Skip to main content
Log in

Data structures and concepts for adaptive finite element methods

Datenstrukturen und Strategien für adaptive Finite Elemente

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The administration of strongly nonuniform, adaptively generated finite element meshes requires specialized techniques and data structures. A special data structure of this kind is described in this paper. It relies on points, edges and triangles as basic structures and is especially well suited for the realization of iterative solvers like the hierarchical basis or the multilevel nodal basis method.

Zusammenfassung

Für die Verwaltung von extrem nichtuniformen, adaptiv erzeugten Finite element Gittern benötigt man spezielle Techniken und Datenstrukturen. Eine Datenstruktur dieser Art wird in diesem Artikel beschrieben. Basisstrukturen sind Punkte, Kanten und Dreiecke. Die Datenstruktur ist besonders zugeschnitten auf iterative Löser wie die hierarchische Basis oder die “multilevel nodal basis” Methode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška, I.: Feedback, adaptivity, and a posteriori estimates in finite elements: aims, theory, and experience. In: Accuracy estimates and adaptive refinements in finite element computations, (Babuška, I., et al., ed.), pp. 3–23, Chichester: Wiley 1986.

    Google Scholar 

  2. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng.3, 181–191 (1991).

    Article  Google Scholar 

  3. Bank, R. E.: PLTMG: A software package for solving elliptic partial differential equations-Users' Guide 6.0, Frontiers in applied mathematics, Vol. 7 Philadelphia: SIAM 1989.

    Google Scholar 

  4. Bank, R. E., Sherman, A. H.: Algorithmic aspects of the multi-level solution of finite element equations. Technical Report CNA-144, University of Texas at Austin, 1978.

  5. Bank, R. E., Sherman, A. H.: An adaptive multi-level method for elliptic boundary value problems, Computing26, 91–105 (1981).

    Google Scholar 

  6. Bank, R. E., Sherman, A. H., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement. In: Scientific computing (Stepleman, R. S., ed.) 1983.

  7. Bastian, P., Wittum, G.: Adaptive multigrid methods: The UG Concep. In: Proceedings of the Ninth GAMM-Seminar Kiel on Adaptive Methods: Algorithms, Theory and Applications, Notes on Numerical Fluid Mechanics, Vol. 46 (Hackbusch, W., ed.), pp. 17–37. Braunschweig, Wiesbaden: Vieweg 1994.

    Google Scholar 

  8. Berger, M. J.: Data structure for adaptive mesh refinement. In: Adaptive computational methods for partial differential equations (Babuška, I., Chandra, J., Flaherty, J. E. eds) pp. 237–251. Philadelphia: SIAM 1983.

    Google Scholar 

  9. Berger, M. J.: Data structures for adaptive grid generation. SIAM J. Sci. Stat. Comp.7, 904–916 (1986).

    Article  Google Scholar 

  10. Bey, J.: Tetrahedral grid refinement. Computing55, 355–378 (1995).

    Google Scholar 

  11. Bey, J.: AGM3D Manual. Technical Report, Universität Tübingen, 1994.

  12. Bey, J., Wittum, G.: Downwind numbering: A robust multigrid method for convection-diffusion problems on unstructured grids. In: Solvers for flow problems: algorithms, theory and applications, NNFM (Hackbusch, W., Wittum, G., eds.), pp. 63–73. Braunschweig: Vieweg 1995.

    Google Scholar 

  13. Bornemann, A., Erdmann, B., Kornhubber, R.: Adaptive multilevel-methods in three space dimensions. Int. J. Numer. Meth. Eng.36, 3187–3203 (1993).

    Article  Google Scholar 

  14. Bornemann, F. A., Yserentant, H.: A basic norm equivalence for the theory of multilevel methods. Numer. Math.64, 455–476 (1993).

    Article  Google Scholar 

  15. Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Comput.55, 1–22 (1990).

    Google Scholar 

  16. Brandt, A.: Multi-level adaptive techniques (MLAT) for partial differential equations: ideas and software. In: Mathematical software III (Rice, J. R., ed.), pp. 227–318. New York: Academic Press 1977.

    Google Scholar 

  17. Bruzzone, E., De Floriani, L., Puppo, E.: Manipulating three-dimensional triangulations. In: Foundations of data organization and algorithms: 3rd International Conference, FODO 1989 (Litwin, W., Scheck, H., eds.) pp. 339–353. Berlin, Heidelberg, New York, Tokyo: Springer 1989.

    Google Scholar 

  18. Chan, T.: Private communication, 1991.

  19. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math.63, 315–344 (1992).

    Article  Google Scholar 

  20. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. Impact Comput. Sci. Eng.1, 3–35 (1989).

    Article  Google Scholar 

  21. Dukowicz, J. K.: A simplified adaptive mesh technique derived from the moving finite element method. J. Comput. Phys.56, 324–342 (1984).

    Article  Google Scholar 

  22. Erdmann, B., Lang, J., Roitzsch, R.: KASKADE Manual, Version 2.0. Technical Report TR 93-5, Konrad Zuse-Zentrum Berlin, 1993.

  23. Ewing, R. E.: Adaptive mesh refinement in large-scale fluid flow simulation. In: Accuracy estimates and adaptivity for finite elements, pp. 299–314. New York: Wiley 1986.

    Google Scholar 

  24. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen, Stuttgart: B. G. Teubner 1994.

    Google Scholar 

  25. Hemker, P. W.: On the structure of an adaptive multi-level algorithm. BIT20, 289–301 (1980).

    Article  Google Scholar 

  26. Hemker, P. W., van der Maarel, H., Everraars, C.: BASIS: A data structure for adaptive multi-grid computations. Report NM-R9014, Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam, August 1990.

  27. Jarausch, H.: On an adaptive grid refining technique for finite element approximations. SIAM J. Sci. Stat. Comput.7, 1105–1120 (1986).

    Article  Google Scholar 

  28. Jensen, K., Wirth, N.: Pascal user manual and report. Berlin, Heidelberg, New York: Springer 1985.

    Google Scholar 

  29. Jung, M.: On adaptive grids in multilevel methods. In: GAMM-Seminar on Multigrid Methods, Gosen, Germany, September 21–25, 1992 (Heugst, S., ed.) pp. 67–80. Berlin, 1993. IAAS. Report No. 5.

    Google Scholar 

  30. Leinen, P.: Ein schneller adaptiver Löser für elliptische Randwertaufgaben auf Seriell- und Parallelrechnern. PhD thesis, Universität Dortmnud, 1990.

  31. Maubach, J.: Iterative methods for non-linear partial differential equations. Technical Report ISBN 90-9004007-2, C.W.I., 1991.

  32. McCormick, S. F.: Multilevel adaptive methods for partial differential equations. Frontiers in applied mathematics, Vol. 6. Philadelphia: SIAM 1989.

    Google Scholar 

  33. Mitchell, W. F.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput.13, 146–167 (1992).

    Article  Google Scholar 

  34. Mitchell, W. F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Software15, 326–347 (1989).

    Article  MathSciNet  Google Scholar 

  35. Mitchell, W. F.: MGGHAT: elliptic PDE software with adaptive refinement, multigrid and high order finite elements. In: Sixth Coper Mountain Conference on Multigrid Methods (Melson, N. D., Manteuffel, T. A., McCormick, S. F., eds.) Volume CP 3224, pp. 439–448, NASA: Hampton 1993.

    Google Scholar 

  36. Oswald, P.: On function spaces related to finite element approximation theory. Z. Analysis Anw.9, 43–64 (1990).

    Google Scholar 

  37. Riemslagh, K., Dick, E.: A multigrid method for steady Euler equations on unstructured adaptive grids. In: Sixth Copper Mountain Conference on Multigrid Methods, Volume CP 3224, (Melson, N. D., Manteuffel, T. A., McCormick, S. F., eds.), pp. 527–541. NASA: Hamton 1993.

    Google Scholar 

  38. Rivara, M. C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. J. Numer. Meth. Eng.20, 745–756 (1984).

    Article  Google Scholar 

  39. Rivara, M. C.: Fully adaptive multigrid finite-element software. ACM Trans. Math. Software10, 242–264 (1984).

    Article  Google Scholar 

  40. van Rosendale, J. R.: Algorithms and data structures for adaptive multigrid elliptic solvers. Appl. Math. Comput.13, 453–470 (1983).

    Article  Google Scholar 

  41. Rüde, U.: Data structures for multilevel adaptive methods and iterative solvers. Bericht I-9217, Institut für Informatik, TU München, May 1992.

  42. Rüde, U.: Mathematical and computational techniques for multilevel adaptive methods. Frontiers in applied mathematics. Vol. 13, Philadelphia: SIAM 1989.

    Google Scholar 

  43. Sewell, E.: A finite element program with automatic user-controlled mesh grading. In: Advances in computer methods for partial differential equations III (Vichnevetsky, R., Stapleman, R., eds.), pp. 8–10. New Brunswick: IMACS, 1979.

    Google Scholar 

  44. Thompson, J. F.: A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl. Numer. Math.1, 3–27 (1985).

    Article  Google Scholar 

  45. Xu, J.: Theory of multilevel methods. Technical Report AM48, Department of Mathematics, Pennsylvania State University, 1989.

  46. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.49, 379–412 (1986).

    Article  Google Scholar 

  47. Yserentant, H.: Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math.58, 163–184 (1990).

    Article  Google Scholar 

  48. Zhang, S.: Multilevel iterative techniques. Technical report, Department of Mathematics, Pennsylvania State University, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinen, P. Data structures and concepts for adaptive finite element methods. Computing 55, 325–354 (1995). https://doi.org/10.1007/BF02238486

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238486

AMS Subject Classifications

Key words

Navigation