Skip to main content
Log in

Isomorphism of chordal (6, 3) graphs

Isomorphie von chordalen (6, 3) Graphen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A graph is chordal if it contains no chordless cycles of length at least four and (q, t) if no set of at mostq vertices induces more thant paths of length three. It is known that the isomorphism problem is isomorphism complete for chordal graphs and for (6, 3) graphs. We present polynomial methods to determine the automorphism partition and to test isomorphism of graphs which are both chordal and (6, 3). The approach is based on the study of simplicial partitions of chordal graphs. It is proved that for chordal (6, 3) graphs the automorphism partition coincides with the coarsest regular simplicial partition. This yields anO(n+m logn) isomorphism test.

Zusammenfassung

Ein Graph ist chordal, wenn er keine sehnenlosen Kreise der Länge mindestens vier enthält und (q, t), wenn keine Menge von höchstensq Knoten mehr alst Wege der Länge drei induziert. Es ist bekannt, daß das Isomorphieproblem für chordale Graphen und für (6, 3) Graphen Isomorphie-vollständig ist. Wir stellen polynomiale Verfahren vor zur Bestimmung der Automorphiepartition und zum Testen der Isomorphie von Graphen, die sowohl chrodal als auch (6, 3) sind. Der zugang basiert auf dem Studium von simplizialen Partitionen von chordalen Graphen. Es wird gezeigt, daß für chordale (6, 3) Graphen die Automorphiepartition mit der gröbsten regulären simplizialen Partition übereinstimmt. Dies führt zu einemO(n+m logn) isomorphietest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The design and analysis of computer algorithms. Reading: Addison-Wesley, 1974.

    Google Scholar 

  2. Babai, L., Grigor'ev, D. Y., Mount, D. M.: Isomorphism of graphs with bounded eigenvalue multiplicity, In: Proc. 14th ACM Symposium on Theory of Computing 1982, pp. 310–324.

  3. Babel, L., Olariu, S.: Isomorphism of graphs with fewP 4s (1994) [submitted].

  4. Babel, L., Ponomarenko, I. N., Tinhofer, G.: Directed path graph isomorphism. To appear in Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG'94, Berlin, Heidelberg, New York, Tokyo: Springer 1994. [Lecture Notes in Computer Science].

    Google Scholar 

  5. Booth, K. S., Colbourn, C. J.: Problems polynomially equivalent to graph isomorphism, Report No. CS-77-04. Computer Science Department, University of Waterloo 1979.

  6. Booth, K. S., Lueker, G. S.: A linear-time algorithm for deciding interval graph isomorphism. J. ACM26, 183–195 (1979).

    Article  Google Scholar 

  7. Corneil, D. G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs. Discr. Appl. Math.3 163–174 (1981).

    Article  Google Scholar 

  8. Colbourn, G. J.: On testing isomorphism of permutation graphs. Networks11, 13–21 (1981).

    Google Scholar 

  9. Filotti, I. S., Mayer, J. N.: A polynomial-time algorithm for determing the isomorphism of graphs of fixed genus. In: Proc. 12th ACM Symposium on Theory of Computing 1980, pp. 235–243.

  10. Fontet, M.: A linear algorithm for testing isomorphism of planar, In: Proc. 3rd Colloquium on Automata, Languages and Programming 1976, pp. 411–423.

  11. Golumbic, M. C.: Algorithmic graph theory and perfect graphs. New York: Academic Press, 1980.

    Google Scholar 

  12. Hopcroft, J. E., Wong, J. K.: Linear-time algorithm for isomorphism of planar graphs. In: Proc. 6th ACM Symposium on Theory of Computing 1974, pp. 172–184.

  13. Hopcroft, J. E., Tarjan, R. E.: Isomorphism of planar graphs, In: complexity of computer computations (Miller, R. E., Thatcher, J. W., eds.) pp. 131–152. New York: Plenum Press 1972.

    Google Scholar 

  14. Jamison, B., Olariu, S.:P 4-reducible graphs, a class of uniquely tree representable graphs. Stud. Appl. Math.81, 79–87 (1989).

    Google Scholar 

  15. Jamison, B., Olariu, S.: A new class of brittle graphs. Stud. Appl. Math.81, 89–92 (1989).

    Google Scholar 

  16. Jamison, B., Olariu, S.: A unique tree representation forP 4-sparse graphs. Disc. Appl. Math.35, 115–129 (1992).

    Article  Google Scholar 

  17. Klawe, M. M., Corneil, M. M., Proskurowski, A.: Isomorphism testing in hook-up graphs. SIAM J. Alg. Discr. Meth.3, 260–274 (1982).

    Google Scholar 

  18. Lawler, E. L.: Graphical algorithms and their complexity. Math. Centre Tracts81, 3–32 (1976).

    Google Scholar 

  19. Luks, E. M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci.25, 42–65 (1982).

    Article  Google Scholar 

  20. Miller, G. L.: Isomorphism testing for graphs of bounded genus. In: Proc. 12th ACM Symposium on Theory of Computing 1980, pp. 225–235.

  21. Tinhofer, G.: Graph isomorphism and theorems of Birkhoff type. Computing36, 285–300, (1986).

    Google Scholar 

  22. Tinhofer, G.: Strong tree-cographs are Birkhoff graphs. Discr. Appl. Math.22, 275–288 (1988/89).

    Article  Google Scholar 

  23. Tinhofer, G.: A note on compact graphs. Discr. Appl. Math.30, 253–264 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babel, L. Isomorphism of chordal (6, 3) graphs. Computing 54, 303–316 (1995). https://doi.org/10.1007/BF02238229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238229

AMS Subject Classifications

Key words

Navigation