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Abstract - Zusammenfassung

Computation of Nonlinear Functionals in Particle Methods. We consider the
numerical computation of nonlinear functionals of distribution functions approximated by
point measures. Two methods are described and estimates for the speed of convergence
as the number of points tends to infinity are given. Moreover numerical results for the
entropy functional are presented.

Berechnung von nichtlinearen Funktionalen bei Partikelmethoden. Wir be-
trachten die numerische Berechnung nichtlinearer Funktionale von Verteilungsfunktionen,
die durch Punktmafle angenahert werden. Zwei Methoden werden beschrieben und Ab-
schiatzungen fiir die Konvergenzgeschwindigkeit werden angegeben. Auflerdem werden
numerische Resultate fiir das Entropiefunktional vorgestellt.

1 Introduction

Particle methods are widely used for the numerical solution of high dimensional evolution
equations, e.g. the Boltzmann equation in the kinetic theory of gases, see e.g. [?, 2,7, 7, ?]
for convergence proofs, applications, reviews and further references. The solutions of these
equations are usually density functions which can be approximated by particle ensembles.
It is well known that linear functionals of these density functions, e.g. moments, are
computed to a good accuracy with a reasonable number of particles. One has simply to
compute the empirical averages. For estimates see e.g. Kuipers and Niederreiter [?]. The
situation is different if one wants to get a good approximation of the distribution function
itself or of nonlinear functionals. This is to a sufficient degree of accuracy only possible
with a very large number of particles.

Usually a coarse graining of the particle space is employed to approximate the density
function such that one is able to compute the required integrals. We give in Section 2 an
error estimate for the approximation of nonlinear functionals by this method.

In Section 3 we try to avoid the drawbacks of the coarse-graining method - high particles
numbers, arbitrariness in choosing the coarse graining - by assuming that the density



function is out of a certain class of functions. This class is prescribed by the physical situ-
ation under consideration. Estimates that show the improvement in speed of convergence
compared to the coarse graining method can then be given.

In Section 4 numerical examples are given. We compute the entropy for different types of
distribution functions occuring in kinetic theory, Maxwell, Navier Stokes, and Mott Smith
distributions. Moreover the time development of the entropy for the BKW solution of the
homogeneous Boltzmann equation is shown.

2 Coarse Graining

Let f : R — R" be a density function, i.e. f is positive and L£!(R)—integrable with
[ f(v)dv = 1. We write f € £Y'(R). The particle ensembles {(vi,...,vy)}nen with
ik

N
v; € R j =1...N, approximate f, if the measure wy := % Elé(vi —v), N € N generated
=

by the above pointsets converge weakly in the measure theoretic sense to f(v)dv. Here
§(v; — v) denotes the Dirac measure at the point v;. We write wy — f as N — oo. It is
equivalent to requiring that the discrepancy D(wy, f) tends to 0 as N tends to infinity
with

D(wn, f) := sup |+
a<b

ZXab v;) /f(v)dv.
[a,b)

Here we denoted by X[a) the characteristic function of the interval [a,b) C R. The equiv-
alence was shown already by Weyl [11], see Neunzert/Wick [9] for the multidimensional
case.

As a first step we approximate the density function f in a strong sense. Let {A(n)}iez be
an equ1dlstant partition of R into intervals A ) = [ b(n ) of size |A( | =+

A" Ajn) =0,i#j, UA™ =R Then we deﬁne for v € R and A{™ (v) the 1nterval of
i€

the above partition containing v

Pwy(v) =

Analogously

P.f(v) :==n / Fdv'.

A (v)

3

In the next lemma we give an error estimate for the approximation of f by P,wy as n
and N tend to infinity.



Lemma 2.1 Let f € Ei’l(R) be Lipschitz continuous with Lipschitz constant L and wy
point measures approzimating f, i.e. wy — f, then we have Yv € R:

[Paon(v) = f(0)| < = +nD(ew, )

In particular Pawy — f pointwise in R, if n, N — 0o and D(wy, f) tends faster to 0 than
1

Remark: Pointsets {(v1,...,vn)}nen can be easily constructed for any f € L2'(R)
such that D(wy, f) ~ . This rate is optimal. If {(v1,...,vn)}nen is generated by a
sequence of points v1,..., vy, ..., then the optimal convergence rate ist D(wy, f) ~ %,

see Kuipers et al. [6].

This means that for n tending to infinity like N¥,0 < k < 1 we get P,wy — f. In contrast
if n ~ N¥ k > 1 it is easy to construct a counterexample even for points with an optimal
convergence rate.

Proof:

[Pawn (v) = f(0)] < [Pawn (v) = Puf ()] + [Buf (v) = f(v)]

<y XAt (v)

i1€Z

%;xA§n>(vj)—n [ rehae +ln [ peha - fw)

Agn) Agn)

<Y Xam () [nD(wn, f) +
i€z "

< S X (©) [D(n, )+ [ 1F() = F(0)ld

i€Z ¢

1
S nD(wN,f) +L —
n

We use this approximation to compute nonlinear functionals of f. Let f be Lipschitz
continuous and in £}'(R) as before. Moreover we assume f to be 0 outside of Bp =
{v € R| [v| < R}, R > 0 and the approximating points {(v1,...,vx)}nen, wy — f to be
in Bg. According to the above lemma we assume also that nD(wy, f) tends to 0. The
assumptions on f are not really necessary: we could have also assumed f to decay fast
enough as v tends to infinity.

We are interested in functionals of the form

[ (s @)av.



where ¢ : Rt — R is continuous and ¢(0) = 0. Define for A > 0 and C' > 0 the modulus
of continuity

Md?(h) = Sup{‘¢(‘r) - ¢(y)| | z,y € [OaC]a ‘,’13 - y‘ S h}
Proposition 2.2

‘/¢ Ndv ="~ ¢ (%éXAE")(Uj)> ‘

ZEZ
L
< oMY (— +nD(wy, f))
n
where Cy is a constant depending on f.

Proof:

‘/¢ Ndv =3~ ¢ (%gXAgM(vj)) ‘

ZEZ

_ ‘ [ots@)dv— [ o(Paox(w))in

if R is chosen large enough and If' = {i e Z|A" n Bj # 0}.

Using the Lipschitz property of f, Lemma 2.1, the definition of Mf and the fact that
nD(wy, f) is bounded by a constant depending only on f, one obtains that this is smaller
than

Zg{ Mcf (% +nD(wN,f)) ,

C; a constant depending on f. Finally the last term is estimated from above by

L

C'y some constant depending on f. [ ]

Remark: We remark that the conditions on ¢ are fulfilled for example if ¢(z) = 2P, p € N
or for the entropy functional, i.e. ¢(x) = —zlnz,if x > 0 and ¢(z) = 0, if z = 0. Moreover
we have for these choices of ¢ by an easy computation

Mg (h) < Ah
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and
Mg(h) < Ah|lnhl,

respectively, for A small and A a constant depending on C.
This means that M¢C tends to 0 for A tending to 0 with a certain rate. Choosing e.g.

1

an optimal sequence of points vy,...,vn,... s.t. D(wy, f) ~ % and n = (%)2, we

get for the entropy functional convergence rates for the approximation in Proposition 2.2
(In N)3/2

proportional to =7

3 Hermite Expansions

Having a certain preknowledge of the density function f, for example that f is out of
a special class of functions, one can use more efficient methods to compute nonlinear
functionals. E.g. in kinetic theory one is often particularly interested in situations close
to thermal equilibrium. This means that the density function can be expanded around
a local Maxwellian distribution. Grad [4] uses such a higher order expansion in Hermite
functions to describe the flow properties. A discussion of this approach can be found in
Cercignani [3].

We proceed here in the same way. Let Hy(v), k € N° be defined by Hy,(v) = M2 (U)%Hﬁk(v),
2

where M (v) := \/LZ—FeJT and Hy(v) = (—l)keg (%)ke_g. Any f in £L3(R) can be ex-
panded as f = § < f, H, > Hj with <, > the usual scalarproduct in £?(R). We assume
k=0

that the density_ function f € L2(R) can be represented by a finite series of Hermite
functions

K
f=> <f Hy>H,KeN.
k=0

Let {(v1, ..., vn)}ven denote again pointsets approximating f, wy — f. ax(wy) is defined

N
as ag(wy) := ~ 3 Hi(v;). Then we have
i=1

Lemma 3.1
£ = X aulon) B

k=0

S MKD(wN,f)

Vv € R, where Mg is a constant depending on K.

Proof:



VAN

I;(< f, Hk > —ak(wN))Hk(v)

K
< sup (| < Hg, f> —ar(wn)]|) - sup Z |H(v)|
ke€(0...K) veER g

Using the Koksma-Hlavka inequality, see Kuipers et al. [6], we get
‘ < Hk7f > _ak(wN)| S V(Hk)D(wNuf)
where V' (Hy) is the variation of Hj with
V(H) = [ |Hyw)dv.

This yields

fw) = ar(wn) Hi(v)

k=0

< K- sup (/ \H,'C(v)|dv> - sup (sup (\Hk(v)\)> - D(wn, f)
k€(0,0..,K) kE(0,..,K) \vER

= MKD(wNa f)

We turn to the computation of the functionals [ ¢(f(v))dv with ¢ : Rt — R continuous
and ¢(0) = 0. Consider at the beginning the special case ¢(x) = z?,z > 0. With a

K

density function f € L%(R), f = Y. < Hy, f > Hy, Yv € R, we get, using the £2(R)-
k=0

orthogonality of Hy, k € NO:

Proposition 3.2

K

[ 2wy = Y- ai(wn)] < CrD(wn, f)

k=0

where Cy is a constant depending on f.

Proof:
[ F - Y dien)
_ ‘ / F2(v)dv — / (?;O ak(wN)Hk(v)> (éak(wN)Hk(v)) dv




dv

7o (B

< [ )

=/ \ Fo) + kz a(wn ) Hy (v)

dv

‘ - sz o (wn ) Hi (v)

k=0

< MgD(wn, f) / ‘f(”) + éak(wN)Hk(U) dv

where we used Lemma 3.1 This is smaller than

MwD(wy, f </|f \dv+2|akwN\/\Hk \dv)
< C& @UNaf)a

Cy a constant depending on f [ |

We consider now the computation of more general functionals with ¢ as assumed above.
For simplicity we restrict the class of density functions f € £'(R) to the following: f is

K
0 outside some ball B = {v € R| |[v]| < R}, R>0and f(v) = > < H, f > Hi(v), Vv €
k=0

Bpg. Moreover the approximating points {(vy,...,vn)}nyen, wy — f are assumed to be
in By as before.

Let {A'};icz,h > 0 be a fixed partition of R into intervals A with |A?| = h so that
APNAY =0 and U A} = Bg, I CZ.

‘TR
1€}

Proposition 3.3

‘/05 ))dv — 3 he (i ak(wN)Hk(&)> ‘

ielR k=0

< CfM¢f(Lh + Mg D(wy, f))

where Cy is a constant depending on f, Mg depends on K and L is the Lipschitz constant
of f on Bg. & is a fized value, & € AY, i€ IF C Z.

Remark: Comparing this estimate to the one in Proposition 2.2 we see that the number
of particles and the size h ~ % of the partitions is decoupled.

Moreover the values Hy(&;) can be computed numerically in advance such that only the
computation of the moments is left.

Proof:

‘/¢ ))dv — Z he (Z ak(wN)Hk(fi)) ‘



5 [ [otron-o (S aonmien)|

<>/, ¢(f(v))—¢<§ o) (6
<2 VM 6 0)) = 6(E)av + [, [o(s(E)) 0 (f ak(wmﬂk(&)) dv]

Using the special form of f we see that it is Lipschitz on Bp and we get for all v € A?
and L the Lipschitz constant of f on Bp

|f(v) — f(&)| < Lh.

This means that the above is smaller than

> [hMg* (Lh) + hM! (M D(wy, f))]

:~TR
zEIh

where we used Lemma 3.1. Cf is a constant depending on f. The last term is estimated
by

Cy My (Lh) + C; My (Mg D(wy, f))

with Cy sufficiently large.

|

Remark: By the estimates on Mf in the last section we get for the entropy functional,

using an optimal point sequence vy, ..., vy,... with D(wy, f) ~ % and h = %, a con-
(In N)2

vergence rate like “——. This means, that in contrast to Section 2, where the convergence
was essentially proportional to N _%, a much better rate, essentially N~! is achieved.

4 Numerical Results

In this section we compute the entropy functional — [ f(v)In f(v)dv in 3 different ways.
The first one is the coarse graining method described in Section 2.

The second one is the Hermite expansion method from Section 3. In contrast to Section
3 we expand f here in the following series of Hermite functions

v —u T}

)= Mur() - gy [ SO0 - B

where




with

u=/vf(v)dv, T=/(v—u)2f(v)dv

and H, are the Hermite polynomials defined at the beginning of Section 3. The integration
formula reads then for the entropy ¢(z) = —xInz,z >0

/¢ ))dv ~ > ho <§: ak(wN)Mu,T(&)%gk(&\/_Tu)>

iclf? k=0

with

The third method is derived by the linearization of the entropy functional, taking only
deviations from a Maxwellian up to second order into consideration:

—/f )In f(v dv~—ln(27TT +———/f dv-i—%

T and u are computed as above. Hence only the computation of [ fQ(U)Mu_’ +(v)dv is left.
We substitute the above expansion for f and get as in Proposition 3.2 the formula

K
_ 1
[ POMG ) ~ Y wn) -
k=0
To obtain the f-distributed pointsets {(v1,...,vn)}nen in R we transform the points
V1 = gh, V2 = 5o0s. .., U = 201 N € N to f-distributed ones. The latter are uniformly

distributed on [0, 1] and we have only to calculate the inverse of the distribution function
associated with the density f to get the desired pointsets. We remark that - in contrast to
the higher dimensional case - there is no difficulty in computing this transformation here.
The number of points is taken between 5 and 200. The number of particles used in
numerical calculations for problems in kinetic theory is actually - due to the limitations
in computing time and the complexity of the problems - very low, i.e. between 20 and
100 per cell in space.

In Figure 1 and 2 we show the results for the Maxwellian distribution

1 (v —1u)?

$0) = M) = e (<L)
for T =1 and u = 0.
Figure 1 shows the entropy multiplied by —1. It is computed by the Hermite expansion
method in the 2 ways explained above. Expansions with terms up to order 6 respectively
8 are used.
In Figure 2 the computation is done by the coarse graining method with several different
numbers of cells.



FIGURE 1: MAXWELL - HERMITE EXPANSION
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FIGURE 2 : MAXWELL - COARSE GRAINING
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In Figure 3 and 4 the same is shown for the Navier Stokes distribution function

5 _ )2
F0) = E0) = pMaa ) (1222 (U220

Vv such that F;Vﬂsj—f(v) > 0 and f(v) := 0 otherwise. p, @, T are chosen in such a way that
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1
NS,e
F'r(w)dv=1] 0 |.
2 p!u’
v 1
€ is set equal to 0.1.
FIGURE 3 : NAVIER STOKES - HERMITE EXPANSION
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FIGURE 4 : NAVIER STOKES - COARSE GRAINING
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In Figure 5 and 6 we consider a Mott Smith distribution

1
a,T

(v) = %

—\2
(w—u?) ,
———g |E€xPp | — — exrp
1
(271'T) 2 2T
@ is chosen equal to 0.8 and T in such a way that [v?FM?(v)dv =
FIGURE 5: MOTT SMITH - HERMITE EXPANSION
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FIGURE 6 : MOTT SMITH - COARSE GRAINING
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We remark that in contrast to the first two examples the results here are not as good.
For larger u they are becoming even worse. The above function is not well enough ap-
proximated by a finite sum of Hermite polynomials for u large.

As remarked in Cercignani [3], the Grad approach of Hermite expanding the distribution
function gives inadequate results in strongly nonequilibrium cases, e.g., in shock wave
computations. This fits to the above observation for the Mott Smith distribution function,
describing the velocity distribution in shock regions.

In general, for fluid dynamic applications, distribution functions describing the behaviour
in the bulk of a fluid will fit into the above scheme. In shock and boundary regions
however it will certainly not be completely adequate. In thoses cases another class of
approximating functions should be chosen. For example in shock regions one may think
of approximating the distribution function by linear combinations of Maxwellians, see
e.g. Mott Smith [7]. Another obvious disadvantage is the requirement of continuity of
the distribution function, which is in general not true for example at a flat boundary. To
avoid it classes of piecewise continuous functions might be appropriate, see Cercignani

3].

We note that for all types of density functions considered up to now

1 1
/f(v) v |dv=1| 0
Uk 1

This is also true for the last two figures.

Figures 7 and 8 show the time evolution of the entropy multiplied by —1 for a fixed
number of particles N = 70. The density function is the one dimensional analogue of the
BKW solution of the Boltzmann equation with Maxwellian molecules

F(t,v) 1 v\ 1 3K—1+1—KU2
= ———erp| = | = —=
T arkT) P\ 2KT) 2 UK K2 T

with K(t) = 1—¢e™,¢t > In3,T = 1. Again the different methods of computation as
before are used.
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FIGURE 7 : BKW - HERMITE EXPANSION
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FIGURE 8 : BKW - COARSE GRAINING
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One can see that for situations far away from equilibrium at the beginning of the evolution
the true entropy is again not well enough approximated by the Hermite expansion.
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