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Abstract. We present a simple protocol for two-player secure circuit evaluation. 
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1. Introduction 

This pape r  describes a p ro tocol  for two-p l aye r  secure circuit  evaluation. We think 
of p layer  C as a compute r  that  runs a secret p r o g r a m  for f and  player  D as ano the r  
compu te r  with some confidential  d a t a  x. Assume tha t  D wishes to compute  f ( x )  but  
does  not  have an a lgor i thm for f ,  and  tha t  C is will ing to let D use his a lgor i thm 
but  does not  want  to reveal it. Al ternat ively ,  assume that  C has an a lgor i thm,  and 
poss ib ly  some confidential  da t a  as well, bu t  needs  D ' s  confident ia l  da t a  in o rder  to 
per form the computa t ion .  The p ro toco l  enables  C and  D to coopera te  in the 
c o m p u t a t i o n  o f f ( x )  while D conceals  her  d a t a  x f rom C and  C conceals  his circuit  
for f f rom D; in fact, the circuit is h idden  from D in an  in format ion- theore t i c  sense. 

F o r  example ,  assume that  C is a t ime-shar ing  c o m p u t e r  and  that  D is one of C's  
users. Typical ly ,  when D wants  to log in, she submits  a name  and a password,  and  
C runs a p r o g r a m  that  checks whether  they are  correct .  Of  course,  C does not  have 
to divulge his p rogram.  Our  p r o t o c o l  p rov ides  a way for D to log in wi thout  
reveal ing her  name  or  her password.  

The  p ro toco l  tha t  we present is very simple.  I t  a l lows p layer  C to hide his circuit  
in the in format ion- theore t ic  sense and  p l aye r  D to encrypt  her inputs  under  a 
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complexity-theoretic assumption. Our  protocol uses the technique of hiding infor- 
mation from an oracle that was defined in our joint  work with Kilian [AFK].  
Specifically, we show how a function that is encryptable, in the sense of [AFK],  can 
be used as a building block in a protocol for secure circuit evaluation. We also show 
how hiding and encryption can be traded off and that it is impossible, in a two-player 
protocol, for both players to accomplish hiding. Our  basic protocol could be 
extended to work for p players. Because the extended protocol would be complex, 
and because our basic technique is illustrated by the two-player case, we do not 
present this extension. 

Secure circuit evaluation was first studied by Yao [Y2]. Since then, many re- 
searchers have studied it and related problems, in various models using different 
techniques [BGW],  [CCD],  [CDG] ,  [GHY1] ,  [ G M W ] ,  FH], [K],  [Y3]. Compar-  
isons of previously published protocols for secure circuit evaluation and related 
problems appear  in, e.g., [CDG]  and [H].  Before presenting our scheme, we would 
like to draw attention to the protocol of [CDG] ,  which is the one that resembles 
our most closely (although it was derived independently). In [CDG] ,  Chaum et al. 
also give a circuit-evaluation protocol that allows one player to hide his secrets 
unconditionally; they use a technique called blinding, which is similar to what is 
called hiding information from an oracle in [AFK].  z The protocol in [ C D G ]  is 
more complex than the one we present, but it also achieves more, e.g., it is a p-player 
protocol in which each player's secrets are protected against collusion by the other 
p - l .  

In Section 2 we present our protocol, after reviewing an essential ingredient from 
[AFK].  In Section 3 we give our definitions of the terms "hiding" and "encryption" 
and provide proofs of the security properties of the protocol. Section 4 discusses 
what types of cheating by players C and D can be prevented. Finally, two open 
problems are stated in Section 5. 

2. The Protocol 

As a preliminary, we review one of the results in [AFK] .  3 
The quadratic residuosity function takes two arguments, an integer k of the form 

p- q, where p and q are distinct primes, approximately the same size, congruent to 
3 rood 4, and an integer u in the set Z~" [ + 1 J - - the  integers relatively prime to k with 
Jacobi symbol 1. (We can define the quadratic residuosity of a broader class of pairs 

2 The term "hiding" is also used in [CDG], but there it means something similar to what we mean by 
the term "encryption." 

3 The scenario considered in [AFK] is one in which player A wishes to know f(x) but lacks the 
computational resources to compute f. She wants to query an infinitely powerful oracle B and obtain 
f(x) while hiding x from B. Examples are provided of functions for which it is possible to hide some 
important information about x, but the main result in [AFK] is negative: A cannot obtain f(x) while 
revealing only Ixl for any f that is NP-hard. In this paper we consider a more popular scenario, namely 
one in which the computation of f requires possession of secret algorithms or data, rather than oracular 
power. 
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of integers, but the increased generality is not needed here.) The value r(u, k) is 1 if 
there is an integer a in Z* l- + 1] such that a 2 - u mod k, and it is 0 otherwise. 

In [AFK] we discussed the following scheme for computing the quadratic resid- 
uosity function with secret data. To conceal the instance (u, k),  the player chooses 
b from Z* and c from {0, 1}, both according to uniform distributions, and computes 
v = u. b 2. ( -  1) c rood k. Informally, we often denote v by E(u). The new instance is 
(v, k), and the key is the pair (b, c). Let e = r(u, k) and e' = r(v, k). Then, to decode, 
that is, to compute e from e', just let e equal e' + c mod 2. We denote the decoded 
answer by F(e'). Correctness follows from the facts that u. v is a residue mod k if 
and only if both u and v are residues or neither is a residue and that - 1 is a quadratic 
nonresidue if k is of the specified form. Only k needs to be known for all the 
operations to be feasible in polynomial time. We gave a simple proof in [AFK] that 
this scheme for encoding instances of the quadratic residuosity problem allows the 
encoder to obtain r(u, k) without revealing anything about u, in an information- 
theoretic sense-- that  is, while hiding u. 

This technique for consulting an oracle with no information transfer is a building 
block in our protocol for secure circuit evaluation. We also use a standard technique 
for encrypting single bits: given a bit b, it is easy to generate a y such that r(y, k) = b 
[GM].  Informally, we often denote y by Y(b). 

In our current setting, player D has the input x, which can be written x l - . .  x, in 
binary. Player C has a circuit to compute f on inputs of length n. In the initial phase 
of the protocol, C sends to D the number a of AND gates in his circuit. Player D 
then generates k = p- q, where p and q are distinct primes, approximately the same 
size, congruent to 3 rood 4, and large enough with respect to a, in a sense that we 
make precise in the next section. Next, D encrypts her input bits xl . . . . .  x,, using 
modulus k as explained above. Finally, D sends k and Y(xl)  . . . . .  Y(xn) to C. 

We assume without loss of generality that player C's circuit consists of unary 
NOT gates and binary AND gates and that it has no consecutive N O T  gates. In 
the protocol, C simulates the evaluation of the circuit on D's input. Instead of bits 
bi, C will have integers of the form Y(bi) that represent bits. We must now show how 
to simulate the logical operations NOT and AND using this scheme for representing 
bits. 

When C must compute the NOT of a bit b, represented by its encryption Y(b), 
he computes Y(b). Because p ~ q _= 3 mod 4, - 1 is a quadratic nonresidue mod k, 
and thus C does not need to know b: Y(b) - ( -  1). Y(b) rood k. 

To compute the AND of two bits b and b', represented by their encryptions Y(b) 
and Y(b'), C requires the cooperation of D. Player C transforms b and b' further, 
to obtain E(Y(b)) and E(Y(b')), which he sends to D. Then D computes be = 
r(E(Y(b)), k), b£ = r(E(Y(b')), k), which she can do efficiently, because she knows p 
and q. Le t  b3, b2, bx, and b o equal (be ^ b.'), (be ^ b~), (be ^ b'_), and (be ^ b~), 
respectively. Player D returns (Y(ba), Y(b2), Y(bl), Y(bo)). Since C knows whether 
b = be and whether b' = b~, he can easily obtain the encrypted conjunction of Y(b) 
and Y(b') from the message: it is Y(b 3) if both equations hold, Y(b2) if only the first 
equation holds, Y(bl ) if only the second equation holds, and Y(b o) if neither equation 
holds. 

The players follow one of two versions of the final phase of the protocol, 



M. Abadi and J. Feigenbaum 

depending upon which of them is supposed to receive the answer f(x). In Case 1, 
C retains the answer. At the end of the gate-simulation phase, C has the encrypted 
bit Y(f(x)). He encodes this bit further by computing E(Y(f(x))), which he then 
sends to D. Player D returns the residuosity bit r(E(Y(f(x))), k). Player C decodes 
the bit to obtain f(x). In Case 2, in which player D receives the answer, C sends 
to D the encrypted bit Y(1). Y(f(x)), and D decrypts to obtain the residuosity bit 
r(Y(1)- Y(f(x)), k) which is, by definition, f(x). As discussed below, in Section 3, 
C multiplies the encrypted bit Y(f(x)) by a random square Y(1) so that D does not 
learn whether the final gate of the circuit is a N O T  or an AND. 

In the following description of the protocol, the notation "P1 ---, P2: m" means 
player P1 sends the message m to player P2. The notation "P: s" means that player 
P evaluates the statement s. 

Initial Phase 
C --+ D: The number of AND gates in his circuit. 
D: Generate k and Y(xl ) , . . . ,  Y(x,). 
D ~ C: k, Y(xl) . . . . .  Y(x,,). 

Gate-Simulation Phase 
NOT gate with input Y(b) 

C: Y(b) := ( -  1). Y(b) mod k. 
AND gate with inputs Y(b), Y(b') 

C --, D: E(Y(b)), E(Y(b')). 
D: be := r(E(Y(b)), k); b~ := r(E(Y(b')), k). 

(b 3, b2, bl, bo} := (be ^ b$, b e A b~, be n b~, -be ^ -b$). 
D ~ C: Y(b3), Y(b2), Y(bl), Y(bo). 
C: I fb  = be and b' = b$, then Y(b ^ b') := Y(b3). 

If b = be and b' # b~, then Y(b n b ' )  := Y(b2). 
I fb  # b e and b' = b~, then Y(b ^ b') := Y(bl). 
If b # be and b' # b.', then Y(b n b ' )  := Y(bo). 

Final Phase 
Case 1: C keeps the answer 

C -+ D: E(Y(f(x))). 
D: b := r(E(Y(f(x))), k). 
D ~ C : b .  
C: f(x) := F(b). 

Case 2: D receives the answer 
C ~ D: Y(1)" r(f(x)). 
D: f(x) := r(Y(1)" g(f(x)), k). 

It is clear from this description that f(x) is computed correctly. In Case 1, the fact 
that C computes f(x) follows from the properties of the decoding function F; see 
Theorem 1 of [AFK]. In Case 2, if f(x) = 1, then the message Y(1).Y(f(x)) is a 
quadratic residue mod k, and, if f(x) = 0, then Y(1)- Y(f(x)) is a quadratic non- 
residue. Thus, D computes f(x). 

It is also clear from this description that the distinction between "data" and 
"circuits" is unnecessary. If C has the ability to hide a circuit, then he can also hide 
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some private data, simple by "hardwiring" it into the circuit. Conversely, in proto- 
cols in which C has the ability to hide data, he can also hide a circuit through a 
detour: C can run the protocol, take the circuit for f to be a universal circuit, and 
use an encoding of the circuit he wants to hide as input. 

3. Security Properties 

Let us first clarify the difference between hiding and encryption. For a general 
discussion of hiding, see [AFK] and [BF]; here we only discuss a special case that 
pertains to two-player protocols. 

Let Po and P1 be the two players. Player Pj starts each execution of the protocol 
with a secret sj (which in this paper is either the circuit or the input data) and, during 
the course of the execution, uses a sequence gj of coin tosses. We say that player P~ 
hides a piece of information i if the sequence of messages that Pj sends during the 
execution is independent of i, st-j, and c-~_j. Similarly, Pj hides everything about i 
except l if, given l, the sequence of messages sent by Pj is independent of i, st_j, and 
ci_ j. For example, P1 may hide everything about sj except [sj[ or may hide one 
variable in the pair (uj, vj) and not the other. Note that our definition allows l to 
depend on information possessed by both Pj and P~_j. 

Often the sequence of messages sent by P is dependent on the piece of information 
i, and thus i is not hidden, but this dependence is hard to detect and to exploit in 
polynomial time. Let Q be another player who interacts with P in a two-party 
protocol, and, at the end of the protocol, performs a random-polynomial-time 
computation and outputs a value. The sequence of messages exchanged by P and 
Q, together with the value output by Q, is called the transcript of the protocol. For 
any particular execution, the transcript and the sequence of private computations 
performed by Q is called Q's view of the protocol. Player P encrypts a piece of 
information i, except for l(i), if, for any random-polynomial-time Q* who plays the 
role of Q in the protocol, there is a random-polynomial-time simulator MQ, that, 
given l(i), can produce a distribution of views that is polynomial-time indistinguish- 
able from the real distribution produced by P and Q*. Intuitively, whatever knowl- 
edge Q* extracts from the transcript can also be obtained by MQ. without looking 
at the transcript. See, for example, [GM], [GMR], [GMW],  [HI and [YI] for a 
discussion of polynomial-time indistinguishability and minimum-knowledge proof 
systems. 

Our protocol uses both hiding and encryption. In this section, we show that C 
hides everything about his circuit, except the number of AND gates and the modulus 
k, and that D encrypts x, except for Ixl. We also show that there is no two-player 
protocol in which both players hide everything except one bit (such as the functional 
value f(x)). 

Before presenting our proofs, we address the question of why it makes sense to 
construct a protocol that uses both hiding and encryption. In other words, if the 
Quadratic Residuosity Assumption (QRA) is believed (and in fact relied upon), then 
why bother to hide some secrets unconditionally? First, as demonstrated by our 
protocol and that of [CDG], hiding can be conceptually simpler than encryption, 
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and it is not necessarily more expensive in terms of computational resources. 
Second, there may be a disparity in power among players. We may want to treat 
only certain players as though they could crack cryptosystems based on intrac- 
tability assumptions. Finally, there may be a disparity in the sensitivity of different 
secrets. For  instance, some data are so ephemeral that, by the time they are 
decrypted, they are no longer valuable. On the other hand, a circuit (or a secret 
algorithm) may be used repeatedly over a long period. 

For  the remainder of this section, a is the number of AND gates in C's circuit and 
n = ]xr is the number of input bits. 

Lemma 1. During the initial and gate-simulation phases, C hides everything about 
his circuit except a and k. 

Proof. The sequence of messages sent from C to D during the first two phases of 
the protocol is of the form 

(a,  Yl ,  Y2 . . . . .  Y2a-1, Yza), 

where each Yl is a member of Z* [ + 1]; the yi's are the encoded integers E(Y(b)). The 
distribution of the subsequence Yx, Y2 . . . . .  Y2a is uniform on (Z~ [-+ 1] )  2a and, given 
a and k, the subsequence is independent of the circuit, the input x, and the coin 
tosses of D. This follows immediately from the structure of the protocol and the fact 
that the encoding function E hides the integer Y(b) rAFK, Theorem 1-]. []  

In the protocol, D's data are not hidden from C, but they are encrypted. As usual, 
the proof of polynomial-time indistinguishability depends on a hypothesis about 
the intractability of a computational problem. Here, the hypothesis we use is the 
(QRA). Intuitively, the QRA says that r(u, k) cannot be computed efficiently, where 
k = p- q, the primes p and q are distinct, approximately the same size, and congruent 
to 3 mod 4, and u e Z~'[+ 1]. Various versions of the QRA have been used exten- 
sively in recent crytographic literature; some attention is devoted in [Y1] to the 
relative strengths of the different versions. In what follows, we assume that the 
pairs (u, k) have the specified form and refer to the computation of r(u, k) as the 
Quadratic Residuosity Problem (QRP); we use the term "family of polynomial-sized 
circuits" as it is used throughout the related literature (see, e.g., [HI for details). 

QRA. Let {Cm} be an arbitrary family of polynomial-sized circuits with a source 
of random bits. Let P(C,,) denote the probability that C,, outputs the correct bit 
r(u, k) when given as input a random QRP instance (u, k) of length m. Then, for 
any positive constant d, the inequality 

1 1 
P(C. )  < -i + 

holds for all sufficiently large m. 

Some of the literature states this assumption by saying that the QRP gives rise to 
a hard-bit family. 
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Lemma 2. Assume that ]k] > max(a, n). Then, under the QRA, D encrypts x, except 
for n, during the initial and gate-simulation phase of the protocol. 

Proof. We show that the distribution of transcripts produced by D and any ran- 
dom-polynomial-time C* can be simulated by a random-polynomial-time machine 
Mc, with input n. The simulator produces sequences of the form 

(a, k, Yl . . . . .  y., zl, z2, Y,+l, Y.+2, Y,+3, Y,+4 . . . . .  

Z2a-1, Z2a, Yn+4a-3, Yn+4a-2, Yn+4a-t, Yn+4a, O) 

according to the following distribution: 

(1) a is chosen by Mc. exactly as it was chosen by C*, 
(2) k is chosen as D chooses it in the initial phase, 
(3) the subsequence (Yl . . . . .  y . )  is drawn uniformly from (Z* [ +  1])", 
(4) each of the subsequence (Y,+4i+1, Yn+4i+2, Yn+4i+3, Yn+4i+4), 0 ~ i __< a -- 1, is 

drawn independently from the uniform distribution on (Z* [ + 1])4, 
(5) each of the subsequences (z21+1, z2i+2), 0 < i < a - 1, is computed exactly as 

C* compute his ith message of the gate-simulation phase, given the history 
(a, k, Yl . . . . .  Y.+4.i), and 

(6) o is computed exactly as C* computes his output. (Note that o is the output 
of C*, not the output of the protocol, as computed in the final phase.) 

The QRA guarantees that the distribution of subsequences (Yl . . . . .  Y,, Y,÷I . . . . .  
Yn+4,) is polynomial-time indistinguishable from the distribution really computed 
by D. Similarly, under the QRA, the results of the computations performed with the 
simulated inputs are indistinguishable from those of the computations with the real 
inputs, because C* is limited to random polynomial time. Together, these obser- 
vations imply that the views produced by Mc. are polynomial-time indistinguishable 
from the real views produced by C* and D. [] 

In practice, during the second step of the initial phase, D would choose p and q 
large enough so that their product k could not be factored in a reasonable amount 
of time using the best-known factoring algorithms. For the purpose of proving that 
the QRA implies the secrecy of D's input bits, we need to assume that the size of 
the modulus k is "big enough" with respect to a and n; the requirement that 
[k[ > max(a, n) suffices. It would also suffice to require that [k] be "polynomially re- 
lated" to a and n; we chose the statement [kl > max(a, n) for simplicity and clarity. 

We have the following results about the information communicated during the 
final phase. 

Lemma 3. In Case 1 of the final phase, C hides everything about his circuit except 
k, and D hides everything about x except k and f(x). 

Proof. The pair of messages exchanged in Case 1 is of the form (y, r(y, k)). The 
distribution of y is unifor:n on Z * [ +  1] and, given k, is independent of the circuit, 
x, and the coin tosses of D. Given k, the one-bit message r(y, k) that D sends still 
depends on the coin tosses of C, in the following way: half of the possible coin-toss 
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sequences correspond to f(x) = r(y, k) and half to f(x) = 1 - r(y, k). However, 
given k and f(x), the message r(y, k) is independent of x, the circuit, and C's coin 
tosses. [ ]  

We omit the proof of Lemma 4, because it is very similar to that of Lemma 3. 

Lemma 4. In Case 2 of the final phase, D (obviously) hides everything about x, and 
C hides everything about his circuit except k and f(x). 

In Case 2, C multiplies the encrypted output of the circuit's final gate by a random 
square so that D does not learn whether the final gate is a N O T or an AND. Assume 
that C did not multiply by a random square but instead sent the output of the final 
gate, that is, Y(f(x)). If the final gate is a NOT,  then Y(f(x)) is the additive inverse, 
mod k, of one of the elements of some quadruple that D sent during the protocol. 
If the final gate is an AND, then Y(f(x)) is itself one of the elements of the last 
quadruple that D sent. The probability that Y(f(x)) is both of these is exponentially 
small; thus translation by a random square is necessary in order to conceal whether 
the final gate is a NOT. 

The security properties proven in Lemmas 1-4 are summarized in the following 
theorem. 

Theorem 1. During the initial and gate-simulation phases of the protocol, C hides 
everything except the modulus k and the number of AND gates in the circuit, and 
(under QRA) D encrypts the input except for its size. In Case 1 of the final phase, C 
hides everything except k and D hides everything except k and f(x). In Case 2, D hides 
everything and C hides everything except k and f(x). 

As we remarked in Section 2, it is possible to transform the protocol so that the 
circuit is encrypted and the data are hidden. To accomplish this, C would use a 
universal circuit U,, and modify U, so that the bits o fx  are hardwired into it. Player 
D would supply a circuit for f as encrypted input. 

Both versions of our protocol (the one that hides the circuit while encrypting the 
data and the one that hides the data while encrypting the circuit) have the property 
that exactly one bit of information is exchanged; from it, one of the parties computes 
the value f(x). The encoding of the bit exchanged is a function of the circuit, the 
input, and the random coin tosses of the parties. Is it possible to construct a 
two-player protocol that hides everything while exchanging the one bit f (x)  (as it is 
in the multiplayer case [BGW],  [-CCD])? Intuitively, the answer must be "no," 
because the player who sends to the other an encoding of the one bit f (x)  needs 
some information in order to compute it. Our next result gives a very simple, formal 
proof that such protocols do not exist. 

Theorem 2. No protocol that hides all secrets and communicates only one bit of 
information can compute f(x)  accurately for all f and all x. 
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Proofi Assume that such a protocol did exist. Then it would have to work for 
functions of two arguments, one owned by C and hardwired into the circuit, and 
one owned by D. Without loss of generality, we may assume that it is D who sends 
the one bit that is communicated. We show that there are inputs on which C 
computes the wrong answer. The crucial fact is that D must decide whether to send 
a 0 or a 1 based only on her input and on the number  a of A N D  gates in C's circuit. 

Consider the boolean function x = w, where x is D's input, w is C's input, and 
[xl = [w[ = n. Assume without loss of generality that x I and x2 are distinct input 
strings of length n for which there is a positive probabili ty that D communicates a 
0 for functions with a AND gates. There are runs of the protocol on which C receives 
the same information for D's inputs x~ and x 2, and thus there is a positive prob- 
ability that he computes the wrong answer for at least one input when w -- x 1. 

This example of the string-equality function shows that there is a positive prob- 
ability that C computes a wrong answer for at least one input. We now show that, 
in fact, if D communicates only one bit of information, then there are functions for 
which there is a substantial probability that C computes the wrong answer on many 
inputs. For  this proof, we consider the boolean function x >_ w, where x and w are 
as above. Once again, fix a number n of input bits and a number a of AND gates. 
Let S be the set of inputs x for which the probabili ty that D sends a 0 is at least 1/2. 
We can assume without loss of generality that IS[ > 2 "-~ and that the probability 
that C outputs 0, given that D sends 0, is at least 1/2. Let w be a string for which 
there are at least 2 "-2 elements of S that are greater than or equal to w and at least 
2 "-2 elements of S that are less than w. Call these sets $I and $2, respectively. For 
each x ~ S I, f ( x )  = 1, and, for each x E $2, f ( x )  = 0. Thus, for at least 1/4 of all 
possible values ofx  (those in S~), the probabili ty that C computes the wrong answer 
on any particular run of the protocol is 

P(C outputs 0) > P(D sends 0 and C outputs 0) 

= P(D sends 0)- P(C outputs 01D sends 0) 

> 1/4. []  

Note that the "information-theoretic" security achieved by the protocols in 
[BGW] and ['CCD] does not contradict Theorem 2. The results in [BGW] and 
[CCD]  apply only when the number p of players is strictly greater than two and 
the number of cheaters is strictly less than p/2; our Theorem 2 applies only to the 
case p = 2. 

4. Cheating 

In this section we address the question of what happens when either C or D tries to 
cheat. It  is common to provide mechanisms to avoid or to detect cheating in 
protocols for secure computation, e.g., to turn protocols into "validated protocols" 
in which players use zero-knowledge subprotocols to prove that they have acted 
honestly (e.g., [GHY1],  [GMW]).  However, the issue of cheating is different in a 
setting in which some secrets are hidden rather than encrypted. 
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How might C try to cheat? He could try to choose the sequence of AND 
computations that he requests so as to compromise D's data rather than to compute 
f(x). However, under the QRA, everything that she sends him during the gate- 
simulation phase of the protocol is something that he could generate himself-- 
quadruples of elements ofZ*l-+ 1], three of which are nonresidues and one of which 
is a residue. In Case 1 of the final phase, she "opens" one bit, allowing him to learn 
f(x). Thus, by using a different circuit, he could obtain a different boolean function 
of x, but nothing else. Because Case 1 of the final phase involves the opening of one 
bit, C could, instead, cheat by obtaining the value r(u, k) for one arbitrary u. To 
prevent this, a protocol can be used that requires C to "commit" to one circuit and 
"prove" that he simulated the circuit to which he committed himself; see, e.g., 
[CDG]  for a good discussion of this issue. 

How might D try to cheat? We cannot accuse D of sending incorrect encrypted 
bits, because x is D's private data. Player D could deviate from the protocol by 
sending wrong answers when C asks her for the AND of two encrypted bits or by 
sending the wrong residuosity bit in Case 1 of the final phase. This could cause C 
to compute a wrong answer, but it would not compromise the privacy of C's secrets. 
Player C is capable of hiding; that is, none of the messages that he sends to D in the 
course of the computation conveys any information at all, even when D leads the 
computation astray. Therefore, D cannot cheat to "decrypt" C's messages and learn 
something she is not supposed to know. 

In any case, D can be required to prove that she computes the (encrypted) output 
of the AND gates correctly and that she sends the correct residuosity bit in the 
final phase. The set of tuples (k, Y(b), Y(b'), Y(b3), Y(b2), Y(bi), Y(bo)> that satisfy 
the following conditions is an NP  set: k = p.q; Y(b) and Y(b') are legal encryp- 
duns of bits; and (Y(b3), Y(b2), Y(bl), Y(bo)) is a legal reply from D to C's query 
about the AND of b and b'. Using trivial modifications of the interactive proof 
systems in [BCC] and [GHY2],  D can prove that her replies are correct with a zero- 
knowledge subprotocol. (More efficient subprotocol~ can be constructed, using 
the special properties of quadratic residues; we omit discussion of efficiency, because 
our goal is simply to point out that this type of cheating can be thwarted.) Simi- 
larly, in the final phase, D can prove that she knows a certificate of the residuosity 
of E(Y(f(x))); that is, if b = 1, D must prove that she knows a number u such that 
u 2 = E(Y(f(x))) mod k, and, if b = 0, she must prove that she knows a number u 
such that ( -  1). u 2 ~ "  E(Y(f(x))) mod k. 

5. Open Problems 

Our protocol uses the quadratic residuosity predicate r(u, k) as a building block. No 
communication is required for C to compute the negation of an encrypted bit, but 
communication is required for C to compute a conjunction. Can C, by computing 
some function of Y(b) and Y(b'), take the AND of two encrypted bits without asking 
for help from D? Brassard and Crrpeau raised a similar question in I'BC], where 
they used a circuit-evaluation protocol based on "permuted truth tables" in their 
work on zero-knowledge proof systems. 
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The quadratic residuosity predicate is not the only one that can be used as a 
building block in a protocol for secure circuit evaluation. To be usable as a building 
block, a boolean function must be encryptable (in the sense of [AFK]), be comput- 
able by player D (perhaps with knowledge of a secret key), and not be computable 
by player C. Is it possible to design a better protocol using a different building block? 
More specifically, we would like to reduce the number of rounds of communication 
needed by each run of the protocol, or, alternatively, to prove a nontrivial lower 
bound on the number of rounds needed for secure circuit evaluation. 
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