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Abstract — Zusammenfassung

Solving Nonlinear Systems with Least Significant Bit Accuracy. We give an algorithm for constructing an

inclusion of the solution of a system of nonlinear equations. In contrast to existing methods, the

algorithm does not require properties which are difficult to verify such as the non-singularity of a matrix.

In fact this latter property is demonstrated by the algorithm itself. The highly accurate computational
" results are obtained in terms of a residue of first or higher order of the system.

AMS Subject Classifications: 65H10, 65G05, 65D99.
Key words: Automatic venﬁcauon existence, uniqueness, mclusnon rounding error, condition number,
residue.

EinschlieBung der Lisung nichtlinearer Gleichungssysteme mit hoher Genauigkeit. Im folgenden wird ein
Algorithmus zur Konstruktion einer EinschlieBung einer Losung eines nichtlinearen Gleichungssystems
angegeben. Im Gegensatz zu bekannten Methoden bendtigt der Algorithmus keine schwierig
verifizierbaren Voraussetzungen wie etwa die Nichtsingularitit einer Matrix. Tatsachlich wird diese
Eigenschaft vom Algorithmus automatisch verifiziert. Die Ergebnisse des Algorithmus zeichnen sich
durch hohe Genauigkeit aus. Diese wird durch Residuen (eventuell héherer Ordnung) erreicht.

0. Introduction

Let 7 be one of the sets R (real numbers), V'R (real vectors with n components) or
M R (real n x n-matrices). In the power set P T operations are defined by

-" AxB:={a*blac A, beB} for A,BePT, xe{+,—,.,/},
(/ only for T=R). The order relation in R is extended to VR and MR by
f VA,BeVR: A<B:=A,<B, for 1<i<n and
VA,BeEMR: A<B:<sA,<B; for 1<ij<n.
Now the sets 1 7" of intervals over R, VR or MR are defined by .
' [A4,BlelT:<>[A,B]={xe T|A<x<B} for A, BeT.

So we have [4,B]elPT and 1T<P7. We consider (see {11]) a rounding
[J:PT—1T with the properties

(R) VAePT: DA:m{BeuTtAgB}'
(R1) VAeIT: OA=A4
(R2) VA,BePT: AcB=[]A<[B
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(R3) VAePT:  AcOA

(R4) Vop+AePT: O(—A)=—[(A).

(R1), (R2) and (R3) are ({together) equivalent to (R). Operations [ for
*€{+, —,-/} in I T are defined by (cf. [11])

(RG) VA, BelT: A@B:=[1(A+B) (=n{CelT|AxB=C}) (1)

By means of semimorphisms (cf. [11]) it can be shown, that the operationsin [ T are
well-defined (with well-known restrictions for /). In an expression operations of the
same priority are to be executed from left to right.

To be perfectly clear take the following example. Let ze VR, ¥eIMRand X e[ V'R
Then e.g z+% [ X is well-defined regarding ze VRSIVRSP VR with the
cannonical embedding VR in | VR. Following the rules of priorities first Y: =%¢. X is
computed with the multiplication -:PMRxPVR—-PVR and rounded with
O:PVR-IVR with result in §VR Then z+Y is computed with
+:PVR xPVR-P VR using the cannonical embedding VRin P¥R and I VR in
P VR. Because ze VR and Y el VR moreover the result is an element of | VR. So, for
instance, ' :

z+€-Xcz+6 0 X=zBFJX.

If S denotes a subset of R (e.g. the set of single-precision floating-point numbers on a
computer), we consider the set VS of n-tuples over S and the set MS of n*-tupels over
S. Let U denote one of the sets S, VS or MS. Then intervals over one of these sets U

are defined by
[A,Bl:={xeT|A<x<B}elU for A,BeU, .

where T'is the corresponding set to U. The order relation in U is defined canonically
regarding U as a subset of 7. We consider a rounding { : 1 T— 13U having the same

properties (R), ..., {R3), respectively (cf. [11]). If U is symmetric (U = — U), then (R4)

is also satisfied. The operations @ for *e{4, —,-,/} in U are defined by
A®B:=O(AFB) for A,BelU.
It can be shown, that
& is well-defined
& 1is effectively implementable on a computer and
A®B=n{CelU|AM@B<C} for A,BelU.
These important properties are shown by means of algebraic-and order isomor-
phisms [VR « VIR, IMS < MIS etc. pp. (the operations in VIR, MIS etc. are
defined componentwise), with the canonical embeddings U< T<IT<PT and
U ciT<PTand by explicitely giving algorithms for the operations ¢ in all sets S,

VS, MS, IS, VIS and MIS. For the latter purpose a precise arithmetic and
Bohlender’s algorithm (cf. [3], [11]) are required.

Let A, B be elements of U, PU, 1T or PT. Then
AgB:< AcB and A+B,
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where the =-sign is to be understood componentwise. A denotes the topological
interior of A. For A=[a,b]€lT with a,be T the diameter d(A4) and the absolute
value | A| are elements of T defined by

__d(A):=b—ae T and |A|:=max(|a|, {b]e T,

where the maximum is to be understood componentwise. For Ae VR (or M R),
| Ale VR (or MR) is obtained by taking absolute values componentwise.

i
!
i

1. Basic Theorems
In the following we give a theorem for the existence and a theorem for the unigueness
of a fixed point of ?a function in a given region. The first theorem is cited from [7]:

Theorem 1: Let the continuous function f VR—-VR and the mapping
F:PVR—-PVR have the property

AcPVR and xe A—f(x)e F(A). )
If ,
F(X)=X, 3)
for an interval vector X e \VR, then f has at least one fixed point xe X.
Moreover | '
xe ) FX(X), 4
k20

where F°(X):=X and F**' (X):=F(F*(X)) for 0<keN.

Proof: By Brouwer’s Fixed Point Theorem every continuous injection of a non-
empty, bounded, closed and convex region X < PFVR has a fixed point X in X. From
(2) and (3) obviously

fX0):={f(0)|xeX}SF(X)< X.
By induction over k o
feF*(X)=%=f(§)e F(F*(X))=F**'(X) for k=0

demonstrating the theorem. 1

3

Notice, that apart from having the property (2) F 1s an arbitrary mapping from PVR
to PVR. One way to obtain such a mapping from f itself is to substitute interval
operations in the computation of f for the corresponding real operations. We call
this process the “interval arithmetic evaluation of f. *

Using appropriate functions f and F, theorem1 leads to algorithms giving
inclusions® of the solution of certain problems. Before describing these algorithms
the theorem for the uniqueness of the solution will be given. For this we need some
preliminaries.

! By an inclusion of an object we mean an interval which contains that object.

13*
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Let /- VR— VR be continuously differentiable. Then for x, Xe VR there exist
t1y .-, €R with 0<t; <1 for i=1(1)n such that

_ fi(ffa(x—ﬂ))
f(x)—f(f)+(ﬂ(f+tn(x_ o)) & (5)

This 1s a n-dimensional version of the Mean-value Theorem with

dfi af,
ﬁ'(x):=gradﬂ(x)=é_f:_(x)_'_ fi
| Xy dx

The following important lemma has been introduced in [15]:
Lemma 2: Let ZelVR, ¥clMR and XelVR. If
- Z+%-X<X, ©)

then the spectral radius of every Ce € is less than one.

(x).

H

Proof: From (6) we obtain
' d(€- X)<d(X) (7)

(cf. {2]), where the <-sign is to be understood componentwise. On the other hand
formula (18) on p. 153 in [2] gives

d(¢ - X)=|¥|- d(X).
Combining this with (7) yields _
|€]- d(X)<d(X).

Applying Corollary 3, p. 18 in [18] gives p(|%|)<1. For every C €% the Perron-
Frobenius Theory yields

PO=<p(C)<p(€])<1. O

In [8] a version of lemma?2 in Banach spaces is given using the slightly more
stringent condition Z+¥ - X € X instead of (6). The proof of this is similar to the
original one in [15], but completely different from the here presented one.

Lemma 3: Let f:VR—-VR bé continuous and let Re MR be an arbitrary nxn
matrix. Define

g: VR-VR, g(x):=x—R-{(x). ®)
Let G:1VR—IVR be given such that 3 '
IelVR and xel=g(x)eG(I). . 9)
If .
G(X)eX (10)

Jor an interval vector X elVR, then there exists a zero X X of f: f(x)=0.

Proof: In every e-neighbourhood of R there exists a non-singular matrix. (This can
be proved by regarding the determinant of R as a polynomialin n* variables which is
continuous and not identically vanishing. The latter property holds since all
coefficients of the polynomial are + 1.) Therefore, a non-singular matrix R exists,
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y=R-F()=y=R-{f()+M (y—} =
=%~R-f()+{E-R-M}(y—ReG(¥)

for some matrix M € f* (X v Y). Of course, M depends on y. However, M need not be
a Jacobian matrix in the sense that no xexXv Y has to exist with M= f"(x).
Regarding (14) and applying theorem 1 the function g:VR— VR defined by
g(x):=x—R- f(x)for xe VR (which is contmuous) has a fixed point X € X. Now for
any matrix Mef' (Xy X}

F—R-fR)+(E—-R-M)X-HSGX)gX (15)

follows from (13) and (14). Setting Z,,:=X—R.f(X)—{E—R-M}-Xe VR and
Cy:=E—R-MeMR we get

Zy+Cry- XX,

H
o
H

Now lemma 2 yields that the spectral radius of C,, is less than one and henceforth
the matrix R and every matrix M € f*(X' v X) are non-singular.

Thus the fixed pomt xeX of gisazeroof f. For any y € X with f(§)=0 setting x=j
and X=X in (5) yields

0=1G)—fR)=M-(—%)

for some matrix M € f' (X v X). The non-singularity of every such matrix M imphes
the uniqueness of the zero X of f in X. O

The essential purport of theorem 4 is, that R and X are in no way restricted. In
particular the non-singularity of R is demonstrated, if (14) holds (in contrast to [9]
and [13], where the non-singularity must be assumed). In practice, proving the non-
singularity of a matrix on a computer is a difficult problem.

2. Applications and Improvements

Theorem 4 and its proof can be applied to solve non-linear equations. However,
some essential improvements should be introduced before giving an algorithm. It is
far better to aim at an inclusion for a correction than at an inclusion of the solution
itself directly (cf. [15]).

Corollary 5: Let f: VR— VR be continuously differentiable, R € MR be an arbitrary
n X n-matrix and X € VR be an arbitrary vector. Define G: P VR-PVR for YePVR
by

- G(V):i=—R.fRHE-R-f(XHY).T. (16)
Here f'(V) for VePVR is defined as in theorem 4. If
GX)gX (17

- for an interval vector X € I VR holds, then the equation f(x}=0 has one and only one
solution e VR in X X.
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Proof: Obvious.

Applying corollary 5 instead of theorem 4 yields far better inclusions of the solution
X because a relative error of X in X F§ X plays a less important role. Of course, it 1s
possible to determine an incluston of a correction of higher order yielding
X, B ... B X, B X as an inclusion of the solution. For details see [15].

With  the abbreviations Zp,:=x—R.f{(X)—{E—-RM}.XxXeVR and
Cp:=E—RMe MR formula (14} is equivalent to

‘ZM-i—CM-X;X for every Mef'(xu X).
If X = — X this is equivalent to
X |<Zy+|Cyl- X <[ X|

with at most one equality in each component. Z,,+|C,,|: x 1s isotone and in this
way theorem 4 and corollary 5 can be regarded as an extension of the Kantorovich

Lemma.

Theorem 4 and corollary 5 can be extended in several ways. For instance the proofs
do not change, if 1 ¥R 1s replaced by any subset of the powerset P V'R consisting of
closed, bounded and convex sets. Likewise all assertions remain true upon replacing
R by C. The proofs are similar. Regarding the first remark one may use rectangular
or circular complex arithmetic. The hypothesis that f be continuously differentiable
may be replaced by weaker conditions. (11) is nothing other than the Newton
Method if R is the inverse of the Jacobian matrix f” (). If the matrix is left fixed, we
have the simplified Newton Method. In the algorithm X will be an approximation of
a zero of f and R will be an approximate inverse of the Jacobian matrix f'(x). The
important problem of finding a function G satisfying (9) has been solved by (13) and
{16). Any function H: PVR—-PVR with

VePVR:G(V)SH(V)

is suitable because H (X) ¢ X implies immediately G (X) & X. This may, for instance,
be

. HP):=BROSXH{EBRUOS B WM -V (18)
instead c;f (16), where every operation 1s the usual interval operation.
Defining '
H*(W):=ORO PRGEOROD FO W) O W for WelVs
where and@ denotes the computation of f and f* when replacing every
operation by the corresponding operation in 1S, then .

H*(W)g W implies G(W)SH(W)S H*(W)g W
and the conclusions of corollary 5 are true. Therefore corollary 5 is applicable on a

computer.

The problem remains to find an interval vector X satisfying (17). One may try to take
a small interval X around an approximate zero x and examine whether (17) is
satisfied. If this is the case, we are finished. If not, we take X : =G (X} and continue:
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Choose X;
repeat Y:=X; X:=G(X) (19)
until X% Y;

The pivotal question is: Will this iteration terminate and when and moreover for
which problems and under which conditions. We will now give some sufficient
conditions for these objectives. However, such a criterion attacks the set of all
possible problems and is therefore not adapted to given data. Thus for a given
problem it is preferable simply to apply algorithm (19) rather than to check by a
general sufficient condition, whether it will terminate or not. By the way, this
determination can be performed by the computer.

Lenima 6: 1 For an arbitrary matrix A€ MR the following properties are equivalent:
() IceVRIXelVR: cHAOX<X

(i) AYelVR: Y=—Y and A Y Y

(iii) 3ye VR:0<y -~ and |A]|-y<y.

Proof: (i) = (ii). Consider ¥:=X = m(X ), where m(X) is the midpoint of X. Then
Y= —Y and (cf. [2])

A Y=AB(Xam(X))zAgxeAgm(X)gf( HeH 4 m(X).
Abbreviating v:=m(X)BcB A0 m(X)e VR yields
| AQYcSYHo.
Now (ii) follows immediately from 4[] Y=—-A[] Y.
(i) = (iii). Take y=| Y| and observe that d(Y)>0.
(iii) = (i). Obvious. ‘ ]

If one of the equivalent conditions of lemma 6 holds, then by lemma 2 the spectral
radii of |A| and A are both less than one. The next lemma states, when this
conclusion is reversible. For definitions cf. [18].

Lemma 7: If foran arbltrary matrix Ae MR therei is a positive eigenvector y of | A,
~ then the conditions (i}, (ii), {iii) and

(i) p(l4N)<1
are equivalent.
Proof: It suffices to show (iv) = (iii). However, this is obvious. ) ]

Corollary 8: For a nonnegative, irreducible matrix or for a positive matrix the
conditions (1), (ii), (iii) and (iv) are equivalent.
So the existence of an interval vector X satisfying (ii) is equivalent to (iv). Next we

deal with the question, whether for every X €lVR with X = ~ X the iteration (19)
will terminate.
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Lemma 9: Given a nonnegative, primitive (and therefore irreducible) matrix Ac MR
the following conditions are equivalent:

(@) VYelVR with Y=—Y and | Y|>03keN: A" 'O YcA Y
(b) p(A)<1.
Proof: By Perron-Frobenius Theory there exists a positive eigenvalue A of A with

linear elementary divisor such that 2= p(A). Since the corresponding eigenvector is
positive, by lemma 7 it suffices to prove (b) = (a).

Let YelVR with Y= —Yand| Y|>0begivenand y:=[ Y|e VR. The eigenvector v
of AT belonging to A is also positive. So in particular v”-y+0. Applying
Theorem 8.3.1, p. 325 in [6] yields therefore that the iteration

Ay
Q +1
Wi=y; yFflim e | (20)
I 4-y*|
converges for every norm | - || to a vector ue VR with

_ A-u=A.-u and |ju]=1.
From (20} we get for k>0

k -1
}"‘+1=«4"“'J’°-{H Ay !I} . (21)
i=0 _
By assumption 1< 1 and therefore there is a positive vector £¢€ VR with
s+ Ae<(l —A)u. (22)
From the cited Theorem there is a ke N with
yY*=u+x and |x]|<e. (23)

So by (20), (22) and (23) we have
| Ay*| - V¥ i =Ayr=Au+ Ax=y"—u—x+Aut+Ax<
<y —(1—Au+e+ As <y~

The assertion (a) follows now from a short computation using (21) and the fact that
=Y. O

24)

Again, lemma 9 remains true if, instead, A4 is assumed to be positive.

Lemma 10: Let Ac MR be a nonnegative, primitive matrix and denote A=p(A).
Consider the mapping f:1VR—1VR defined by

f(V):=zBAQOV for VelVR and some fixed ze VR.
Then the following are equivalent:

(A) ForallXelVRwith|zE AQm(X)B m(X)|<(1—1)-| X B m(X)| there exists
a keN with o

o X e f5(X) (25)
(B) p(A)<1. |
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Proof: We need only to prove (B) = (A). Let X e V'R be given satisfying
zBAHmX)Bm@)|<(-HE| X Bm(X).

Let us abbreviate

X:=m(X), Y:=XHX, y:={Y| and v:=|z+ AX—X|.

By assumption, there i1s an «€R with 0<a<1—7 and v<a-y. Again by
Theorqm 8.3.1, p. 325 in [6] there is a positive vector e VR with

(I+a)e+A-e<(l—A—0a)-u, {26)

where u is the limit vector of the iteration (20). As in the proof of the preceding lemma

there exists a ke N with
V=u+x and lx|<a

For thlS k we conclude from (26) that

ay'+et+Ae<au+(l+a)e+ As<(l—Au

and therefore
Vo—(1—Dute+ As<(l—o) y~. (27)

Now ﬁs in (24) we get from (27)
| | A4 <(1—a)- (8)
Therefore by (21} we have 7
Ak*L y<{l—a)-A*-y

and
A v+ Ay < ARy, ‘ _ (29)
Using Y= —Y we obtain in the original notation
A 2+ AX—D) B A OXBHSATX B D)
and

AADzBA ' OXcAd* [ X.

To complete the proof we observe that
k
j*“(X):(Z A")-z+A"“-|:|X. O
- i=0

‘Lemma 10 states, that (25) 1s always satisfied for some keN if the absolute value of z
is not too large compared with d(X).

Theorem 11: Let ¥ € IMR be an interval matrix. Then there is always an 0<ce R
such that with the matrix M € MR defined by

Byl if 16,5140

e if |€,]=0 G0

- M=(M,) with M,.J.:={

the following statements are equivalent:
() ¥V YelVR with Y=—Y and | Y|>0 3keN :M** ' 1 YEM*[0 ¥
UN) VCwith|C|<|¥]is p(C)<1l.
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Proof: As mentioned above the determinant of a matrix is a continuous function in
the n* components. Thus, iff (II) is true then p (M) <1 for a certain ¢ R. Because
M >0 we can apply lemma 9. (I) = (1I) follows by Perron-Frobenius Theory:

p(C)<p(€N<p(IM]) forall Ce¥. O

The size of ¢ can be estimated by Hadamard’s estimation of the maximum value of
the determinant of a matrix and an estimation on a polynomial minimum root
separation (see [16]).

Now an algoﬁtﬁm can be given to prove the non-singularity of a matrix Ae MR:

(1) Compute an approximate inverse Re MR of A4;
(2) Compute %:=[J(E—R- A) by interval arithmetic and define M ¢ MR by (30)}.

@) Yor=([—U1l); ki=—~1;
4) repeat k:=k+1; X:=Y; Compute Y M E}X by interval arithmetic;
until Y= X or k>k_,

(5) if Y= X then {4 is not singular}
| Algorithm I: Non-Singularity of a matrix

Here [J(E— R- A) is computed with one final rounding in every component using
Bohlender’s algorithm (cf. [3], [11]}. When applying algorithm 1 on a computer R
and the roundings [] are to be replaced by S and . Here Y¢X and Y& X are
equivalent because all X are symmetric. The condition Y< X for X, YelVR is
equivalent to AX <AY and pY<pX where 1X, pX is the vector of left, right
components of X, resp. The approximate inverse R may be computed by any
floating-point algorithm. The constant k_, might be estimated using the proof of
lemma 9. In practice it turnes out, that if p (M) < 1 then Y< X is satisfied for k <5. By
the way, the condition Y<X for k=0is equivalent to | M |, <1.

Of course, the algorithm depends on the accuracy of R. Computational remark: only
d{(X) has to be computed because X = — X for every ke N.

The following lemma demonstrates what might happen when replacing M by |4]in
algorithm 1.

Lemma 12: For every starting vector 0=X°4 —X° there is a nonnegative,
irreducible € MR with p(€)<1 and X* '&€X* for every keN, where
Xktl=¢. X* for k>0.

Proof: We first assume n=2. Let a (X% =(x, y). Then define
x )
a:=—+1, bi=(@a+1)"' if y40
-y

b= 41, a:=(+1)"* if y=0.
X .

Take

€= eMR<=IMR. -
b 0 '
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Short computation shows p(€¢) <1 and

X a“b*x X atipty
@2k . _ d quk“.( ):( for k=>0.
(y) (a"b"y) o y) " \aprerix) T

Then for v=(x, y)’ the statements
g2k+1 . vc:%zk_ v and %2k+1 . UC(ng-i-l .0
are individually equivalent to the statement
| (ay=x or bxzy).

By definition of a and b this statement is false. Similar examples are easily
constructed for 2<neN. O

After this excursion into the question of whether an X ¢ VR satisfying {17) can be
found and whether (19) terminates for some or any initial X we give an important
improvement for algorithmic application on a computer.

Definition 13: Let IelS and O0<¢e 8. The ¢-inflation I .¢ is defined by

I _={I@[—a,g]<>d(l)_ if d(I)+0
°"" | [pred (pred (a)), succ{succ(a)] if d(I)=0 and I=[a,a], a€S.
Here pred (a) resp. succ(a) are the predecessor resp. successor of a in the floating-
point screen S, so definition 13 is machine dependent. E.g. if d (I)=0 and I ={x, x],
then the left and right hand bounds of I . ¢ differ by 4 in the last digit of the mantissa
and m(l.¢g)=x. The ¢inflation for interval vectors is defined componentwise.
Introducing the g-inflation the inner loop of algorithm 1 becomes

repeat k:=k+1; X:=Y.¢;
Compute Y:=M & X by interval arithmetic
until Y<X or >k

In practice, £=0.1 turned out to be a suitable value.

The¢-inflation has been introduced and discussed in [15]. It reduces the number of
“interval iterations” (see step 3 in the succeeding algorithm 2) significantly; in fact
with using the e-inflation this number is almost always 1.

3. The Algorithm

Now an algorithm verifying existence and uniqueness {in a certain domain) of the
solution of a system of non-linear equations will be described. Suppose, f: VR— VR
(continuously differentiable) is given.

(1) Use your favourite floating-point algorithm to compute an approximate
solution X of f{x)==0. ,

(2) Compute an approximate inverse R of the Jacoblan matrlx f"(X) by any
floating-point algorithm.
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(3) Y:=([0D); k:=0; e:=0.1;
Compute Z:=<fMX) with interval arithmetic;
Compute Z:= — R $ Z with interval arithmetic;
repeat  k:=k+1; Y:=Y.¢; X:=7Y;
Compute D: =® (X ® X) with interval arithmetic;
Compute Y:=Z& { {E—R-D} & X with interval arithmetic;
until Y%X or k>10;

@ ifYex then {It has been verified, that there is one and only one
. solution of f(x)=0in X & 1}

| Algorithm 2: Zeros of non-linear systems

In the preceding number some necessary and sufficient conditions have been given
in order that algorithm 2 yield an inclusion. These are a priori criteria. Algorithm 2
should be regarded as a “sufficient criterion”. This criterion can be checked on a
computer. In this sense it is an “a posteriori criterion”,

In all interval computations the precise scalar product according to Bohlender’s
algorithm is used where possible in order to achieve sharp results (cf. {3], [117).
Especially E—R - D is computed with one final rounding in every component.

When implementing algorithm 1 resp. 2 it is preferable {to save memory) to use an
Einzelschrittverfahren in step (4) resp. step (3). All statements made remain true
according to the following lemma:

Lemma 14: Let ZePVR, € PMR and X e PVR. Denote the i-th row of € by €,
the i-th component of Z resp. X by Z; resp. X; and define recursively for YelVR

Yi=Z+ G- (Yo Yie 13 Xs oo X,) for i=1(1)n. (1)
i | Yex, (32)
then for every Ce%, we have p(C)<1.
Proof: Set C:=|¥| and assume C to be irreducible. Then
Z+C (Yy,... Y )EZ+C (Y, ... Yo, X, L X)=T; (33)

and theref‘bre using (19), p. 154 in [2] we obtain
Z+C.YeY and C.d(Y)=4(C-Y)<d(Y).

Since C 1s irreducible we conclude that (33} is a proper inclusion for i=1 and
therefore '
Ci-d()=d(C,- Y)<d(Y,).

Thus by the Corollary on p. 21 in [18] we have p (C) <1 and the assertion follows by
Perron-Frobenius Theory.

If C is reducible there is a permutation matrix P with
Ryy Ryz ... Ryn

PCP = ,

--------
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where each R;; is a square matrix and either irreducible or 2 1 x 1 null matrix
i=1(1)m. The eigenvalues of C are the eigenvalues of the R;;, i=1(1)m. If R, =(0):
then p{(R;,)=0. Suppose R,,+(0) and therefore that R,, is irreducible. Set
M:=R,;,say M is a k x k matrix and the first kK components of P-(1,2, ... n) are
if, ..o iy W.LO.g. we assume i, <i; j=2,...,k. Then

k k
(PCP-Y), =3 M,;- Y, +Ss > M- X, +5<7Y;,
: j=1

: j=1
where S 1s a sum of first rows of R, ; multiplied by the corresponding components of
Y, j=1(1)m. As in the first part of the proof we get

M:(Ifip RRae) Kk)sd(},:p ARt] Yik)

with strict inequality in the first row. Because M =R, is irreducible we get
'p{R;1)< 1. The same proof is applicable to any R,;, i=2(1)m. 0

A few remarks on applications to some special problems should be added. For
details see [15] and [4]. Application on a computer is immediately obtained in
replacing the roundings [] by .

Given a systém of linear equations Ax==> (16) is written (cf. [15])
H(X):=REOOG-AXY)HDO{E-RA}EOX. '1

Here X is an approximate solution of Ax=»5 and R an approximate inverse of }i.?"
. Notice, that the Jacobian matrix is 4 and is constant. Therefore E— R A has to be
- computed only once. The computing time of algorithm 2 using this fact is 6 times the
computing time of the Gaussian Algorithm. There are no a priori restrictions.

To compute inclusions of eigenvectors and eigenvalues of a matrix 4 we use the non-
linear system (cf. [15]) (A—LE)x=0

e.x—{ =0.

Here e, is the transposed k-th uh_it vector, 1.€. ¢} x the k-th component of x. {isa fixed
but arbitrary real number.

[

). . . ..
In order to improve corollary 5 we introduce the following sharper definition of H

H (f)::—RB (D((A_Om'f’) B0 (E-—~R. (";{’TE E’EOE’X)).(;)

for X eIIVR, AelR. Nevertheless using this new definition we can prove the
uniqueness of the eigenvector and the corresponding eigenvalue in the resp. sets
XA X and 7 A separately (cf. [15]). '

Special algorithms can be given for computing inclusions of the (real or complex)
zeros of a polynomial. To compute the inclusion of a solution of p(x)=0 fo;' a
polynomial pe R[x] one can use for arbitrary X, r € R instead of (16) the following

definitions of G: G(X):=—p(H TP (X) (4)
or
GX)=—rdp@EBEO{I-rpX)}ax. (35)



Solving Nonlinear Systems with Least Significant Bit Accuracy 197

If G (X)< X using definition (34) or 0 e X and G(X )& X using definition (35} for an
X elIR, then X B X contains one and only one real zero of p(x). These results remain
true for complex X, r as follows analogously using complex interval arithmetic. There
are several different algorithms for computing inclusions of real or complex zeros
(singly or simultaneously) using Frobenius matrices. For details see [4].

There are special applications involving the computation of inclusions of the values
of functions in several variables consisting of +, —, -, /, (,) for any values of the
variables. For further details cf. [19]. Example:

Cornputé 4x*—y*1+2y? for x=470832 and y=665857.

If in a formula an algebraic expression like |/§'occurs it may be exactly represented
by another equation y*—2=0. Thus values of algebraic polynomials can be
computed (see [57). If pe @) [x] with ¥ (x)=0 for ¥ € Q[x] then one writes

¥ (x)=0

 p()—y=0.
All statements made remain true if the data consists of intervals. Given
£:1VR—IVR, £:1VR—IMR, an interval vector X e1VR and an arbitrary n x n-
matrix R, if we have

TREBOE-R BN OXSX,

then every continuously differentiable function f: VR— VR with
_ xeX={f(x)eé(x) and ['(x)eé (X)}

has one and only one zero % in ¥ @ X. Moreover the matrix R and all matrices in
#'(X) are non-singular. These statements are obvious regarding the proof of
theorem4. E.g, for sets of systems of linear equations {Ax=>b|Aeof, bes} with
HeIMR, £e VR this means, that the solution of every system Ax=b with A eof
and be£ 1s uniquely determined and is an element of x 3 X. All matrices Aesf/and
R are non-singular.

All statements made remain true taking the field of complex numbers instead of
reals. In fact, the used mean-value theorem remains true (in the form we need it) in

the complex space C" (see [4]).

4. Computational Results

The following examples are computed using a computer having 12 decimal digits for
the mantissa and an optimal floating-point arithmetic (see [11]).

To solve a very ill-conditioned problem we take a linear system with the Hilbert
9 x 9-matrix. Instead of taking h;;: = 1 /(i +j— 1) we multiply all components with the
l.c.m. of all denominators. Selving a linear system with right hand sides e; (i-th unit
vector) we obtain the columns of the inverse of the Hilbert matrix. Using algorithm 2
we compute inclusions for all components of the inverse, where the distance of the
left and right bounds is always one unit of the last decimal place, i.e. we obtain the
smallest possible intervals. Two iterations are necessary in step 3. The sum norm of
E—RA is greater than one, so the non-singularity of R and A cannot be proved a
priori.
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However, with a floating-point algorithm it is no problem to compute “an inverse” of
a singular matrix. Algorithm 2 gives notice, that inclusion is not possible and the
problem should be handled very carefully. Consider
—8392848.x  —3566221.y  —3799934.z=—15759003
1699109.x  +3679519.y  +2370515.z= 7749143
—6693739 x + 113298.y —1429419.z= - 8009860.
Applying.a dOuble -precision floating pomt remdue iteration to the approximation

given by Gaussian elimination yields x®=x'=..., the iteration remains constant.
This suggests the best possible condition whcreas in fact (add first and second row) it

is the worst!

As well as “fmdmg a solution™ where none exists a bad approximation may be
passed as a good one. Consider thc following matrix:

e (941664.000002 665857 )
T 665857 470832/

To invert this matrix we use the Gauss-Jordan procedure. This yields the following
“approximate inverse”:

— 166666 235702
( 235702 —333 333)
rounded to six figures (after 12-decimal-digit computation).. The true inverse is
(—-8071 037 11414170)
11414170 —16142074

and is computed up to the last figure by algorithm 2. For more examples see [15].
For examples concerning arithmetic expressions see [19].

The following examples for non-linear systems were computed on the
UNIVAC 1108 of the University of Karlsruhe. The mantissa length on this machine
is 8% decimal digits. The following examples were treated:

L
Example 4 (Rosenbrock) in [1]
Example 7 in [1] for n=10,20,50, 100
The example in [13]
Problem 1 in [14] for n=10,20,50
Problem 2 in [14] for n=10,20, 50 .-
Problem 3 (Brown)in [14] for n=10, 20,50 for initial approximations
a) (0.5,...,0.5) b) (1—-n"1,..,1—n"12)
7. Example 1 (Rosenbrock) in [12]
8. Example 2 (Brown) in [12] for initial approximations
a) (1, —0.5); b) (1.5, 0.8); c) (—0.5,1)
9. Example 3 (Brown) in [12] for initial approximations
a) (0.1,2); b) (1,0); c) (0,2)

N
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10. Example 4 (Brown/Conte} in [12j

11. The example in [10] for initial approximations
a) (0.7, 0.1, 0.8, 0.1);

b) (1,1,1,1)
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We first tried- to improve the approximations using a floating-point Newton
iteration. Then we applied algorithm 2. The columns of the table refer to:

1. Number of the problém
2. n: Number of functions and variables

3. Newton-steps: Number of floating-point Ncwton iterations; here a* indicates

that the floating-point iteration didn’t converge

4. interval steps: k2how often step 3 in algorithm 2 has been executed

5. succeeded: X £ Y in algorithm 2, i.e. the computer verified the existence and

uniqueness of a zero of the non-linear system in X:=xfH Y

6. digits guaranteed: least number of digits, for which the left and right bounds of X
coincide; here an additional Ls.b.a. means “least significant bit accuracy”, i.e:
between all left and right bounds of the lnclusmn there is no other floating-point

number.
Problem " Newton-  interval succeeded digits
) -steps steps guaranteed
1 2 5 1 yes 84(ls.b.a)
10 8 2 yes 84(s.b.a)
20 6 2 yes 8L (Ls.b.a)
50 6 3 yes 8
100 7 3 - yes - 8
3. 2 3 1 yes 84 (Ls.b.a)
4 10 4 1 yes 81 (Ls.b.a)
20 6 1 yes 8L (ls.b.a)
50 6 1 yes 8
5 ) 10 3 1 yes 8L (Ls.b.a)
' 20 4 1 yes 8L (Ls.b.a)
50 4 1 yes 8
6.a) 10 15* 10 no
6.b) 10 8 | yes 84 (Ls.b.a)
20 8 1 yes 81(Ls.b.a)
50 11 2 yes 8
7. 2 2 1 yes 81 (Ls.b.a)
8.a) 2 15+ 10 mo o
gh 2 3 1 yes 81 (Ls.b.a)
8.¢) 2 6 1 yes 84 (Ls.b.a)
9. a) 2 15* 0 no
9.b) 2 4 1 yes 84 (Ls.b.a)
9.c) 2 8 2 yes 84 (Ls.b.a)
10. 3 7 2 yes 84 (ls.b.a)
11.a) 4 2 1 yes 8L (Ls.b.a)
11.b) 4 3 1 yes 8l(ls.b.a)

i4 Computing 29/3
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The examples show, that if the initial approximation is not too bad algorithm 2
verifies existence and uniqueness within an inclusion, whose left and right bounds
coincide to 8 decimal places when computing with 8% decimal digits accuracy. It
never occured that algorithm 2 did not succeed in verifying existence and uniqueness
after starting with a reasonable approximation.

[
2
B3]
]
5
(6]
Y

8]
9]

{10}

{i1]
[12]

[13]

(14]

us]
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