
J. Cryptology (1990) 2:1-12 Journal of Cryptology
© 1990 International Association for
Cryptologic Research

Secure Circuit Evaluation 1

A Protocol Based on Hiding Information from an Oracle

Martin Abadi
DEC Systems Research Center, 130 Lytton Avenue,

Palo Alto, CA 94301, U.S.A.

Joan Feigenbaum
AT&T Bell Laboratories, 600 Mountain Avenue,

Murray Hill, NJ 07974, U.S.A.

Abstract. We present a simple protocol for two-player secure circuit evaluation.
The protocol enables players C and D to cooperate in the computation off(x) while
D conceals her data x from C and C conceals his circuit for f from D. The protocol
is based on the technique of hiding information from an oracle [AFK].

Key words. Secure circuit evaluation, Two-party protocols, Hiding information
from an oracle.

1. Introduction

This pape r describes a p ro tocol for two-p l aye r secure circuit evaluation. We think
of p layer C as a compute r that runs a secret p r o g r a m for f and player D as ano the r
compu te r with some confidential d a t a x. Assume tha t D wishes to compute f (x) but
does not have an a lgor i thm for f , and tha t C is will ing to let D use his a lgor i thm
but does not want to reveal it. Al ternat ively , assume that C has an a lgor i thm, and
poss ib ly some confidential da t a as well, bu t needs D ' s confident ia l da t a in o rder to
per form the computa t ion . The p ro toco l enables C and D to coopera te in the
c o m p u t a t i o n o f f (x) while D conceals her d a t a x f rom C and C conceals his circuit
for f f rom D; in fact, the circuit is h idden from D in an in format ion- theore t i c sense.

F o r example , assume that C is a t ime-shar ing c o m p u t e r and that D is one of C's
users. Typical ly , when D wants to log in, she submits a name and a password, and
C runs a p r o g r a m that checks whether they are correct . Of course, C does not have
to divulge his p rogram. Our p r o t o c o l p rov ides a way for D to log in wi thout
reveal ing her name or her password.

The p ro toco l tha t we present is very simple. I t a l lows p layer C to hide his circuit
in the in format ion- theore t ic sense and p l aye r D to encrypt her inputs under a

Date received: January 26, 1988. Date revised: November 20, 1989. An extended abstract of this
paper appeared in the Proceedings of the Fifth Annual Symposium on Theoretical Aspects of Computer
Science [AF].

M. Abadi and J. Feigenbaum

complexity-theoretic assumption. Our protocol uses the technique of hiding infor-
mation from an oracle that was defined in our joint work with Kilian [AFK].
Specifically, we show how a function that is encryptable, in the sense of [AFK], can
be used as a building block in a protocol for secure circuit evaluation. We also show
how hiding and encryption can be traded off and that it is impossible, in a two-player
protocol, for both players to accomplish hiding. Our basic protocol could be
extended to work for p players. Because the extended protocol would be complex,
and because our basic technique is illustrated by the two-player case, we do not
present this extension.

Secure circuit evaluation was first studied by Yao [Y2]. Since then, many re-
searchers have studied it and related problems, in various models using different
techniques [BGW], [CCD], [CDG] , [GHY1] , [G M W] , FH], [K], [Y3]. Compar-
isons of previously published protocols for secure circuit evaluation and related
problems appear in, e.g., [CDG] and [H]. Before presenting our scheme, we would
like to draw attention to the protocol of [CDG] , which is the one that resembles
our most closely (although it was derived independently). In [CDG] , Chaum et al.
also give a circuit-evaluation protocol that allows one player to hide his secrets
unconditionally; they use a technique called blinding, which is similar to what is
called hiding information from an oracle in [AFK]. z The protocol in [C D G] is
more complex than the one we present, but it also achieves more, e.g., it is a p-player
protocol in which each player's secrets are protected against collusion by the other
p - l .

In Section 2 we present our protocol, after reviewing an essential ingredient from
[AFK]. In Section 3 we give our definitions of the terms "hiding" and "encryption"
and provide proofs of the security properties of the protocol. Section 4 discusses
what types of cheating by players C and D can be prevented. Finally, two open
problems are stated in Section 5.

2. The Protocol

As a preliminary, we review one of the results in [AFK] . 3
The quadratic residuosity function takes two arguments, an integer k of the form

p- q, where p and q are distinct primes, approximately the same size, congruent to
3 rood 4, and an integer u in the set Z~" [+ 1 J - - the integers relatively prime to k with
Jacobi symbol 1. (We can define the quadratic residuosity of a broader class of pairs

2 The term "hiding" is also used in [CDG], but there it means something similar to what we mean by
the term "encryption."

3 The scenario considered in [AFK] is one in which player A wishes to know f(x) but lacks the
computational resources to compute f. She wants to query an infinitely powerful oracle B and obtain
f(x) while hiding x from B. Examples are provided of functions for which it is possible to hide some
important information about x, but the main result in [AFK] is negative: A cannot obtain f(x) while
revealing only Ixl for any f that is NP-hard. In this paper we consider a more popular scenario, namely
one in which the computation of f requires possession of secret algorithms or data, rather than oracular
power.

Secure Circuit Evaluation

of integers, but the increased generality is not needed here.) The value r(u, k) is 1 if
there is an integer a in Z* l- + 1] such that a 2 - u mod k, and it is 0 otherwise.

In [AFK] we discussed the following scheme for computing the quadratic resid-
uosity function with secret data. To conceal the instance (u, k), the player chooses
b from Z* and c from {0, 1}, both according to uniform distributions, and computes
v = u. b 2. (- 1) c rood k. Informally, we often denote v by E(u). The new instance is
(v, k), and the key is the pair (b, c). Let e = r(u, k) and e' = r(v, k). Then, to decode,
that is, to compute e from e', just let e equal e' + c mod 2. We denote the decoded
answer by F(e'). Correctness follows from the facts that u. v is a residue mod k if
and only if both u and v are residues or neither is a residue and that - 1 is a quadratic
nonresidue if k is of the specified form. Only k needs to be known for all the
operations to be feasible in polynomial time. We gave a simple proof in [AFK] that
this scheme for encoding instances of the quadratic residuosity problem allows the
encoder to obtain r(u, k) without revealing anything about u, in an information-
theoretic sense-- that is, while hiding u.

This technique for consulting an oracle with no information transfer is a building
block in our protocol for secure circuit evaluation. We also use a standard technique
for encrypting single bits: given a bit b, it is easy to generate a y such that r(y, k) = b
[GM]. Informally, we often denote y by Y(b).

In our current setting, player D has the input x, which can be written x l - . . x, in
binary. Player C has a circuit to compute f on inputs of length n. In the initial phase
of the protocol, C sends to D the number a of AND gates in his circuit. Player D
then generates k = p- q, where p and q are distinct primes, approximately the same
size, congruent to 3 rood 4, and large enough with respect to a, in a sense that we
make precise in the next section. Next, D encrypts her input bits xl x,, using
modulus k as explained above. Finally, D sends k and Y(xl) Y(xn) to C.

We assume without loss of generality that player C's circuit consists of unary
NOT gates and binary AND gates and that it has no consecutive N O T gates. In
the protocol, C simulates the evaluation of the circuit on D's input. Instead of bits
bi, C will have integers of the form Y(bi) that represent bits. We must now show how
to simulate the logical operations NOT and AND using this scheme for representing
bits.

When C must compute the NOT of a bit b, represented by its encryption Y(b),
he computes Y(b). Because p ~ q _= 3 mod 4, - 1 is a quadratic nonresidue mod k,
and thus C does not need to know b: Y(b) - (- 1). Y(b) rood k.

To compute the AND of two bits b and b', represented by their encryptions Y(b)
and Y(b'), C requires the cooperation of D. Player C transforms b and b' further,
to obtain E(Y(b)) and E(Y(b')), which he sends to D. Then D computes be =
r(E(Y(b)), k), b£ = r(E(Y(b')), k), which she can do efficiently, because she knows p
and q. Le t b3, b2, bx, and b o equal (be ^ b.'), (be ^ b~), (be ^ b'_), and (be ^ b~),
respectively. Player D returns (Y(ba), Y(b2), Y(bl), Y(bo)). Since C knows whether
b = be and whether b' = b~, he can easily obtain the encrypted conjunction of Y(b)
and Y(b') from the message: it is Y(b 3) if both equations hold, Y(b2) if only the first
equation holds, Y(bl) if only the second equation holds, and Y(b o) if neither equation
holds.

The players follow one of two versions of the final phase of the protocol,

M. Abadi and J. Feigenbaum

depending upon which of them is supposed to receive the answer f(x). In Case 1,
C retains the answer. At the end of the gate-simulation phase, C has the encrypted
bit Y(f(x)). He encodes this bit further by computing E(Y(f(x))), which he then
sends to D. Player D returns the residuosity bit r(E(Y(f(x))), k). Player C decodes
the bit to obtain f(x). In Case 2, in which player D receives the answer, C sends
to D the encrypted bit Y(1). Y(f(x)), and D decrypts to obtain the residuosity bit
r(Y(1)- Y(f(x)), k) which is, by definition, f(x). As discussed below, in Section 3,
C multiplies the encrypted bit Y(f(x)) by a random square Y(1) so that D does not
learn whether the final gate of the circuit is a N O T or an AND.

In the following description of the protocol, the notation "P1 ---, P2: m" means
player P1 sends the message m to player P2. The notation "P: s" means that player
P evaluates the statement s.

Initial Phase
C --+ D: The number of AND gates in his circuit.
D: Generate k and Y(xl) , . . . , Y(x,).
D ~ C: k, Y(xl) Y(x,,).

Gate-Simulation Phase
NOT gate with input Y(b)

C: Y(b) := (- 1). Y(b) mod k.
AND gate with inputs Y(b), Y(b')

C --, D: E(Y(b)), E(Y(b')).
D: be := r(E(Y(b)), k); b~ := r(E(Y(b')), k).

(b 3, b2, bl, bo} := (be ^ b$, b e A b~, be n b~, -be ^ -b$).
D ~ C: Y(b3), Y(b2), Y(bl), Y(bo).
C: I fb = be and b' = b$, then Y(b ^ b') := Y(b3).

If b = be and b' # b~, then Y(b n b ') := Y(b2).
I fb # b e and b' = b~, then Y(b ^ b') := Y(bl).
If b # be and b' # b.', then Y(b n b ') := Y(bo).

Final Phase
Case 1: C keeps the answer

C -+ D: E(Y(f(x))).
D: b := r(E(Y(f(x))), k).
D ~ C : b .
C: f(x) := F(b).

Case 2: D receives the answer
C ~ D: Y(1)" r(f(x)).
D: f(x) := r(Y(1)" g(f(x)), k).

It is clear from this description that f(x) is computed correctly. In Case 1, the fact
that C computes f(x) follows from the properties of the decoding function F; see
Theorem 1 of [AFK]. In Case 2, if f(x) = 1, then the message Y(1).Y(f(x)) is a
quadratic residue mod k, and, if f(x) = 0, then Y(1)- Y(f(x)) is a quadratic non-
residue. Thus, D computes f(x).

It is also clear from this description that the distinction between "data" and
"circuits" is unnecessary. If C has the ability to hide a circuit, then he can also hide

Secure Circuit Evaluation

some private data, simple by "hardwiring" it into the circuit. Conversely, in proto-
cols in which C has the ability to hide data, he can also hide a circuit through a
detour: C can run the protocol, take the circuit for f to be a universal circuit, and
use an encoding of the circuit he wants to hide as input.

3. Security Properties

Let us first clarify the difference between hiding and encryption. For a general
discussion of hiding, see [AFK] and [BF]; here we only discuss a special case that
pertains to two-player protocols.

Let Po and P1 be the two players. Player Pj starts each execution of the protocol
with a secret sj (which in this paper is either the circuit or the input data) and, during
the course of the execution, uses a sequence gj of coin tosses. We say that player P~
hides a piece of information i if the sequence of messages that Pj sends during the
execution is independent of i, st-j, and c-~_j. Similarly, Pj hides everything about i
except l if, given l, the sequence of messages sent by Pj is independent of i, st_j, and
ci_ j. For example, P1 may hide everything about sj except [sj[or may hide one
variable in the pair (uj, vj) and not the other. Note that our definition allows l to
depend on information possessed by both Pj and P~_j.

Often the sequence of messages sent by P is dependent on the piece of information
i, and thus i is not hidden, but this dependence is hard to detect and to exploit in
polynomial time. Let Q be another player who interacts with P in a two-party
protocol, and, at the end of the protocol, performs a random-polynomial-time
computation and outputs a value. The sequence of messages exchanged by P and
Q, together with the value output by Q, is called the transcript of the protocol. For
any particular execution, the transcript and the sequence of private computations
performed by Q is called Q's view of the protocol. Player P encrypts a piece of
information i, except for l(i), if, for any random-polynomial-time Q* who plays the
role of Q in the protocol, there is a random-polynomial-time simulator MQ, that,
given l(i), can produce a distribution of views that is polynomial-time indistinguish-
able from the real distribution produced by P and Q*. Intuitively, whatever knowl-
edge Q* extracts from the transcript can also be obtained by MQ. without looking
at the transcript. See, for example, [GM], [GMR], [GMW], [HI and [YI] for a
discussion of polynomial-time indistinguishability and minimum-knowledge proof
systems.

Our protocol uses both hiding and encryption. In this section, we show that C
hides everything about his circuit, except the number of AND gates and the modulus
k, and that D encrypts x, except for Ixl. We also show that there is no two-player
protocol in which both players hide everything except one bit (such as the functional
value f(x)).

Before presenting our proofs, we address the question of why it makes sense to
construct a protocol that uses both hiding and encryption. In other words, if the
Quadratic Residuosity Assumption (QRA) is believed (and in fact relied upon), then
why bother to hide some secrets unconditionally? First, as demonstrated by our
protocol and that of [CDG], hiding can be conceptually simpler than encryption,

M. Abadi and J. Feigenbaum

and it is not necessarily more expensive in terms of computational resources.
Second, there may be a disparity in power among players. We may want to treat
only certain players as though they could crack cryptosystems based on intrac-
tability assumptions. Finally, there may be a disparity in the sensitivity of different
secrets. For instance, some data are so ephemeral that, by the time they are
decrypted, they are no longer valuable. On the other hand, a circuit (or a secret
algorithm) may be used repeatedly over a long period.

For the remainder of this section, a is the number of AND gates in C's circuit and
n =]xr is the number of input bits.

Lemma 1. During the initial and gate-simulation phases, C hides everything about
his circuit except a and k.

Proof. The sequence of messages sent from C to D during the first two phases of
the protocol is of the form

(a, Yl , Y2 Y2a-1, Yza),

where each Yl is a member of Z* [+ 1]; the yi's are the encoded integers E(Y(b)). The
distribution of the subsequence Yx, Y2 Y2a is uniform on (Z~ [-+ 1]) 2a and, given
a and k, the subsequence is independent of the circuit, the input x, and the coin
tosses of D. This follows immediately from the structure of the protocol and the fact
that the encoding function E hides the integer Y(b) rAFK, Theorem 1-]. []

In the protocol, D's data are not hidden from C, but they are encrypted. As usual,
the proof of polynomial-time indistinguishability depends on a hypothesis about
the intractability of a computational problem. Here, the hypothesis we use is the
(QRA). Intuitively, the QRA says that r(u, k) cannot be computed efficiently, where
k = p- q, the primes p and q are distinct, approximately the same size, and congruent
to 3 mod 4, and u e Z~'[+ 1]. Various versions of the QRA have been used exten-
sively in recent crytographic literature; some attention is devoted in [Y1] to the
relative strengths of the different versions. In what follows, we assume that the
pairs (u, k) have the specified form and refer to the computation of r(u, k) as the
Quadratic Residuosity Problem (QRP); we use the term "family of polynomial-sized
circuits" as it is used throughout the related literature (see, e.g., [HI for details).

QRA. Let {Cm} be an arbitrary family of polynomial-sized circuits with a source
of random bits. Let P(C,,) denote the probability that C,, outputs the correct bit
r(u, k) when given as input a random QRP instance (u, k) of length m. Then, for
any positive constant d, the inequality

1 1
P(C.) < -i +

holds for all sufficiently large m.

Some of the literature states this assumption by saying that the QRP gives rise to
a hard-bit family.

Secure Circuit Evaluation

Lemma 2. Assume that]k] > max(a, n). Then, under the QRA, D encrypts x, except
for n, during the initial and gate-simulation phase of the protocol.

Proof. We show that the distribution of transcripts produced by D and any ran-
dom-polynomial-time C* can be simulated by a random-polynomial-time machine
Mc, with input n. The simulator produces sequences of the form

(a, k, Yl y., zl, z2, Y,+l, Y.+2, Y,+3, Y,+4

Z2a-1, Z2a, Yn+4a-3, Yn+4a-2, Yn+4a-t, Yn+4a, O)

according to the following distribution:

(1) a is chosen by Mc. exactly as it was chosen by C*,
(2) k is chosen as D chooses it in the initial phase,
(3) the subsequence (Yl y .) is drawn uniformly from (Z* [+ 1])",
(4) each of the subsequence (Y,+4i+1, Yn+4i+2, Yn+4i+3, Yn+4i+4), 0 ~ i __< a -- 1, is

drawn independently from the uniform distribution on (Z* [+ 1])4,
(5) each of the subsequences (z21+1, z2i+2), 0 < i < a - 1, is computed exactly as

C* compute his ith message of the gate-simulation phase, given the history
(a, k, Yl Y.+4.i), and

(6) o is computed exactly as C* computes his output. (Note that o is the output
of C*, not the output of the protocol, as computed in the final phase.)

The QRA guarantees that the distribution of subsequences (Yl Y,, Y,÷I
Yn+4,) is polynomial-time indistinguishable from the distribution really computed
by D. Similarly, under the QRA, the results of the computations performed with the
simulated inputs are indistinguishable from those of the computations with the real
inputs, because C* is limited to random polynomial time. Together, these obser-
vations imply that the views produced by Mc. are polynomial-time indistinguishable
from the real views produced by C* and D. []

In practice, during the second step of the initial phase, D would choose p and q
large enough so that their product k could not be factored in a reasonable amount
of time using the best-known factoring algorithms. For the purpose of proving that
the QRA implies the secrecy of D's input bits, we need to assume that the size of
the modulus k is "big enough" with respect to a and n; the requirement that
[k[> max(a, n) suffices. It would also suffice to require that [k] be "polynomially re-
lated" to a and n; we chose the statement [kl > max(a, n) for simplicity and clarity.

We have the following results about the information communicated during the
final phase.

Lemma 3. In Case 1 of the final phase, C hides everything about his circuit except
k, and D hides everything about x except k and f(x).

Proof. The pair of messages exchanged in Case 1 is of the form (y, r(y, k)). The
distribution of y is unifor:n on Z * [+ 1] and, given k, is independent of the circuit,
x, and the coin tosses of D. Given k, the one-bit message r(y, k) that D sends still
depends on the coin tosses of C, in the following way: half of the possible coin-toss

M. Abadi and J. Feigenbaum

sequences correspond to f(x) = r(y, k) and half to f(x) = 1 - r(y, k). However,
given k and f(x), the message r(y, k) is independent of x, the circuit, and C's coin
tosses. []

We omit the proof of Lemma 4, because it is very similar to that of Lemma 3.

Lemma 4. In Case 2 of the final phase, D (obviously) hides everything about x, and
C hides everything about his circuit except k and f(x).

In Case 2, C multiplies the encrypted output of the circuit's final gate by a random
square so that D does not learn whether the final gate is a N O T or an AND. Assume
that C did not multiply by a random square but instead sent the output of the final
gate, that is, Y(f(x)). If the final gate is a NOT, then Y(f(x)) is the additive inverse,
mod k, of one of the elements of some quadruple that D sent during the protocol.
If the final gate is an AND, then Y(f(x)) is itself one of the elements of the last
quadruple that D sent. The probability that Y(f(x)) is both of these is exponentially
small; thus translation by a random square is necessary in order to conceal whether
the final gate is a NOT.

The security properties proven in Lemmas 1-4 are summarized in the following
theorem.

Theorem 1. During the initial and gate-simulation phases of the protocol, C hides
everything except the modulus k and the number of AND gates in the circuit, and
(under QRA) D encrypts the input except for its size. In Case 1 of the final phase, C
hides everything except k and D hides everything except k and f(x). In Case 2, D hides
everything and C hides everything except k and f(x).

As we remarked in Section 2, it is possible to transform the protocol so that the
circuit is encrypted and the data are hidden. To accomplish this, C would use a
universal circuit U,, and modify U, so that the bits o fx are hardwired into it. Player
D would supply a circuit for f as encrypted input.

Both versions of our protocol (the one that hides the circuit while encrypting the
data and the one that hides the data while encrypting the circuit) have the property
that exactly one bit of information is exchanged; from it, one of the parties computes
the value f(x). The encoding of the bit exchanged is a function of the circuit, the
input, and the random coin tosses of the parties. Is it possible to construct a
two-player protocol that hides everything while exchanging the one bit f (x) (as it is
in the multiplayer case [BGW], [-CCD])? Intuitively, the answer must be "no,"
because the player who sends to the other an encoding of the one bit f (x) needs
some information in order to compute it. Our next result gives a very simple, formal
proof that such protocols do not exist.

Theorem 2. No protocol that hides all secrets and communicates only one bit of
information can compute f(x) accurately for all f and all x.

Secure Circuit Evaluation

Proofi Assume that such a protocol did exist. Then it would have to work for
functions of two arguments, one owned by C and hardwired into the circuit, and
one owned by D. Without loss of generality, we may assume that it is D who sends
the one bit that is communicated. We show that there are inputs on which C
computes the wrong answer. The crucial fact is that D must decide whether to send
a 0 or a 1 based only on her input and on the number a of A N D gates in C's circuit.

Consider the boolean function x = w, where x is D's input, w is C's input, and
[xl = [w[= n. Assume without loss of generality that x I and x2 are distinct input
strings of length n for which there is a positive probabili ty that D communicates a
0 for functions with a AND gates. There are runs of the protocol on which C receives
the same information for D's inputs x~ and x 2, and thus there is a positive prob-
ability that he computes the wrong answer for at least one input when w -- x 1.

This example of the string-equality function shows that there is a positive prob-
ability that C computes a wrong answer for at least one input. We now show that,
in fact, if D communicates only one bit of information, then there are functions for
which there is a substantial probability that C computes the wrong answer on many
inputs. For this proof, we consider the boolean function x >_ w, where x and w are
as above. Once again, fix a number n of input bits and a number a of AND gates.
Let S be the set of inputs x for which the probabili ty that D sends a 0 is at least 1/2.
We can assume without loss of generality that IS[> 2 "-~ and that the probability
that C outputs 0, given that D sends 0, is at least 1/2. Let w be a string for which
there are at least 2 "-2 elements of S that are greater than or equal to w and at least
2 "-2 elements of S that are less than w. Call these sets $I and $2, respectively. For
each x ~ S I, f (x) = 1, and, for each x E $2, f (x) = 0. Thus, for at least 1/4 of all
possible values ofx (those in S~), the probabili ty that C computes the wrong answer
on any particular run of the protocol is

P(C outputs 0) > P(D sends 0 and C outputs 0)

= P(D sends 0)- P(C outputs 01D sends 0)

> 1/4. []

Note that the "information-theoretic" security achieved by the protocols in
[BGW] and ['CCD] does not contradict Theorem 2. The results in [BGW] and
[CCD] apply only when the number p of players is strictly greater than two and
the number of cheaters is strictly less than p/2; our Theorem 2 applies only to the
case p = 2.

4. Cheating

In this section we address the question of what happens when either C or D tries to
cheat. It is common to provide mechanisms to avoid or to detect cheating in
protocols for secure computation, e.g., to turn protocols into "validated protocols"
in which players use zero-knowledge subprotocols to prove that they have acted
honestly (e.g., [GHY1], [GMW]). However, the issue of cheating is different in a
setting in which some secrets are hidden rather than encrypted.

10 M. Abadi and J. Feigenbaum

How might C try to cheat? He could try to choose the sequence of AND
computations that he requests so as to compromise D's data rather than to compute
f(x). However, under the QRA, everything that she sends him during the gate-
simulation phase of the protocol is something that he could generate himself--
quadruples of elements ofZ*l-+ 1], three of which are nonresidues and one of which
is a residue. In Case 1 of the final phase, she "opens" one bit, allowing him to learn
f(x). Thus, by using a different circuit, he could obtain a different boolean function
of x, but nothing else. Because Case 1 of the final phase involves the opening of one
bit, C could, instead, cheat by obtaining the value r(u, k) for one arbitrary u. To
prevent this, a protocol can be used that requires C to "commit" to one circuit and
"prove" that he simulated the circuit to which he committed himself; see, e.g.,
[CDG] for a good discussion of this issue.

How might D try to cheat? We cannot accuse D of sending incorrect encrypted
bits, because x is D's private data. Player D could deviate from the protocol by
sending wrong answers when C asks her for the AND of two encrypted bits or by
sending the wrong residuosity bit in Case 1 of the final phase. This could cause C
to compute a wrong answer, but it would not compromise the privacy of C's secrets.
Player C is capable of hiding; that is, none of the messages that he sends to D in the
course of the computation conveys any information at all, even when D leads the
computation astray. Therefore, D cannot cheat to "decrypt" C's messages and learn
something she is not supposed to know.

In any case, D can be required to prove that she computes the (encrypted) output
of the AND gates correctly and that she sends the correct residuosity bit in the
final phase. The set of tuples (k, Y(b), Y(b'), Y(b3), Y(b2), Y(bi), Y(bo)> that satisfy
the following conditions is an NP set: k = p.q; Y(b) and Y(b') are legal encryp-
duns of bits; and (Y(b3), Y(b2), Y(bl), Y(bo)) is a legal reply from D to C's query
about the AND of b and b'. Using trivial modifications of the interactive proof
systems in [BCC] and [GHY2], D can prove that her replies are correct with a zero-
knowledge subprotocol. (More efficient subprotocol~ can be constructed, using
the special properties of quadratic residues; we omit discussion of efficiency, because
our goal is simply to point out that this type of cheating can be thwarted.) Simi-
larly, in the final phase, D can prove that she knows a certificate of the residuosity
of E(Y(f(x))); that is, if b = 1, D must prove that she knows a number u such that
u 2 = E(Y(f(x))) mod k, and, if b = 0, she must prove that she knows a number u
such that (- 1). u 2 ~ " E(Y(f(x))) mod k.

5. Open Problems

Our protocol uses the quadratic residuosity predicate r(u, k) as a building block. No
communication is required for C to compute the negation of an encrypted bit, but
communication is required for C to compute a conjunction. Can C, by computing
some function of Y(b) and Y(b'), take the AND of two encrypted bits without asking
for help from D? Brassard and Crrpeau raised a similar question in I'BC], where
they used a circuit-evaluation protocol based on "permuted truth tables" in their
work on zero-knowledge proof systems.

Secure Circuit Evaluation 11

The quadratic residuosity predicate is not the only one that can be used as a
building block in a protocol for secure circuit evaluation. To be usable as a building
block, a boolean function must be encryptable (in the sense of [AFK]), be comput-
able by player D (perhaps with knowledge of a secret key), and not be computable
by player C. Is it possible to design a better protocol using a different building block?
More specifically, we would like to reduce the number of rounds of communication
needed by each run of the protocol, or, alternatively, to prove a nontrivial lower
bound on the number of rounds needed for secure circuit evaluation.

Acknowledgments

We are grateful to Gilles Brassard, Stuart Haber, Cynthia Hibbard, and two
anonymous referees for their comments on previous versions of this paper.

[AF]

[AFK]

[BV]

[BGW]

[~cc]

[BC]

[CCD]

[CDG]

[GHYI]

[GHY2]

[GMW]

[GM]

[GMR]

[H]

References

Martin Abadi and Joan Feigenbaum. A Simple Protocol for Secure Circuit Evaluation, STACS
'88 Proceedings, R. Cori and M. Wirsing (eds.), Springer-Verlag, New York, 1988, pp. 264-272.
Martin Abadi, Joan Feigenbaum, and Joe Kilian. On Hiding Information from an Oracle,
J. Comput. System Sci., 39 (1989), 21-50.
Donald Beaver and Joan Feigenbaum. Hiding Instances in Multioracle Queries, STACS '90
Proceedings, C. Choffrut and T. Lengauer (eds.), Springer-Verlag, New York, to appear.
Michael Ben-Or, Shaft Goldwasser, and Avi Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, 1988, pp. 1-10.
Gilles Brassard, David Chaum, and Claude Crdpeau. Minimum Disclosure Proofs of Knowl-
edge, J. Comput. System Sci., 37 (1988), 156-189.
Gilles Brassard and Claude Cr6peau. Zero-knowledge Simulation of Boolean Circuits,
CRYPTO '86 Proceedings, Andrew Odlyzko (ed.), Springer-Verlag, New York, 1987, pp.
223-233.
David Chaum, Claude Cr6peau, and Ivan Damg~rd. Multiparty Unconditionally Secure
Protocols, Proceedings of the 20th Annual ACM Symposium on Theory of Computin 9, 1988,
pp. 11-19.
David Chaum, Ivan Damgzlrd, and Jeroen van de Graaf. Multiparty Computations Ensuring
Secrecy of Each Party's Input and Correctness of the Output, CR YPTO '87 Proceedings, Carl
Pomerance (ed.), Springer-Verlag, New York, 1988, pp. 87-119.
Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic Computation: Secure Fault-Tolerant
Protocols and the Public-Key Model, CRYPTO '87 Proceedings, Carl Pomerance (ed.),
Springer-Verlag, New York, 1988, pp. 135-155.
Zvi Galil, Stuart Haber, and Moti Yung. Minimum-Knowledge Interactive Proofs for Deci-
sion Problems, SIAM J. Comput., lg (1989), 711-739.
Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play ANY Mental Game Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 218-229.
Shaft Goldwasser and Silvio Micali. Probabilistic Encryption, J. Comput. System Sci., 28
(1984), 270-299.
Shaft Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Inter-
active Proof Systems, SIAM J. Comput., 18 (1989), 186-208.
Stuart Haber. Multi-Party Cryptographic Computation: Techniques and Applications, Ph.D.
Thesis, Computer Science Department, Columbia University, 1988.

12 M. Abadi and J. Feigenbaum

FK] Joe Kilian. Founding Cryptography on Oblivious Transfer, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, 1988, pp. 20-31.

[YI] Andrew C. Yao. Theory and Applications of Trapdoor Functions, Proceedings of the 23rd
Annual IEEE Symposium on Foundations of Computer Science, 1982, pp. 80-91.

[Y2] Andrew C. Yao. Protocols for Secure Computations, Proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science, 1982, pp. 160-164.

[Y3] Andrew C. Yao. How to Generate and Exchange Secrets, Proceedings of the 27th Annual lEEE
Symposium on Foundations of Computer Science, 1986, pp. 162-167.

