4-2F ad-use

CERN-DATA HANDLING DIVISION
DD/75-4
J.M.F. Chamayou
25 March 1975

CERN LIBRARIES, GENEVA

CM-P00059668

ON A DIRECT ALGORITHM FOR THE
GENERATION OF LOG-NORMAL PSEUDO-RANDOM NUMBERS

1. INTRODUCTION

1.1 The log-normal distribution and the energy loss distribution in atomic cascades

As a classical example of a process deeply connected with the log-normal distribution, let us give the simplest description of the losses of energy in atomic cascades [6] to illustrate the kind of distribution one must have to simulate using a random number generator.

A primary atom with an initial energy x suffers random shocks, in which it gives a part of its energy to another atom.

The density of probability of exchange of energy is, for instance, related to the hard spheres potential, i.e. uniform.

$$K_1(x,y) = \frac{1}{x}$$
 $0 \le y \le x$ (1)
= 0 elsewhere.

This represents the density of probability that an atom with an initial energy x has the energy y after one collision.

Then by induction after n collisions the probability for the primary to have energy y is:

$$K_{2}(x,y) = \int_{y}^{x} K_{1}(x,z)K_{1}(z,y) dz = \frac{\log (x/y)}{x}$$

$$K_{n}(x,y) = \int_{y}^{x} K_{n-1}(x,z)K_{1}(z,y) dy = \int_{y}^{n-1} \left[-\log \left(\frac{y}{x}\right)\right]^{n-1}, \quad 0 \le y \le x$$

$$= 0 \quad \text{elsewhere}.$$

This process is only asymptotically log-normal, then the analogous random number generator presented here will be as convenient as an exact log-normal generator to simulate the density of probability (2).

1.2 Theoretical background

The random variable $\log X = -\log \prod_{j=1}^n X_j$, where the X_j are independent and uniformly distributed on [0,1], has the following second characteristic function:

$$\psi_{n}(t) = -n \log (1 + it)$$
 (3)

Then the mean and the variance are

$$\mu = -n$$
 and $\sigma^2 = +n$

Therefore X is asymptotically (n $\rightarrow \infty$) log-normal $\Lambda(\mu, \sigma^2)$, i.e. it has the density

$$\frac{1}{\sqrt{2\pi} \operatorname{gx}} \exp \left\{ -\frac{1}{2} \frac{(\log x - \mu)^2}{\sigma^2} \right\} . \tag{4}$$

But if X is $\Lambda(\mu, \sigma^2)$ and if e^a and b are constants, the random variable $Y = e^a X^b$ is $\Lambda(a + b\mu, b^2 \sigma^2)$ (c.f. [1]). Thus, we get a method for generating pseudo-random numbers distributed log-normally $\Lambda(0,1)$.

Let us assume that

$$b = \pm \frac{1}{\sqrt{n}}$$
 and $a = \pm \sqrt{n}$.

Then, the random variable

$$\lim_{n\to\infty} Y_n = \lim_{n\to\infty} e^a \left(\prod_{j=1}^n X_j \right)^b \quad \text{is} \quad \Lambda(0,1) . \tag{5}$$

2. DISCUSSION OF THE THEORETICAL METHOD

The choice of the value of n is given by the practice; n must generally be greater than 10 for an accurate use of the central limit theorem. For instance, it is well known that an N(0,1) random variable is simulated using $\sum_{j=1}^{n} X_j - (n/2)$, where n = 12 [4].

In [2] the random variable $\sum_{i=1}^{\infty} \prod_{j=1}^{i} X_{j}$ was simulated by $\sum_{i=1}^{n} \prod_{j=1}^{i} X_{j}$, where n = 10. Let us define the following random variables:

$$Z_{\pm} = e^{\pm \sqrt{n}} \left(\prod_{j=1}^{n+1} X_{j} \right)^{\pm 1/\sqrt{n}}$$
 (6)

We get the following lemma showing the accuracy of the representation of a $\Lambda(0,1)$ variable.

<u>Lemma 1</u>. The random variables Z_{\pm} are asymptotically $(n \to \infty)$ log-normal standard variables $\Lambda(0,1)$; the order of convergence is $O(1/\sqrt{n})$.

<u>Proof.</u> It is well known that if $\{ [5]$ see Introduction putting x = 1 in formula (2)

$$\Xi = \prod_{j=1}^{m+1} X_j.$$

The density of probability of Ξ is

$$f(\xi) = \frac{(-\log \xi)^n}{n!} \qquad 0 \le \xi \le 1$$

$$= 0 \qquad \text{elsewhere} . \tag{7}$$

Let us define

$$Z_{+} = e^{\sqrt{n}} \Xi^{1\sqrt{n}}.$$

Then the density of Z_{+} is

$$g(z_{+}) = \frac{(n - \sqrt{n} \log z_{+})^{n}}{n!} \sqrt{n} e^{-n} z_{+}^{\sqrt{n-1}} \qquad 0 \le z_{+} \le e^{\sqrt{n}}$$

$$= 0 \qquad \text{elsewhere}$$

if $n \rightarrow \infty$ by Stirling's formula [5]:

$$n! \simeq n^n e^{-n} \sqrt{2\pi n} (1 + \frac{1}{12n} + ...)$$

$$g(z_+) \simeq \frac{1}{\sqrt{2\pi} z_+} \left[\left(1 - \frac{1}{\sqrt{n}} \log z_+ \right) \left(e^{(1/\sqrt{n}) \log z_+} \right) \right]^n$$

but expanding $e^{(1/\sqrt{n})} \log z_+$, we get

$$g(z_{+}) \simeq \frac{1}{\sqrt{2\pi} z_{+}} \left[1 - \frac{1}{n} \left(\frac{1}{2} \log^{2} z_{+} + \frac{1}{3\sqrt{n}} \log^{3} z_{+} + \ldots \right) \right]^{n}$$

and we obtain easily

$$g(z_{+}) \simeq \frac{1}{\sqrt{2\pi} z_{+}} \exp \left\{-\frac{\log^{2} z_{+}}{2}\right\} \left[1 - \frac{1}{3\sqrt{n}} \log^{3} z_{+} + O\left(\frac{1}{n}\right)\right].$$
 (9)

In the same way

$$g(z_{-}) \simeq \frac{1}{\sqrt{2\pi} z_{-}} \exp \left\{-\frac{\log^2 z_{-}}{2}\right\} \left[1 + \frac{1}{3\sqrt{n}} \log^3 z_{-} + O\left(\frac{1}{n}\right)\right].$$
 (10)

In order to give a better approximation to the log-normal distribution, one can take advantage of the following properties

g(z₊) is asymptotically > the $\Lambda(0,1)$ density for z₊ < 1 g(z₊) is asymptotically < the $\Lambda(0,1)$ density for z₊ > 1

g(z_) is asymptotically < the $\Lambda(0,1)$ density for z_ < 1

g(z_) is asymptotically > the $\Lambda(0,1)$ density for z_ > 1

We therefore define the following random variable:

$$Y = Z_{+} \cdot Z_{-} = \left(\prod_{j=1}^{n} \frac{X_{i}}{X_{i+n}} \right)^{1/\sqrt{n}}$$
 (11)

This is asymptotically a log-normal variable $\Lambda(0,2)$. Let us define

$$Z = \left(\prod_{j=1}^{n} \frac{X_{i}}{X_{i+n}} \right)^{b}$$
 (12)

where b = $1/\sqrt{2n}$, in order to get asymptotically a $\Lambda(0,1)$ variable.

<u>Lemma 2</u>. The random variable Z is asymptotically $(n \to \infty)$ log-normal standard variable $\Lambda(0,1)$; the order of convergence is O(1/n).

<u>Proof.</u> Using formula (3) it can be easily shown that the second characteristic function of the variable: $Y = \log Z$ is

$$\Psi_{n}(t) = -n \log \left(1 + \frac{t^{2}}{2n}\right).$$
 (13)

This will give rise to an N(0,1) variable when $n \to \infty$; inverting $\psi_n(t)$ we get the density of Y $\begin{bmatrix} 3 \end{bmatrix}$.

$$g(y) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\cos(t|y|) dt}{(1 + (t^{2}/2n))^{n}} = \frac{(\sqrt{n/2}|y|)^{n-\frac{1}{2}} K_{n-\frac{1}{2}}(\sqrt{2n}|y|)}{\Gamma(n)\sqrt{\pi}} = \frac{\sqrt{2n} e^{-\sqrt{2n}|y|}}{2^{2n-1} \Gamma(n)} \sum_{k=0}^{n-1} \frac{\Gamma(2n-k-1)(2\sqrt{2n}|y|)^{k}}{\Gamma(n-k)\Gamma(k+1)} -\infty < y < \infty .$$
 (14)

Where $K_r(x)$ is the Bessel function of second order and imaginary argument [8]. Then the density of Z is

$$h(z) = \frac{1}{\pi z} \int_{0}^{\infty} \frac{\cos(t|\log z|) dt}{(1 + (t^{2}/2n))^{n}} \qquad 0 \le z < \infty$$

$$= 0 \qquad \text{elsewhere}$$

and

$$h(z) \approx \frac{1}{\pi z} \int_{0}^{\infty} e^{-t^{2}/2} \cos (t |\log z|) dt \cdot \left[1 + 0\left(\frac{1}{n}\right)\right]$$

$$= \frac{1}{\sqrt{2\pi} z} \exp \left\{-\frac{\log^{2} z}{2}\right\} \left[1 + 0\left(\frac{1}{n}\right)\right]$$

$$Q.E.D.$$
(15)

3. THE ALGORITHM

In FORTRAN IV the algorithm corresponding to the random variable (12) is the following:

N=***

AN=1.

BN=1./SQRT(2.*FLOAT(N))

Z=RLONOR(N,AN,BN)

FUNCTION RLONOR(N,AN,BN)

X=1.

DO 1 I=1,N

1 X=X*RNDM(I)/RNDM(I+N)

RLONOR=AN*X**(+BN)

RETURN

END

where RNDM(I) is a function generating pseudo-random uniform numbers (a congruential method is used for the tests). AN and BN can be adjusted in order to get a $\Lambda(\mu,\sigma^2)$ variable

AN=EXP (μ)

 $BN=(...)*\sigma$.

4. STATISTICAL TESTS

The mean of a log-normal distribution $\Lambda(0,1)$ is [1]

$$\alpha = e^{\frac{1}{2}} = 1.6487$$
.

But

$$\overline{\alpha} = \int_{0}^{1} \dots \int_{0}^{1} \left(\frac{x_1 x_2 \dots x_n}{x_{n+1} \dots x_{2n}} \right)^{1/\sqrt{2n}} = dx_1 \dots dx_{2n} = \left(1 - \frac{1}{2n} \right)^{-n} = \alpha \left[1 + 0 \left(\frac{1}{n} \right) \right],$$
(16)

see Table 1.

Figure 1 shows the comparison between the density of a $\Lambda(0,1)$ variable and the histogram of the pseudo-random numbers; it is unimodally shaped with a modal value corresponding to $e^{-1} \begin{bmatrix} 1 \end{bmatrix}$.

On a CDC 7600 computer, the time of calculation is $\,\,$

 $T_1 = (14 + 5n) \, \mu sec/log-normal pseudo-random number$

 $T_2 = (10 + 5n) \mu sec/normal pseudo-random number.$

This generator has been tested using some one sample non-parametric tests: Kolmogorov's test, Cramer-Von Mises test and Renyi's test. The results are presented in Table 2. Comparison is made with

- (*) the Box-Muller method [4],
- (**) the sum of 12 random uniform deviates,
- (***) 2000 true normal random numbers [7].

[It can be noted that (**) and n = 6 are tested with the same series of random uniform numbers for each pseudo-random log-normal number].

5. CONCLUSION: Interpretation of the results

The interest of this pseudo-random number generator is to provide directly $\Lambda(0,1)$ variables without the help of any N(0,1) variable.

Normal deviate generators provide slightly quicker the $\Lambda(0,1)$ random variables for an identical bias and the same test confidence level, as can be seen in the table (n = 5,6). But, in fact, many of the processes involved in the log-normal distributions are described in the same terms as in the example given in the Introduction.

Then these processes are only asymptotically log-normal, and if one wants to simulate that kind of distribution an analogous random generator will be as convenient as the exact log-normal. For instance, the density of probability of the energy of a primary atom (2) that suffers n=36 shocks will be closely represented using the random variable (12) where n=6.

Table 1

n	μ = 0	$\sigma^2 = 1$	$K_3 = 0$	α = 1.649	T µsec
4	-0.002	0.99	0.008	1.716	34
5	0.003	1.008	-0.008	1.696	39
6	0.007	1.018	0.018	1.718	44
7	-0.005	0.991	-0.019	1.657	49
8	-0.003	1.007	0.003	1.673	54
(*)	-0.003	0.989	0.013	1.637	39
(**)	-0.005	1.002	0.014	1.646	35
(***)	-0.018	0.992	0.052	1.620	-

m = 20000 pseudo-random numbers

Table 2

1 1 2 - 1/2 - 1/2 - 1	Kolmo	Cramer's test			
n	D _m	z	$Pr\left[\sqrt{m} D_{m} \geq z\right]$	W ² m	$\Pr\left[W_{m}^{2} \leq W_{m}^{2}\right]$
· :	i o		%	gereg jar	%
4	0.026	1.14	14.5	0.30	86.8
\$4.4E	0.022	1.0	26.5	0.22	76.9
5 6	0.031	1.4	40.2	0.133	55.3
7	0.018	0.82	52.0	0.173	67.3
8	0.016	0.72	68.4	0.1	41.3
(*)	0.024	1.06	21.1	0.138	57.1
(**)	0.018	0.83	49.5	0.130	54.4
(***)	0.026	1.16	13.7	0.144	59.2
	Renyi's test $a = 0.1$				
n	D _m a)	z	$\Pr\left[D_{m}\sqrt{\frac{ma}{1-a}} \le z\right]$		
-			7.		·
4	0.105	1.56	76.5		
5	0.077	1.14	49.3		
6	0.058	0.86	23.8		
7	0.095	1.41	68.3		
8	0.078	1.16	51.1		
(*)	0.047	0.71	10.8		
(**)	0.051	0.76	15.3		
(***)	0.102	1.51	74.0		

m = 2000 pseudo-random numbers

a)
$$D_{m} = \max_{0 \le a \le F_{m} \le 1} \left| \frac{F_{m} - S_{m}}{F_{m}} \right|$$

REFERENCES

- [1] J. Aitchison and J.A.C. Brown, The log-normal distribution (Cambridge University Press, Cambridge, 1966).
- [2] J.M.F. Chamayou, Math. Comput. <u>27</u>, 197 (1973).
- [3] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, Academic Press, New York, 1965).
- [4] B. Jansson, Random number generators (Pettersons, Stockholm, 1966).
- [5] M.G. Kendall and A. Stuart, The advanced theory of statistics (C. Griffin, London, 1963), Vol. 1.
- [6] G.M. Kinchin and R.S. Pease, Rep. Progr. Phys. <u>18</u>, 1 (1955).
- [7] A million random digits (The Free Press, The Rand Corporation, Glencoe, Ill., 1955.)
- [8] K. Pearson, S.A. Stouffer and F.N. David, Biometrika 24, 293 (1932).

Figure caption

Fig. 1 : Log-normal distribution

- * Log-normal density
- \triangle Density of the pseudo-random numbers (n = 6)
- Histogram of the pseudo-random numbers (m = 9000, n = 6)

 Dashed area: difference between the random histogram and the exact histogram (i.e. each bin is the value of the integral of the density in the bin).

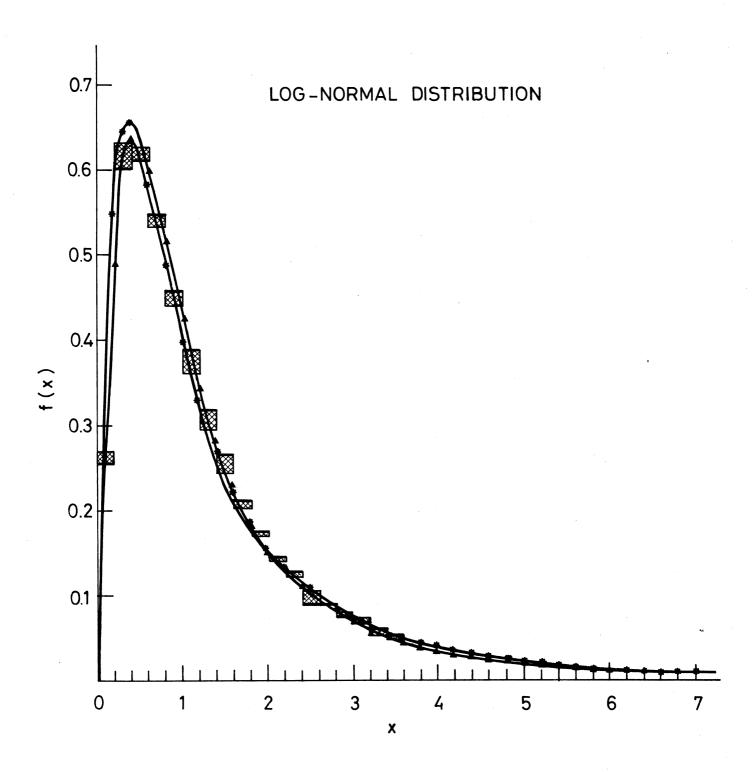


Fig. 1