Skip to main content
Log in

The region approach for computing relative neighbourhood graphs in the Lp metric

Bereiche zur Berechnung von relativen Nachbarschaftsgraphen in der Lp-Metrik

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The following geometrical proximity concepts are discussed: relative closeness and geographic closeness. Consider a setV={v 1,v 2, ...,v n } of distinct points in atwo-dimensional space. The pointv j is said to be arelative neighbour ofv i ifd p (v i ,v j )≤max{d p (v j ,v k ),d p (v j ,v k )} for allv k V, whered p denotes the distance in theL p metric, 1≤p≤∞. After dividing the space around the pointv i into eight sectors (regions) of equal size, a closest point tov i in some region is called anoctant (region, orgeographic) neighbour ofv i. For anyL p metric, a relative neighbour ofv i is always an octant neighbour in some region atv i. This gives a direct method for computing all relative neighbours, i.e. for establishing therelative neighbourhood graph ofV. For every pointv i ofV, first search for the octant neighbours ofv i in each region, and then for each octant neighbourv j found check whether the pointv j is also a relative neighbour ofv i. In theL p metric, 1<p<∞, the total number of octant neighbours is shown to be θ(n) for any set ofn points; hence, even a straightforward implementation of the above method runs in θn 2) time. In theL 1 andL metrics the method can be refined to a θ(n logn+m) algorithm, wherem is the number of relative neighbours in the output,n-1≤mn(n-1). TheL 1 (L ) algorithm is optimal within a constant factor.

Zusammenfassung

Folgende Konzepte für geometrische Nähe werden diskutiert: relative Nähe und geographische Nähe. SeiV={v 1, ...,v n } eine Menge von Punkten eines zweidimensionalen Raumes. Ein Punktv j heißt relativer Nachbar vonv i, fallsd p (v i ,v j )≤max {d p (v i ,v k ),d p (v j ,v k )} für allev kV, wobeid p den Abstand in derL p-Metrik bezeichnet, 1≤p≤∞. Nach Unterteilung des Raumes umv i in acht Sektoren (Bereiche) gleicher Größe heißt ein nächster Punkt vonv i in einem Bereich ein Oktan-(Bereichs-oder geographischer) Nachbar vonv i. Für jedeL p-Metrik ist ein relativer Nachbar vonv i auch immer ein Oktant-Nachbar in irgendeinem Bereich umv i. Dies leifert eine direkte Methode zur Berechnung aller relativen Nachbarn, d.h. zur Erstellung der relativen Nachbarschaftsgraphen vonV. Für jeden Punktv i vonV werden zuerst die Oktant-Nachbarn vonv j in jedem Bereich gesucht, dann wird für jeden gefundenen Oktant-Nachbarnv j geprüft, obv j auch ein relativer Nachbar vonv i ist. Er wird gezeigt, daß in derL p-Metrik, 1<p<∞, die Gesamtanzahl der Oktant-Nachbarn θ (n) ist für jede Menge mitn Punkten; daher läuft auch eine nicht optimierte Implementierung der oben beschriebenen Methode in θ(n 2) Zeit. In derL 1 undL Metrik kann die Methode zu einem θ (n logn+m) Algorithmus verfeinert werden, wobeim die Anzahl der relativen Nachbarn des Ergebnisses ist,n-1≤mn(n-1). DerL 1 (L )-Algorithmus ist optimal bis auf einen konstanten Faktor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentley, J. L., Friedman, J. H.: Data structures for range searching. Comput. Surveys11, 397–405 (1979).

    Google Scholar 

  2. Bentley, J. L., Maurer, H. A.: Efficient worst-case data structures for range searching. Acta Inform.13, 155–168 (1980).

    Google Scholar 

  3. Bentley, J. L., Weide, B. W., Yao, A. C.: Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Software6, 563–580 (1980).

    Google Scholar 

  4. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput.15, 703–724 (1986).

    Google Scholar 

  5. Coppersmith, D., Lee, D. T., Wong, C. K.: An elementary proof of nonexistence of isometries betweenl k p andl k q . IBM J. Res. Develop.23, 696–699 (1979).

    Google Scholar 

  6. Edelsbrunner, H., Overmars, M. H.: Batched dynamic solutions to decomposable searching problems. J. Algorithms6, 515–542 (1985).

    Google Scholar 

  7. Gabow, H. N., Bentley, J. L., Tarjan, R. E.: Scaling and related techniques for geometry problems. Proc. 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 135–143.

  8. Guibas, L. J., Stolfi, J.: On computing all north-east nearest neighbors in theL 1 metric. Inform. Process. Lett.17, 219–223 (1983).

    Google Scholar 

  9. Jaromczyk, J., Kowaluk, M.: A note on relative neighbourhood graphs. Proc. 3rd Annual Symposium on Computational Geometry, 1987, pp. 233–241.

  10. Katajainen, J.: Bucketing and Filtering in Computational Geometry. Report A 46, Department of Computer Science, University of Turku, Turku, Finland, 1987.

    Google Scholar 

  11. Katajainen, J., Nevalainen, O.: Computing relative neighbourhood graphs in the plane. Pattern Recognition19, 221–228 (1986).

    Google Scholar 

  12. Katajainen, J., Nevalainen, O.: An almost naive algorithm for finding relative neighbourhood graphs inL p metrics. Informatique Théorique et Applications/Theoretical Informatics and Applications21, 199–215 (1987).

    Google Scholar 

  13. Katajainen, J., Nevalainen, O., Teuhola, J.: A linear expected-time algorithm for computing planar relative neighbourhood graphs. Inform. Process. Lett.25, 77–86 (1987).

    Google Scholar 

  14. Lee, D. T.: Two-dimensional Voronoi diagrams in theL p metric. J. Assoc. Comput. Mach.27, 604–618 (1980).

    Google Scholar 

  15. Lee, D. T.: Relative neighborhood graphs in theL 1-metric. Pattern Recognition18, 327–332 (1985).

    Google Scholar 

  16. O'Rourke, J.: Computing the relative neighborhood graph in theL 1 andL metrics. Pattern Recognition15, 189–192 (1982).

    Google Scholar 

  17. Overmars, M. H.: The Design of Dynamic Data Structures. Lecture Notes in Computer Science 156. Heidelberg: Springer-Verlag 1983.

    Google Scholar 

  18. Preparata, F. P., Shamos, M. I.: Computational Geometry: An Introduction. Heidelberg: Springer-Verlag 1985.

    Google Scholar 

  19. Supowit, K. J.: The relative neighborhood graph with an application to minimum spanning trees. J. Assoc. Comput. Mach.30, 428–448 (1983).

    Google Scholar 

  20. Toussaint, G. T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition12, 261–268 (1980).

    Google Scholar 

  21. Toussaint, G. T.: Pattern recognition and geometrical complexity. Proc. 5th International Conference on Pattern Recognition, 1980, pp. 1324–1347.

  22. Toussaint, G. T.: Decomposing a simple polygon with the relative neighborhood graph. Proc. 18th Annual Allerton Conference on Communication, Control, and Computing, 1980, pp. 20–28.

  23. Toussaint, G. T.: Comment on “Algorithms for computing relative neighbourhood graph”. Electron Lett.16, 860–861 (1980).

    Google Scholar 

  24. Toussaint, G. T., Bhattacharya, B. K., Poulsen, R. S.: The application of Voronoi diagrams to nonparametric decision rules. Proc. Computer Science and Statistics: 16th Symposium on the Interface, 1984.

  25. Toussaint, G. T., Menard, R.: Fast algorithms for computing the planar relative neighborhood graph. Proc. 5th Symposium on Operations Research, 1980, pp. 425–428.

  26. Urquhart, R. B.: Algorithms for computation of relative neighbourhood graph. Electron Lett.16, 556–557.

  27. Urquhart, R. B.: Some properties of the planar Euclidean relative neighbourhood graph. Pattern Recognition Lett.1, 317–322 (1983).

    Google Scholar 

  28. Urquhart, R. B.: Some New Techniques for Pattern Recognition Research and Lung Sound Signal Analysis. Ph. D. Thesis, Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, Scotland, 1983.

    Google Scholar 

  29. Willard, D. E.: New data structures for orthogonal range queries. SIAM J. Comput.14, 232–253 (1985).

    Google Scholar 

  30. Yao, A. C.: On constructing minimum spanning trees ink-dimensional spaces and related problems. SIAM J. Comput.11, 721–736 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katajainen, J. The region approach for computing relative neighbourhood graphs in the Lp metric. Computing 40, 147–161 (1988). https://doi.org/10.1007/BF02247943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247943

Key words

Navigation