Skip to main content
Log in

A wavelet Galerkin method for the stokes equations

Eine Wavelet-Galerkin Methode für die Stokes-Gleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate Galerkin schemes for the Stokes equations based on a suitably adapted multiresolution analysis. In particular, it will be shown that techniques developed in connection with shift-invariant refinable spaces give rise to trial spaces of any desired degree of accuracy satisfying the Ladyšenskaja-Babuška-Brezzi condition for any spatial dimension. Moreover, in the time dependent case efficient preconditioners for the Schur complements of the discrete systems of equations can be based on corresponding stable multiscale decompositions. The results are illustrated by some concrete examples of adapted wavelets and corresponding numerical experiments.

Zusammenfassung

In dieser Arbeit werden Galerkin-Verfahren für das Stokes-Problem untersucht, die auf speziell angepaßten Multiresolution-Ansätzen beruhen. Insbesondere wird gezeigt, daß gewisse Konstruktionsprinzipien für Wavelets auf gleichförmigen Gittern für jede Raumdimension und beliebige gewünschte Exaktheitsordnung auf Parre von Ansatzräumen führen, die die Ladyšenskaja-Babuška-Brezzi-Bedingung erfüllen. Darüber hinaus ergeben sich auch im instationären Fall aus den entsprechenden stabilen Multiskalenzerlegungen effiziente Vorkonditionierer für die Schurkomplemente entsprechenden systemmatrizen. Die Ergebnisse werden anhand einiger konkreter Realisierungen und numerischer Tests illustriert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersson, L., Hall, N., Jawerth, B., Peters, G.: Wavelets on closed subsets of the real line. In: Topics in the theory and applications of wavelets (Schumaker, L. L., Webb, G. eds.), pp. 1–61. Boston: Academic Press, 1994.

    Google Scholar 

  2. de Boor, C.: A practical guide to splines. Berlin Heidelberg New York: Springer 1978.

    Google Scholar 

  3. Braess, D.: Finite Elemente. Berlin Heidelberg New York Tokyo: Springer 1992.

    Google Scholar 

  4. Bramble, J. H., Pasciak, J. E.: Iterative techniques for time dependent Stokes problems. Preprint, 1994.

  5. Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners, Math. Comp.55, 1–22 (1990).

    Google Scholar 

  6. Cavaretta, A. S., Dahmen, W., Micchelli, C. A.: Stationary subdivision. Memoirs of the American Mathematical Society93, #453, 1991.

  7. Chui, C. K., Quak, E.: Wavelets on a bounded interval. In: Numerical methods of approximation theory (Braess, D., Schumaker, L. L., eds.), pp. 1–24. Basel: Birkhäuser 1992.

    Google Scholar 

  8. Cohen, A., Dahmen, W., Devore, R. A.: Multiscale decompositions on bounded domains. IGPH-Preprint 113, RWTH Aachen, 1995.

  9. Cohen, A., Daubechies, I.: A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J.68, 313–335 (1992).

    Article  Google Scholar 

  10. Cohen, A., Daubechies, I., Jawerth, B., Vial, P.: Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris316, 417–421 (1993).

    Google Scholar 

  11. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.45, 485–560 (1992).

    Google Scholar 

  12. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms, Appl. Comp. Horm. Anal.1, 54–81 (1993).

    Article  Google Scholar 

  13. Dahmen, W.: Some remarks on multiscale transformations, stability and biorthogonality. In: Wavelets, images and surface fitting (Laurent, P. J., Le Méhauté, A., Schumaker, L. L., eds.), Wellesley: A K Peters 1994.

    Google Scholar 

  14. Dahmen, W.: Stability of multiscale transformations, RWTH Aachen, Preprint 1994. Fourier Anal. Appl. (to appear).

  15. Dahmen, W.: Multiscale analysis, approximation and interpolation spaces. In: Approximation theory VIII (Chui, C. K., Schumaker, L. L., eds.), pp. 47–88. Singapore: World Scientific 1995.

    Google Scholar 

  16. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math.63, 315–344 (1992).

    Article  Google Scholar 

  17. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline-wavelets on the interval — stability and moment conditions (in preparation).

  18. Dahmen, W., Micchelli, C. A.: Using the refinement equation for evaluating integrals of wavelets, Siam J. Numer. Anal.30, 507–537 (1993).

    Article  Google Scholar 

  19. Fortin, M.: An analysis of the convergence of mixed finite element methods, R.A.I.R.O. Anal. Numer.11, 341–354 (1977).

    Google Scholar 

  20. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Berlin Heidelberg New York Tokyo: Springer 1986.

    Google Scholar 

  21. Jouini, A., Lemarié-Rieusset, P. G.: Analyses multirésolutions biorthogonales et applications. Ann. Inst. H., Poincaré Anal. Non Linéaire10, 453–476 (1993).

    Google Scholar 

  22. Kunoth, A.: Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers. Adv. Comput. Math.4, 145–170 (1995).

    Article  Google Scholar 

  23. Kunoth, A.: Computing refinable integrals — Documentation of the program — Version 1.1, Technical Report ISC-95-02-Math, Texas A&M University, May 1995.

  24. Lemarié-Rieusset, P. G.: Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nulle. Revista Mat. Iberoamericana8, 221–236 (1992).

    Google Scholar 

  25. Lemarié, P. G.: Fonctions a support compact dans les analyses multi-résolutions. Revista Mat. Iberoamericana7, 157–182 (1991).

    Google Scholar 

  26. Oswald, P.: On discrete norm estimates related to multilevel preconditioners in the finite element method. In: Constructive theory of functions, Proc. Int. Conf. Varna 1991 (Ivanov, K. G., Petrushev, P., Sendov, B., eds.), pp. 203–214. Sofia: Bulg. Acad. Sci. 1992.

    Google Scholar 

  27. Urban, K.: On divergence-free wavelets. Adv. Comput.4, 51–82 (1995).

    Article  Google Scholar 

  28. Urban, K.: A wavelet-Galerkin algorithm for the driven-cavity-Stokes-problem in two space dimensions. In: Numerical modelling in continuum mechanics, Proc. Conf. Prague 1994 (Feistauer, M., Rannacher, R., Kozel, K., eds.), pp. 278–289. Prague: Charles University 1995.

    Google Scholar 

  29. Urban, K.: Multiskalenmethoden für das Stokes-Problem und angepaßte Wavelet-Basen. Thesis, RWTH Aachen, 1995.

  30. Villemoes, L. F.: Sobolev regularity of wavelets and stability of iterated filter banks. In: Progress in wavelet analysis and applications, Proc. Int. Conf. Toulouse 1992 (Meyer, Y., Roques, S., eds.), pp. 243–251. Paris: Frontieres 1993.

    Google Scholar 

  31. Xu, J.: Theory of multilevel methods. Report AM 48, Department of Mathematics, Pennsylvania State University, 1989.

  32. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer., 285–326 (1993).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author is supported by the Deutsche Forschungsgemeinschaft.

The work of this author is supported by the Graduiertenkolleg “Analyse und Konstruktion in der Mathematik” funded by the Deutsche Forschungsgemeinschaft at the RWTH Aachen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahmen, W., Kunoth, A. & Urban, K. A wavelet Galerkin method for the stokes equations. Computing 56, 259–301 (1996). https://doi.org/10.1007/BF02238515

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238515

AMS Subject Classifications

Key words

Navigation