ) 

0 ' t ~ [(j - 1 )/2"-1 
' j /2"- 11 

and Pm is the orthogonal projector on span {ei, e2 , • • • , em} then it is known that 

III - Pmllw~-~ $ c1m-1
• 

This means that for L2 and Wi all conditions determining Xr(r = 1) hold. In this 
case Dr = 1t. If the kernel a( t, s) of the integral operator A of ( 1.5) has mixed partial 
derivatives and 

fo1 fo1 [a-;:~~:~s)r dtds < oo, i,j = 0,1, 

then it is easy to see that A E rt.; for X = L2 , X 1 = Wi and some '"'f· 
Let us introduce some notation: If N(b) and M(b) are functions defined on some set 
B , we write 

N(b)-< M(b) 

if there is a constant c > 0 such that for all b E B N(b) $ cM(b). We write N(b) X 

M(b), if N(b)-< M(b) and M(b)-< N(b). 
N ow we note that in the theory of ill-posed problems, ( 1.1) the sets 

Mp(A) := {u: u = A*Av, llvllx $ p} 

play an important role. Namely, it is known that for JE AMp(A) := {/: J = Au, u E 
Mp(A)} equation (1.1) has a unique solution x = A-1 f E Mp(A). Moreover, from a 
theoretical result in [7), it follows that if Xa = x0 ( AN,e, h) is an approximation to the 
solution of (1.1) obtained within the framework of scheme (1.2), (1.3), then 

inf sup sup llA-1 f - x0 (AN,e, J,)llx X fJ2
/

3
. (1.6) 

AN,• fEAMp(A) /6: 
ll/-/6llx~6 

Therefore in the sequel we shall consider the dass ~; of equation ( 1.1) with free terms 
f E AMp(A) and with operators A from rt.;. 
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2 Projection Methods 

For the dass 4>~, using results of [6], we can solve the question of relation between m 
and f. in (1.4). 
First of all we note that for A E 1{~ 

11(1 - Pm)Allx-x $III - Pmllxr-xllAllx-xr $ {1C,.m-", 

llA(J - Pt)llx-x $ II(! - Pt)A*llx-x $ 12c,.l_„ 

Let Xa,m,l be a solution of (1.4), i. e. 

Xa,m,l = (a/ + P,A• PmAPt)-1 P,A• Pmh· 

Then from [6], (Theorem 3.1) and (2.1) it follows that for 

a;:::::: [J2/3 , m X [J-l/(3r) , f;:::::: [J-2/(3r) 

sup sup sup llA-1 f - Xa,m,tllx X 6213
. 

AeH; fEAMp(A) Ji :llJ-fillx:5i 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

When this estimation is compared with estimation (1.6) it is apparent that for the dass 
4>~ projection method (2.2), (2.3) is best possible with respect to order of accuracy. 
Now we estimate the complexity of projection method (2.2), (2.3). 
First of all we assume that only the values of inner products of the following type are 
available: 

(2.5) 

Let us assing to each inner product (ei, Ae;) a point (i,j) on the coordinate plane 
(-oo, oo,) x (-oo, oo, ). This point is called the number of the inner product (ei, Ae;). 
As to inner product ( ei, h) it has the number i. 
We would like to obtain an approximate solution x 0 = Xa,m,l in the form 

l 

Xa = Ldiei, 
i=l 

(2.6) 

where di are some coefficients. But for m < f. it is more convenient to seek a solution 
of ( 1.4) in the form 

m 

Xa,m,l = L x,,,W,,,, 
v=l 

(2.7) 

where W,,, = P,A•e,,, , v = 1, 2 · · · , m , and the unknown coefficients x,,, are found from 
the following system of linear algebraic equations 

m 

ax,,, + L:a,,,,µxµ = (e,,,,J,), v = 1,2,··· ,m, 
µ=l 

4 
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where 

av,µ = (ev,AWµ) = (ev,APtA*eµ) = 
l l 

= (ev,LAe,(e,,A*eµ)) = L(ev,Ae,)(e,,A•eµ) = 
i=l i=l 

l 

= L( ev, Ae,)( eµ, Ae,) , v, µ = 1, 2, · · · , m. 
i=l 

(2.9) 

Thus, for the calculation of all coefficients av,µ we must perform N arithmetic operations 
on the values of inner products (2.5), where N X lm2 • Moreover, solving the system 
(2.8), reduces to executing no fewer than m 2 arithmetic operations. If the coefficients 
Xv in (2.7) are known, then we can pass from representation (2.7) to the standard 
representation (2.6). Namely, 

m m m l 

Xa,m,l LXvWv = LXvPtA*ev = LXvLe,(e,,A•ev) = 
v=l v=l v=l i=l 

l m 

Ldiei, da= LXv(Ae1,ev), i = 1,2,··· ,l, 
i=l v=l 

and for this passage another (2m - 1 )l arithmetic operations are required. 
Let us denote respectively by Card (AO) and Card (/ P) the numbers of arithmetic 
operations and inner products (2.5) required to construct an approximate solution x0 • 

Using above reasons for the best possible projection method (2.2), (2.3) we have 

Card (AO) X lm2 X 8-4/ 3r. (2.10) 

On the other hand it follows from (2.8), (2.9) that for the realization of scheme (2.2), 
(2.3) we must know the inner products (ei, /6), (e2 , /6), · · · , (em, /6) and the inner prod­
ucts (e,, Ae;) with numbers (i,j) from the rectangle [1, m] x [1, l]. So, for the projection 
method (2.2), (2.3), 

Card (IP)= m + ml X 8-l/r (2.11) 

3 Modification of Projection Methods 

The general idea of modification of the projection scheme is as follows. We may keep 
the order of accuracy of the projection method while discarding the values of inner 
products ( e1, Ae;) with sufficiently large numbers ( i, j). For operator equations of 
second kind this idea was realized by various means in [1], [2], [3], [5]. Now we invoke 
this idea for ill-posed problems (1.1 ). 
Let r n be the plane set of the form 
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We assign to each operator A E H; the finite dimensional operator. 

n 

An= L:)P2t - P2t-1)AP22n-t + P1AP22n. 
lc=l 

lt is easy to show that 

( . A ·) _ { (ei,Ae;) , (i,j) E fn 
e„ ne, - 0 ( . ") d r 

' t,) y::. n 
(3.1) 

This means that for the construction of An we use only the values of inner products (2.5) 
with numbers from r n· Now in the scheme of finite-dimensional approximation (1.2), 
( 1.3) we put AN,e = An and define an approximate solution Xa,n from the equation 

Theorem 3.1 Let n2-2nr X o X 8213 . Then 

sup sup sup llA-1 f - Xa,nllx X 8213
• 

Ae1i; /EAMp(A) f6 :11f-'611x :$6 

The proof of this theorem is based on the following lemmas. 

Lemma 3.2 For A E H; 

llAnA* - P2nAA*llx-x ~ 2-3
nr 

Proof: First of all we note that for A E H; 

llA(I - Pµ)llx-xr ~ llA(J - Pµ)llx-x + llDrA(I - Pµ)llx-x = 

= 11(1 - Pµ)A*llx-x + 11(1 - Pµ)(DrA)*llx-x ~ 

< c,.µ-r(llA*llx-xr + ll(DrA)*llx-xr) ~ c,.(12 + /3)µ-r 

Using this inequality, we obtain 

11(1 - P„)A(I - Pµ)llx-x ~III - P„llxr-xllA(I - Pµ)llx-xr :S 
:S c; (/2 + /3) (Vµ )-r. 

Now from the definition of operator An we find 
n 

AnA* - P2nAA* = L)P2t - P21.-1)(AP22n-kA* - AA*) + 
lc=l 

+ P1(AP22nA* - AA*) 

Moreover, from (3.3) we have 

ll(P21. - P21o-i}(AP22n-1oA* - AA*)llx-x ~ 

~ll(J - P21o)A(J - P22n-1o)(A* - P22n-1.A*)llx .... x + 

(3.2) 

(3.3) 

(3.4) 

+ll(J - P21.-1 )A(I - P22n-1. )(A* - P22n-1.A*)llx-x :S (3.5) 

~c;('Y2 + /3)(2-2nr + 2-<2n-l)r)llJ - P22n-1< Jlxr-xllA*llx-xr ~ 
~2-(4n-lc)r 

' 
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llP1(AP22nA* - AA*)llx-x ~ llA(I - P22n){A* - P22nA*)llx-x-< 
-<2-4nr. 

Uniting (3.4) - (3.6) we obtain 

" llA"A* - P2nAA*llx-x -( L 2-(4n-Ji)r = 
Ji=O 

n 

= 2-4nr L 2Jir X 2-3nr. 

•=o 
The lemma is proved. 

Lemma 3.3 For A E 1{~ 

Proof: lt is easy to see that 

llA*A-A~A"llx-x ~ llA*(I- P2n)(I -P2n)Allx-x + 
+llA*P2nA - A~Anllx-x $III - P2nllkr-xllAllk-xr + 
+llA* P2nA - A~Anllx-x $ C~/;2-2"" + 
+llA* P2"A - A~Anllx-x 

On the other hand, 

n 

A~ = L P22n-kA*(P2k - P2k-l) + P22nA* Pi 
•=1 

and 

n 

A~An = L P22n-kA*(P2k - P2i.-i)AP22n-k + 
k=l 

+ P22n A. P1 AP22n. 

Theo 

" 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

+ L llA*(P2k - P2k-1 )A - P22n-kA*(P2k - P2k-1 )AP22n-k llx-X· (3.10) 
•=l 

Now we note that the operator A*(P2k - P2k-1 )Ais self-adjoint and 

llA*(P21i - P21i-1 )Allx-xr $ 

< llA*llx-xr(lll - P2k llxr-x +III - P21i-dlxr-x )llAllx-xr $ 
< C,./112(2-Jir + 2-(As-l)r)-< 2-.... (3.11) 
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Moreover' for any self-adjoint Operator B from X into xr 

llB - P„BP„llx-x $ llB - P„Bllx-x + llP„(B - BP„)llx-x $ 

< III - P„llxr-x(llBllx-xr + llB.llx-xr) $ 2c.,.v-rllBllx-xr. 

Thus, from (3.11) we have 

llA.(P2„ - P2„-dA - P22„_„A.(P2" - P2„-i)AP22„-•llx-x $ 

$ 2c.,.2-(2n-k)rllA.(P2„ - P2„-i)Allx-xr ~ 2-2nr 

Consequently (see (3.10)) 

n 

llA• P2„A - A:Anllx-x ~ L 2-2nr = n2-2nr 
k=l 

The assertion of the lemma follows from (3.7) and (3.12) 

Proof of the Theorem: Following [6), we consider the operators 

Ra(B) = (o:/ + n• B)-1 n•, S0 (B) = I - Ra(B)B. 

From (6), one sees that for any linear bounded operator B from X to X 

(3.12) 

(3.13) 

(3.14) 

where Co, C1, C2 are independent of o: and B. We put Ra,n = Ra(An), Sa,n = Sa( An)· 
From the definition of Xa,n we find 

Taking into account (3.13) for o: x 6213 and B =An we have 

Furthermore, for JE AM,(A) A-1 J = A• Au and llull.x $ p. Then, using Lemma 3.3 
and (3.13), (3.14), we obtain 

llSa,nA-1/ll.x = llSa,nA•Aullx $ llSa,nA:Anullx + 
+ llSa,n(A• A - A;.A,.)ull.x $ c20:1lu1l.x + " 
+ c1llA• A - A:Anllx-xllullx $ c2po: + c1pn2-2nr X 6213 (3.17) 
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Let us estimate the last term of (3.15). From (3.8) it follows that A~P2n = A~ and 

R.a,n(P2nA- A)A-1f = 

(a/ + A;Ant1(A;P2nA - A;A)A-1 f = 0. 

Then, using Lemma 3.2 and (3.13) for f E AM,(A) we find 

llR.a,n(Än - A)A-1 fllx $ llR.a,n(An - P2„A)A-1 fllx + 
+ llR.a,n(P2„A - A)A-1 /llx $ 

< llR.a,nllx-xllAnA* - P2nAA*llx-xllAullx-< 
-< a-1/22-3nr -< a-1/2n-3/2c-< c2/3 

The assertion of the Theorem follows from (3.15) - (3.18) and (1.6). 

4 Complexity of the Modification Scheme 

(3.18) 

Let us estimate the numher of arithmetic operations (AO) on the values of inner prod­
ucts (2.5) required to construct an approximate solution Xa,n· Taking into account 
(3.8), (3.9), we seek a solution (3.2) in the form 

where 

2n 

Xa,n = E Xi'f'i, 
i=l 

{ 
P2nA*e1 , i = 1, 

'Pi = • ,; E (211-1, 211] P22n-v A e, ' • ' V = 1, 2, ... ' n 

(4.1) 

Let T0 = {1}, Tm= {2m-l +1, 2m-l +2, · · · , 2m }, m = 1, 2, · · · , card To = 1, card Tm= 
2m-l. 
lt is easy to show that 

2" 

A;Anr.p; = E a1;r.p1, 
i=l 

where a1; = a;1 ' i,j = 1, 2, ... '2"' and for 

i E T-,,,j E T11 , k, v = 0, 1, · · · , n, k $ v 

a1; = (e1,AP22„-„A*e;). (4.2) 

Moreover, 

2" 

A;h = E(es, h)'f'•· 
i=l 
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lf solution of (3.2) is sought in the form (4.1) then the unknown coefficients x, will be 
found from the following system of linear equations 

2" 

axi + L äi;x; = (ei, /6), i = 1, 2, · · · , 2". 
j=l 

(4.3) 

To solve this system, for example, by Gaussian elirnination it is necessary to pedorm 
N1 x 23n arithmetic operations on the coefficients ä.i; and inner products ( ei, f6 ). Now 
we estimate the number of operations required to calculate the coefficients a,;. 
Note that 

'.illn-1' 

Ö.i; = (ei, AP2:an-„A•e;) = L (e., Ae.)(e;, Ae.). 
•=1 

Thus, to define the coefficient äi; we must perform 22n-v+l - 1 arithmetic opera­
tions on the values of inner products (2.5). For fixed k and 11 the execution of 
card T„ · card T11 • (22n-v+l - 1) operations is required in order to find all coefficients 
ai; with i and j satisfying the conditions ( 4.2). Furthermore, for all k and 11 such that 
k,11=0,1,··· ,n,k $ 11, to define the coefficients ä.i; wiih indices (4.2) it suffices to 
perform no more than N2 arithmetic operations on the values of inner products (2.5), 
where 

n II 

N2 - L L card T„ · card T„ · (22
"-v+l - 1) X 

v=Ole=O 
n 11 n 

X 22n L L 2" X 22n L 211 X ~ • 
v=Ole=O v=O 

lf the coefficients Xi in (4.1) are known, then we can pass from representation (4.1) to 
the standard representation (2.6). Namely 

2" n 

Xa,n = L Xi'f>i = L L XiP22n-I' A. e, + 
i=l v=l iET„ 

n 23"-" 

+ x1P22nA*e1 = L L e. L x,(e,, Ae.) + 
v=l •=1 iET„ 

~" ~" 

+ L x1 e.( ei, Ae.) = L J.,,ep, 
•=1 p=l 

2"(p) 

d,, = L xi( e., Aep), 
i=l 

where 11(p) is the largest integer number such that 

2v(p) $ rnin{2", 22" /p}. 
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Thus, to calculate all coefficients dp p = 1, 2, · · · , 22" it suffices to perform no more 
than N3 arithmetic operations, where 

22n 22n 

N3 X L 2v(p) $ 22" L .!_ X 22"n. 
p=l )r-:1 p 

From the Theorem it follows that within the framework of our modification of projec­
tion scheme (3.2) we can guarantee on the dass CI>; the optimal order of accuracy ö213 

in the case when n2-2"" x ö213• Using the notations of Section 2, we conclude that in 
this case for our modification scheme 

( 4.4) 

Moreover, from (3.1) it follows that for the realization of our scheme we must know 
inner products (ei, /6), i = 1, 2, · · · , 2", and inner products (ei, Ae;) with numbers (i,j) 
from r n· lt means that for our scheme 

( 4.5) 

When (4.4), (4.5) are compared with estimations (2.10), (2.11) it is apparent that for 
the dass CI>; the modification scheme (3.2) is more economical than usual projection 
methods. 
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