
J. Cryptology (1989) 1:177-184
Journal of Cryptology
© 1989 International Association for
Cryptologic Research

Inferring Sequences Produced by a Linear Congruential
Generator Missing Low-Order Bits 1

Joan Boyar
Computer Science Department, University of Chicago, Chicago, IL 60637, U.S.A.

Abstract. An efficient algorithm is given for inferring sequences produced by
linear congruential pseudorandom number generators when some of the low-order
bits of the numbers produced are unavailable. These generators have the form
X, = aX,_~ + b (mod ra). We assume that the constants a, b, and m are unknown,
and that t = O(log log m) of the low-order bits are not used.

Key words. Cryptography, Pseudorandom number generators, Linear congruen-
tial method.

1. Introduction

A pseudorandom number generator is considered cryptographically secure if, even
when a cryptanalyst has obtained long segments of the generator's output, he or
she is unable to compute any other segment within feasible time and space com-
plexity bounds. The linear congruential pseudorandom number generators, those
of the form X~÷ I = aXi + b (mod m), are very fast and widely used in Monte Carlo
simulations and probabilistic algorithms. Boyar has shown that these generators
are cryptographically insecure even if the constants a, b, and m are unknown [t] , [7].

The tow-order bits of numbers produced using the linear congruential method
tend to appear much less random than the high-order bits [4]. Knowing this, a
cryptographer using a linear congruential pseudorandom number generator would
probably only use the high-order bits. Knuth [5] has discussed the problem of
predicting these sequences produced by the linear congruential method. He assumes
that the modulus m is known and is a power of two, but assumes that only the
high-order bits of the numbers generated are actually used. Frieze et al. [3] have a
much faster algorithm than Knuth 's for predicting sequences produced by the linear
congruential method even if half of the low-order bits are unavailable, but they
assume that the multiplier, a, and the modulus, m, are known. Frieze et al. [2] have
generalized this work, but they also assume that the multiplier and modulus are
known. In addition, in both [3] and [2], the algorithms fail on a small set of
exceptional multipliers. Stern [8] has proved similar results assuming only that the

t Date received: April 11, 1988. Date revised: March 28, 1989. This work was supported by an
Educational Opportunity Fellowship and by DARPA Grant No. N00039-82-C-0235.

177

178 J. Boyar

modulus m is known. Stern also gives an algorithm which does not require that m
be known, but that result relies on two unproven assumptions.

In this paper we assume that a fixed linear congruential pseudorandom number
generator, Xi+ 1 = aX~ + b (mod m), was used to produce the integers U i = [X~/2'],
but the nonnegative constants a, b, and m, with m > max(l, Xo), are unknown. The
low-order t bits of the Xi's are never known. The problem is to predict, from the
high-order bits { U~I 1 < i < j} of some of the X~'s the value of Uj+ 1. We assume that
whenever an incorrect prediction 9+1 occurs, the correct value Uj÷ 1 is revealed
before Uj+ 2 is predicted. We show that, even if some small number t = O(log log m)
of the low-order bits are unused, the sequences produced are still cryptographically
insecure. We present a polynomial-time algorithm that correctly infers the sequence
with at most a polynomial in log 2 m errors. The algorithm presented here will not
fail on any multiplier or modulus.

2. The Prediction Algorithm

To show that linear congruential pseudorandom number generators are cryp-
tographically insecure, even if the low-order bits of the numbers produced are never
seen, we describe a prediction algorithm. We assume that t is a known positive
integer, that t < c logz logz m for some constant c, and that m > 2 3~+1. The sequence
of numbers (Xj> is obtained by setting Xj÷I = (aXj + b) (mod m) for j > 0. The only
data available to the cryptanalyst is the sequence < Uj> which is obtained by setting
U i = [XJ2'J . The sequence ofnumbers (YR) is defined by Yk = Xk - X k - 1 for k > 1.
The Xi's and Y/'s are never available to us, but some of the Ui's are available. We
know, however, that Xi = 2 t" U~ + xi, where 0 < x~ < 2' - I. If t = I, then only one
bit is missing and xi ~ {0, 1}. When t is small .enough, 2 t is also small, so we could
try all possible values for Xg for two or three different values of i. If, however, the
algorithm is to be polynomial, we cannot do this for too many different values of i
simultaneously; not even for log 2 m different values.

The algorithm presented here closely parallels the algorithm for inferring se-
quences produced by the linear congruential method, which appears in 1-7]. (Gener-
alizations of that algorithm can be found in I"1] and I-6].) As in that algorithm, we
use the fact that Yk -- aYk-1 (mod m) for k _> 2, we predict the Y~'s, and we use these
predictions to predict the X~'s and U~'s. The major difference between this algorithm
and the algorithm in 1,7] is that this algorithm occasionally guesses the low-order
bits of some X~'s. The guesses for X~, Yi, and U i are written ~i, ~//, and ~ , respectively.
If it later turns out that the guesses currently in effect cannot all be correct, the
algorithm backtracks and makes at least one new guess.

A naive approach would be to follow the algorithm in [7] exactly, guessing the
low-order bits each time an error is made. Since that algorithm can make O(log m)
errors, this appears to lead to m c~°g~°s"~ guesses and this is superpolynomial. The
key to keeping the running-time polynomial is Lemma 4 which shows the following:
if the guesses for X o, X1, X2, and a particular X k are correct, then, after this Xk is
predicted, there will be at most one X i for which we will find two possible ~i's
consistent with all our previous guesses and with the high-order bits of that X~, and

Inferring Sequences Produced by a Linear Congruential Generator Missing Low-Order Bits 179

we will never find three or more such possibilities. In all other cases, there will only
be one consistent possibility for X~. Thus, there is no problem in keeping the running
time between successive predictions polynomial.

The algorithm makes guesses for a, b, and m, written d,/~, and rh. In addition, it
keeps track of a value £max which is used to detect errors in the current guesses for
the X~'s. At any given time in the execution of the algorithm, it has a set of guesses
£0, Xx ~k-1 for an initial segment of the sequence of 2~'s. "~max is the maximum
of these k guesses. Since all of the values produced by the original linear congruence
are less than the true modulus m, if we ever have a guess for the modulus which is
less than Xm**, then we have made an error somewhere. The only possibility for this
sort of error is in our guesses for the low-order bits of the X~'s, so we backtrack and
make other guesses.

The initialization consists of making guesses -~o and 3~1 for X o and X1, and letting
1,1 be ~1 - ~o. There are two major cases to consider: either the sequence is the
constant sequence, or it is not. If 1,1 is zero at this point, the high-order bits of Xo
and X~ are equal, and we guess that the low-order bits are also equal and that our
sequence is the constant sequence. In this case, we set d = 1,/~ = 0, and rfi = 370 + 1,
and we predict that all the elements of the sequence are equal to X o.

If 1,1 is nonzero, then we guess that the sequence is not the constant sequence (if
U0 ~ U1, then we are certain that it is not the constant sequence). Continuing our
initialization, we make a guess ~2 for X z, set i ' 2 = ~2 - AOI, and set ~m~ tO the
maximum of 2 o, 2 1, and a°2 (the largest value seen so far). Again we consider two
subcases. The first case occurs when 1,~ divides 1,2; in this case we can compute
the multiplier a immediately, without first finding m. We set d = 172/1,1 and ~ =
-~1 - ~ o , and we make predictions for the X~'s and the U~'s, using the multiplier

and the additive constant 6, assuming that the true modulus m is arbitrarily large,
i.e., we predict that 8i+, = da°~ + ~. Unfortunately, we are unable to check if our
guesses for the X~'s are correct; we can only check if they are consistent with the
U~'s. In fact, however, as the following lemma shows, if X o, X 1, and X2 were guessed
correctly, whenever the 0~'s are correct, the)~'s are also.

Lemma 1. I f X o = -~o, X1 = 21, and X 2 = 2 2, and Y1 divides Y2, then, if -'~+t =
dX, j + b and Uj = ~ for 1 < j ~ i, Ui+l = 0,+1 if and only if X,+I = a~,+t.

Proof. Certainly if Xi+ 1 = 2i+ 1, then Ui+l = 0i+1. The other direction is proved
by induction on i. By assumption, X 2 = 2~. Suppose that Xj =)~i for some j > 2.
Then, by Theorem 1 of [7], Xj+ 1 = dX~ + b (mod m), so Xi+ I = 2j+ 1 (mod m). But
LXj+l/2'J = L2i+l/2'J, so 12j.~ 1 - xj+ll < 2' < m. Thus Xj+I = 2j+~. []

Thus, if correct guesses have been made for X o, X I, and X2, and YIIY2, then the
algorithm correctly detects the first time Xi+l # dXi + 6. Although it is possible
that our sequence will have X~+ I = dX~ + b for all i, it is likely that, eventually, this
process will either give us an answer larger than the modulus or less than zero and
we will make an error in predicting some U~+I. At this point we assume we are given
the correct value for U~+I and we make a guess for the low-order bits of X~+I. Now
we compute a guess for the modulus, rh = 12i+ 1 - (d 2 i + b)I, which will be a

180 J. Boyar

positive integer multiple of the correct modulus if our guesses for X o, Xx, X2, and
Xz+l are correct. If this guess rh for the modulus is less than the largest g~ computed,
an error has occurred, so the algorithm backtracks. If not, we proceed to the final
phase of the algorithm and continue making predictions. This final phase is dis-
cussed later.

Now let us look at the more difficult second case: I~ # 0 and I71 does not divide
1~2. Following the algorithm in [7], we compute g = gcd(l?l, 122), C~ = i~/g, and
C2 = ~2/g. The algorithm continues, predicting that Y~+~ = (C2/C~)Y~ until it is
proven wrong, possibly by getting a nonintegral prediction. Of course, it can only
tell if U~+~ = 0~+ 1. We now show that if correct guesses were made for Xo, X~, and
X 2, then Ui+l = 0i+l if and only if X~+I = gi+~-

Lemma 2. I f X o =)?o, X t = g~, and X z = g2 , then, if ~+~ = (C2/C~) ~ and U~ =
for 1 < j < i, Ui+~ = Oi+~ if and only i f Xi+l = gi+~.

Proof. Certainly if X~+ t =)?~+~, then Uz+~ = 0~+~. Again the other direction is
proved by induction on i. Suppose X~ = gi for all iN j. It is easy to see
that I Cz Y~ - C~ Y~+ll i ~. an integer multiple of m [7, proof of Theorem 4]. But

I c~ Y~ - c~ ~+~ I = I c~ ~ - c~(xs+~ - Xs) l

= - - x ,) - -

Since ~+~ = (C z / C ~) ~ , C~ divides i~ - I,'1, and IY~I < m, the hypothesis U~+~ =
0z+~ gives]C~(Xj+~- g~+~)l < (ml/ti-u) 2' < x~ ~ ' 2 ' < m. Thus [C2Y~- C1Y~+~I
must equal zero, so we have X~+ 1 = ~+ l - []

The above lemma tells us that if correct guesses have been made for Xo, X1, and
X2, the algorithm correctly detects the first time that Y~+I ~ (C2/C1) Y~. At this point
the algorithm makes a guess for X~+I and computes ~+~. Then the algorithm
computes rh = I C 2 ~ - C1 ~+~], which is a positive multiple of m. In order to
eliminate any excess factors in ff~ which may be preventing our solving the con-
gruence Y2 - dY~ (mod rh), we execute the following loop:

repeat
m' ~- gcd(C~, rh/gcd(rh, g))
~ ,,- ~ /m '

uatii m' = 1

It is possible that rh is now less than the largest g j computed so far. If so, our guesses
for 3(0, X~, 2"2, and Xi+~ were incorrect and we need to backtrack and try new
values for)?0,)?1,)?2, and/or gi+l. If, however, our guesses for these Xfs were
correct, th is a multiple of the actual modulus m, so we solve for d and 6. First we
compute C~ -~, the multiplicative inverse of C 1 (mod(th/gcd(rh, 9))). Then, a = C ~ C 2
(rood rh) and b = g l - ago (mod ,h).

Thus, in all cases, except for that of the constant sequence, we are able to compute
a,/~, and a multiple th of the modulus efficiently, using only polynomial time between
each successive prediction made up to that point.

Inferring Sequences Produced by a Linear Congruential Generator Missing Low-Order Bits 181

In the final phase of the algorithm, we predict the remainder of the sequence,
updating the guess for the modulus as necessary. In this phase we begin predicting
the X~'s by computing ~+~ ~ d~ (rood rh) and)~;÷~ *-- a°~ + d~ (rood rh). Again, an
error is only detected if U~+~ #/~+~. Again, however, assuming that the previous
guesses (there have been at most four) were all correct, U~+~ = 0~+~ if and only if
Xi+i = gi+l"

Lemma 3. During the final phase, if Xi = 2g~ for all i < j, then Uj+~ = ~+~ if and
only if X i+~ = -~.i+t.

Proofi Similar to that of Lemma 1. []

Thus, when an error occurs in the predictions, it is detected. After it is detected, we
are given the correct value for U~+~. We then try to find an)~+~ consistent with U~+t
and consistent with all previous guesses for the ~ ' s , and we compute a new modulus
rh = gcd(rh, J?j+t - J?j - dYj). Such a guess J?~+t is consistent if the updated th is still
greater than J?m~- Now we show that if such an error occurs, there are at most two
consistent possibilities for Xi÷~, given U~+~.

Lemma 4. Within the final phase, if X~ = J?i for all i < j and Uj+ 1 ~ ~+~, there
are at most two possibilities for X~+~ which are consistent with Uj+ t and the previous
Ui's. I f there are two such possibilities, then rfi can be updated at most t times, and
there will never be two possibilities for any later X~+I.

Proof. Assume for contradiction that XJ+I~, XJ2~, and XJ3~ are distinct valid
v~k) ci Yi) J~m.~ for k possibilities. Then mk= gcd(n~, -'~}+t - Xi - -> {1, 2, 3}. Since the

least common multiple of m 1, m2, and m3 divides dz,

mlm2m3

gcd(ml, m2)" gcd((ml m2/gcd(ml, m2)), ma)

mlm2m3 >
- gcd(ml, mz)" gcd(ml, m3)" gcd(m2, m3)"

But y m V(2) gcd(ml, 2'. --j+l - -~j+~l < 2', so m2) < Similarly, gcd(ml, m 3) < 2 t, and
gcd(m2, m3) < 2'. Since one of m~, m 2, and m 3 is a multiple of m, one of them is at
least as large as m, and the other two are at least as large as gmax or they would not
be possibilities. Hence, ~ > mlm2ma/2 a' >_ m ~ 2 J 2 a' > 2.~2,x > ~, and we have a
contradiction. Therefore there are at most two valid possibilities for Xi+ ~.

Assume --j+lYm and X~2~ are the valid possibilities, and let m~ and m2 he defined as
above. Then, since the least common multiple of ml, and m2 divides rh, we have

ra I m 2
t h >

gcd(ml, m2)"

Again gcd(m~, m2) < 2'. The initial value for ~ is Jg(+~ - (a.~'~ +/;)1 =]~+~ - a~l
when i~ divides ~2. In this case, a = ~2/I~. Since ~ < gm,~ for all i___ j, we

182 J. Boyar

2 have rh < 2.~ma x. In the case 12t does not divide 122, the initial value for rh is
t C 2 ~ - C ~ + ~ t , so again rh < 2J?~z,~. Thus, in all cases, the product rnirn 2 <
2~+i)?mZax. Since both rnl and m 2 are greater than 8m~, both rn 1 and m 2 are less than
2t+iXm, ~. Since 2'+l.~m,~ < 2t+lrn, neither m 1 nor m2 can be updated more than t
times. In addition, whenever further updates are required, there will only be one
possible X value. This is true because now 2'+~m > rh. If we had two possible values
X' and X", with m' and m" for updated moduli, then

m'm" m 2
2'+lm > rh > >

gcd(m', m") 2' '

which is impossible. []

When an error is detected, i.e., Uk.l ~ Ok+~, there are at most two possibilities
for Xk÷ I. The algorithm looks for a first possibility, trying all possibilities for the
low-order bits of Xk.l, and, if none exists, it backtracks. After finding a first
candidate for Xk+ ~, the algorithm looks for a second. If no second possibility exists,
the algorithm simply updates rh and continues predicting X~'s. Suppose a second
candidate exists. Then the algorithm saves the current state and tries out the first
possibility. With this possibility, it continues making predictions as before. Now,
however, when errors occur, there should only be one consistent possibility. This
is continued unless at some point there are no consistent possibilities. When this
occurs, we restore our saved state and try out the second possibility. If the second
possibility also fails, we made an incorrect guess for Xo,)71, A~2, or the J~+i which
was used to compute our initial guess for rh, so the algorithm backtracks.

Notice that the index i of the element of the sequence X~, which causes us to
backtrack, depends on the guesses made; different guesses for the low-order bits of
X o, XI, X2, and of the X k which allows us to compute an initial multiple of the
modulus, could lead to such different sequences that we would backtrack at different
points. Other than the chance of two consistent possibilities for some Xk+l in the
final phase, there are only four different points to which we might backtrack, i.e.,
four different values which we must simultaneously guess correctly. Thus there are
a maximum of 2(2') 4 < 2(log2 m) 4c guesses made.

The only thing that could keep the algorithm from running in polynomial time
between successive predictions is if more than a polynomial number of Ui's have
been predicted and the algorithm backtracks to the beginning and has to predict
all of them again before predicting a Ui which has not yet been predicted. If, after
a backtrack, the algorithm restarts its predictions exactly where it left off, then this
problem has been avoided. It is unnecessary to check if the new guesses are
consistent with all of the 0~'s already seen. We may need to compute new values
for 4, ~;, and rh, depending on how far the algorithm backtracked (all of these will
be recomputed if -~0, J?~, or)72 are given new values). Fortunately it is possible to
compute them quickly in all cases. When I22 ~ 0 and 171 ¢: + I72, then 4, 6, and ,h
can be determined from (J~if0 < i < [log 2 m] + 2} [1, Theorem 7], [7, Theorem 4].
If 122 = 0 or I71 = - 122, then no mistakes are ever made with rh = oo. When 121 = 122,
then we are just adding in/~. Once the Xi value is larger than m or less than zero,
the 0~'s will remain incorrect. Thus we can do a binary search to locate the least j

Inferring Sequences Produced by a Linear Congruential Generator Missing Low-Order Bits 183

such that ~ ~ Uj. After we have an d, 6, and rh consistent with the guesses made
for the low-order bits of the initial J~{s, we use them to predict the remainder of
the sequence, starting with the first Xi which has never been predicted. This can be
done because we can quickly compute Xk+i (mod rh) for any j < m, as Xk+~ =

A. j - - 1 i aJXk , b ~,i=o a (mod rh) = (aJXk + (aJ-1/(a -- 1))b) (mod rh). Then we can predict
that the next value is dXk+j+l + / ; (mod rh) and continue from there. Note that with
a fixed set of guesses, every time the algorithm makes an incorrect prediction, rh is
decreased by some nontrivial factor. Since the original value for rh is bounded from

z above by 2Xmax, no more than 1 + log z m can occur even though we never check
if d, ~;, and rh are consistent with some of the X{s which have already been predicted.
(An alternative method for handling the problem of too many repetitive predictions
is to maintain a list of all consistent guesses and to run the algorithm in parallel for
all of these possibilities. Since there are only a polynomial number of consistent
guesses, the running time between successive predictions will still be polynomial.)

After determining that the time required to predict each value is polynomial in
m, we can ask how many errors are made. Consider one complete set of values
guessed at the four points the algorithm makes guesses for some low-order bits. If,
with this set, the algorithm finds two possibilities for some X~+ 1 in the final phase,
there can be at most t errors made after that point with each possibility. Thus, far
fewer than log2 m errors can be made. Since the algorithm described in [7] makes
at most 2 + log2 m errors (other than the necessary errors for X o, XI, and X 2, this
algorithm makes at most 2 + tog 2 m errors for each complete set of choices and
thus makes less than (2 + log 2 m)(log2 m) 4e + 3 errors, which is polynomial. The
previous lemmas and the above discussion give us the following:

Theorem 5. Assume that the sequence of numbers (X j) is obtained by setting Xi+ 1 =
(aXj + b) (mod m), for j >_ 0, but m, a, and b are unknown and only Ui = [Xj2~J is
observed. Assume that t <_ c tog 2 logz m for some constant c, and that m > 2 3'+1.
Further assume that when a mistake is made in predicting the high-order [log2 m'] - t
bits, that the correct high-order bits are made known. Then the algorithm presented
here makes at most (2 + log 2 m)(log2 m) 4c + 3 errors. Furthermore, the time needed
to compute each prediction, 01, is polynomial in log 2 rn.

The results in this paper indicate that using linear congruential recurrences in
cryptographic applications can be very dangerous, even if the modulus and coeffi-
cients are kept secret.

Acknowledgments

I would like to thank my thesis advisor, Manuel Blum, who suggested the problem
discussed in this paper. He was very supportive, encouraging, and helpful through-
out the research. Other people I would like to thank include George Bergman,
Faith Fich, Howard Karloff, Richard Karp, Jeff Lagarias, Bart Plumstead, David
Shmoys, Alice Wong, and the anonymous referees, all of whom made many helpful
comments.

184 J. Boyar

References

1-1] Boyar, J., Inferring sequences produced by pseudo-random number generators, J. Assoc. Comput.
Mach., Vol. 36, No. 1, January 1989, pp. 129-141.

I2] Frieze, A. M., Hastad, L, Kannan, R., Lagarias, J. C., and Shamir, A., Reconstructing truncated
integer variables satisfying linear congruences, SlAM J. Comput., Vol. 17, No. 2, April 1988,
pp. 262-280.

[3] Frieze, A. M., Kannan, R., and Lagarias, J. C., Linear eongruential generators do not produce
random sequences, Proc. 25th IEEE Syrup. on Foundations of Computer Science, 1984, pp. 480-484.

I-4] Knuth, D. E., Seminumerical Algorithms, The Art of Computer Programming, Volume 2, Addison-
Wesley, Reading, MA, 1969.

['5] Knuth, D. E., Deciphering a linear congruential encryption, IEEE Trans. Inform. Theory, Vol. 31,
1985, pp. 49-52.

1"6] Lagarias, J. C., and Reeds, J. A., Unique extrapolation of polynomial recurrences, SIAM J. Comput.,
Vol. 17, N ~. 2, April 1988, pp. 342-362.

1-7] Ptumstead, J. B., Inferring a sequence generated by a linear congruence, Proc. 23rd IEEE Syrup. on
Foundations of Computer Science, 1982, pp. 153-159.

18] Stern, J., Secret linear eongruential generators are not cryptographically secure, Proc. 28th IEEE
Syrup. on Foundations of Computer Science, 1987, pp. 421-426.

