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INTRODUCTION

1.1 The log-normal distribution and the energy
loss distribution in atomic cascades

As a classical example of a process deeply connected with the log-normal
distribution, let us give the simplest description of the losses of energy in
atomic cascades [ 6] to illustrate the kind of distribution one must have to simu-

late using a random number generator.
A primary atom with an initial energy x suffers random shocks, in which it
gives a part of its energy to another atom. ' '

The density of probability of exchange of energy is, for instance, related
to the hard spheres potential, i.e. uniform.
% 0<y<x
(1)
0 elsewhere .

K (x ,Y) =

This represents the density of probability that an atom with an initial energy x

has the energy y after one collision.

Then by induction after n collisions the probability for the primary to have
energy y is:

X

K2 (x,y) = f K1 (x,2)K1(z,y) dz = log )((X/y)

y

X
Kn(X,.Y) = / Kn-.l (x,2)Ky (z,y) dy =

y

n-1 ‘
1
T(n)x [” Log {‘Eﬂ , 0Xy<x (2)
=0 , : elsewhere .

This process is only asymptotically log-normal, then the analogous random number
generator presented here will be as convenient as an exact log-normal generator

to simulate the density of probability (2).

1.2 Theoretical background

The random variable log X = - log H?;1 Xj’ where the Xj are independent and

uniformly distributed on [0,1], has the following second characteristic function:

wn(t) = -1 log (1 + it) . 3)



Then the mean and the variance are

U =-n and 0% = +n .

Therefore X is asymptotically (n - «) log-normal A(u,0%), i.e. it has the density

_h2
— exp { - %.SlQ&_E__Jil_ } . (4)
V2T ox o?

But if X is A(u,0%) and if e? and b are constants, the random variable Y = eaXb
is A(a + by, b202) (c.f. [1]). Thus, we get a method for generating pseudo-random
numbers distributed log-normally A(0,1).

Let us assume that

b=t Jﬁ and a=+¢#+/n.
v/n
Then, the random variable
n b
limY = lim e X is A(O0,1) . (5)
e U oo J
j=1

DISCUSSION OF THE THEORETICAL METHOD

The choice of the value of n is given by the practice; ‘n must generally be
greater than 10 for an accurate use of the central limit theorem. For instance,
it is well known that an N(0,1) random variable is simulated using Z?=1 Xj - (n/2),
where n = 12 [41.

00

In [2] the random variable ) i Xj was simulated by Z? n;

i=1"j= =1 j=1xj, where n = 10.

Let us define the following random variables:

n+1 +1/vn

j=1

We get the following lemma showing the accuracy of the representation of a A(0,1)

variable.

Lemma 1. The random variables Z, are asymptotically (n > «) log-normal standard

variables A(0,1); the order of convergence is 0(1l/vn).

Proof. It is well known that if {[5] see Introduction putting x = 1 in formula

)}

n+l
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The density of probability of E is

(-log ©)"
f’<g)=—n§—— 0sgs1 (7
=0 elsewhere .
Let us define
vn _1v/n
Z+ = e =

Then the density of Z, is

(n - va log z )" _ —
+ /n nzfn—l

g(z+) 7 n e e (8)

=0 elsewhere
if n > » by Stirling's formula [5]:

A : B 1
n! *n e V2 (1 + Ton + o)

glz,) = L [[1 - ;L.log z+][e(1//ﬁ) log z+]}n

2T z, /n

(1/v/n) log z,

but expanding e

n
1 1 (1 1
glz,) = : [1 - ;-[E-logz z, + —— log? z, + ...]]

, we get

VI 2,

and we obtain easily

log? z
g(z+) ~ 1 exp {— —-——+} 1 - _1_. :l()g3 Z+ + O[—r]—;) . (9)
V2T z, 2 3vn
In the same way
‘ log2 z_
g(z_) = L exp {- —> 1+ L log® z_ + O(ll . (10)
V3T 2. 2 3a n
Q.E.D

In order to give a better approximation to the log-normal distribution, one can

take advantage of the following properties
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g(z+) is asymptotically > the A(0,1) density for z <1
g(z+) is asymptotically < the A(0,1) density for z > 1
g(z_) is asymptotically < the A(0,1) density for z_ <1
g(z_) is asymptotically > the A(0,1) density for z_ > 1
We therefore define the following random variable:
n 1/v/n
I | X
Y=2, °27_= o . (11)
i+n
j=1 . o

This is asymptotically a log-normal variable A(0,2). Let us define

n
Z = 5 (12)
xi+n ,

j=t

where b = 1/V/2n, in order to get asymptotically a A(0,1) variable.

Lemma 2. The random variable Z is asymptotically (n > ®) log-normal standard

variable A(0,1); thé order of convergence is 0(1l/n).

Proof. Using formula (3) it can be easily shown that the second characteristic

function of the variable: Y = log Z is

2
- - [ _
Wn(t) = - n log [1 + Zn] . : (13)
This will give rise to an N(0,1) variable when n + ©; inverting wn(t) we get the
density of Y [3].
Be) s ‘ n""l/g , .
WAT2ly D™ PRy, 2nly D

| 1‘ cos (f]yl).dt - :
g(y) =-—-Jf = =
TJ (1+(t2/20))" T (n) VT

n-l

VN reon -k - 1) (2vanly "
2n-l : T(n - K)T(k + 1)

—oo<y<°°. (14)
2 I'(n)

k=0

Where Kr(x) is the Bessel function of second order and imaginary argument [8].

Then the density of Z is

h(z)

(oo}
_l_f cos (t|log z|) dt 0< 5 < w
e ! (1 + (t2/2n))n

=0 elsewhere



and

1R

=R

2
h(z) : “sz e /2 cos (t]log z|) dt - |:1 + 0[‘ ]:l
0

1 log? z} [ 1 ]
exp - ———— 1 +0| = (15)
Vam z { 2 [n]

Q.E.D.

3. THE ALGORITHM
In FORTRAN IV the algorithm corresponding to the random variable (12) is the
following:
N=tk ok
AN=1.
BN;l./SQRT(Z.*FLOAT(N))

Z=RLONOR (N, AN, BN)

FUNCTION RLONOR(N »AN, BN)
X=1.
DO 1 I=1,N

1  X=X*RNDM(I)/RNDM(I+N)
RLONOR=AN*X*%* (+BN)
RETURN
END

where RNDM(I) is a function generating pseudo-random uniform numbers (a con-
gruential method is used for the tests). AN and BN can be adjusted in order to

get a A(u,0%) variable

AN=EXP (u)
BN=(...)*0 .

4. STATISTICAL TESTS

The mean of a log-normal distribution A(0,1) is (1]

)}
o = e/2 = 1.6487 .



But
! 1 < x x 1/V2n -n _
- _ 18 ¢ n _ _ _i_ _ l
o = f e J’ {X_—T—X_] = Xm e din = [1 zn} =0 [1 + O[Il]_l ’
n+l 2n
0 0
on (16)

see Table 1.

Figure 1 shows the comparison between the density of a A(0,1) variable and
the histogram of the pseudo-random numbers; it is unimodally shaped with a modal

value corresponding to e [1].

On a CDC 7600 computer, the time of calculation is =

w

T, (14 + 5n) usec/log-normal pseudo-random number

T2 (10 + 5n) usec/normal pseudo-random number.

This generator has been tested using some one sample non-parametric tests:
Kolmogorov's test, Cramer-Von Mises test and Renyi's test. The results are pre-

sented in Table 2. Comparison is made with

(*) the Box-Muller method [4],
(*%) the sum of 12 random uniform deviates,

(*%%) 2000 true normal random numbers [7].

EIt can be noted that (**) and n = 6 are tested with the same series of random

uniform numbers for each pseudo-random log-normal number].

CONCLUSION: Interpretation of the results

The interest of this pseudo-random number generator is to provide directly

A(0,1) variables without the help of any N(0,1) variable.

Normal deviate generators provide slightly quicker the A(0,1) random vari-
ables for an identical bias and the same test confidence level, as can be seen
in the table (n = 5,6). But, in fact, many of the processes involved in the
log-normal distributions are described in the same terms as in the example given

in the Introduction.

Then these processes are only asymptotically log-normal, and if one wants
to simulate that kind of distribution an analogous random generator will be as
convenient as the exact log-normal. For instance, the density of probability of
the energy of a primary atom (2) that suffers n = 36 shocks will be closely

represented using the random variable (12) where n = 6.



Table 1

=0 2 =1 K3 =0 = 1.649 T
n H = g = 3 = o =1. usec
4 -0.002 0.99 0.008 1.716 34
5 0.003 1.008 -0.008 1.696 39
6 0.007 1.018 0.018 1.718 VA
7 -0.005 0.991 -0.019 1.657 49
8 -0.003 1.007 0.003 1.673 54
(*) -0.003 0.989 0.013 1.637 39
(%%) -0.005 1.002 0.014 1.646 35
(*k*) -0.018 0.992 0.052 1.620 -

m = 20000 pseudo-random numbers




Table 2

Kolmogorov's test Cramer's test
n D | =z Pr[/nT D 2 z] w2 : Prl:w2 < w2:|
. m m m m m
% 7
4 0.026 | 1.14 | 145 0.30 86.8
5 0.022 | 1.0 | 26.5 0.22 76.9
6 0.031 | 1. 40.2 0.133 55.3
7 0.018 | 0.82 |  52.0 0.173 67.3
8 0.016 | 0.72 . 68.4 0.1 41.3
(*) 0.024 1.06 21.1 0.138 57.1
(%%) 0.018 | 0.83 49.5 0.130 54,4
(*%%) 0.026 | 1.16 13.7 0.144 59.2
Renyi's test a=0.1
n D a) z bPr[D ma < zJ
m m Vl-a
A
4 0.105 1.56 76.5
5 0.077 1.14 49.3
6 0.058 | 0.86 23.8
7 0.095 1.41 68.3
8 0.078 | 1.16 51.1
(*) 0.047 | 0.71 10.8
(*%) 0.051 | 0.76 15.3
(*H*) 0.102 | 1.51 74.0
|
m = 2000 pseudo-random numbers
F -8S
a) D max I mF l
n 0<aEFm.<.1 m
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Figure caption

Fig. 1. " = Log-normal distribution
* Log-normal density
A Density of the pseudo-random numbers (n = 6)
- Histogram of the pseudo-random numbers (m = 9000, n = 6)
Dashed area: difference between the random histogram and the
exact histogram (i.e. each bin is the value of the integral of

the density in the bin).
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