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Abstract - -  Zusammenfassung 

On the Robustness of the Damped V-Cycle of the Wavelet Frequency Decomposition Multigrid Method. 
The damped V-cycle of the wavelet variation of the "Frequency decomposition multigrid method" of 
Hackbusch [Numer. Math. 56, pp. 229-245 (1989)] is considered. It is shown that the convergence speed 
under sufficient damping is not affected by the presence of anisotropy but still depends on the number 
of levels. Our analysis is based on properties of wavelet packets which are supplied and proved. 
Numerical approximations to the speed of convergence illustrate the theoretical results. 

AMS Subject Classifications: 65F10, 65N30 

Key words: Wavelets, wavelet packets, robust multilevel methods, V-cycle. 

Zur Robustheit des ged~impften V-Zyklus bei der FDMGM mit Wavelets. Wir betrachten den ged~impften 
V-Zyklus ffir die Wavelet-Variante der "Frequenzzerlegungs-Multigridmethode" yon Hackbusch [Numer. 
Math. 56, 229-245 (1989)]. Es wird gezeigt, dab die Konvergenzgeschwindigkeit bei hinreichender 
D/impfung durch Anisotropie nicht beeinflul3t wird, aber noch yon der Anzahl des Niveaus abh~ingt. 
Unsere Analyse beruht auf Eigenschaften von Wavelet-Paketen, die formuliert und bewiesen werden. 
Numerische Schgtzungen der Konvergenzgeschwindigkeit erlfiutern die theoretischen Ergebnisse. 

1. Introduction 

An iterative method for solving a linear system arising by the discretization of the 
anisotropic model problem 

92 92 
-e~zxzU(x ,y  ) - ~y~yzU(x,y) + u(x,y) = f (x ,y )  in f2 = (0,s) 2, (1.1) 

u periodic, (1.2) 

0 < e < 1, is said to be robust if its rate of convergence (i.e. spectral radius of the 
iteration matrix) is bounded smaller than 1 uniformly in e and in the discretization 
step-size. 
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Figure 1. V-cycle 
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convergence rates of the wavelet variation of the F D M G M  for different discretization 
step-sizes: 6 z = 2 -z 

A wavelet variation of the frequency decomposition mutigrid method (FDMGM) 
of Hackbusch [11] was presented in [16] and the robustness of the corresponding 
two-level method with respect to any intermediate level was verified. 

However, in numerical experiments, the V-cycle variant of the multilevel method 
appeared not to be robust, see Fig. 1 (for a more detailed description of the 
experiment presented in Fig. 1 see Section 3.1). In this paper we are able to prove 
that a sufficiently damped version of the V-cycle is almost robust in the sense that 
the rate of convergence depends at most on the number of levels. Our result is of 
the same quality as typical estimates known for the convergence rates of multigrid 
solvers without regularity assumptions on the continuous problem, see [1], [3] and 
[17]. Indeed, the situation without regularity assumptions and the situation for the 
FDMGM are comparable in their lack of the approximation property. Hence, the 
standard proofs for the V-cycle convergence, see e.g. [10-], are not applicable and 
adequate modifications are required which lead to level dependent convergence 
rates. 

In the following section we shortly introduce the necessary vocabulary (wavelet 
packets, Mallat transformation, wavelet-Galerkin discretization) to understand the 
considerations in Section 3. Here, we prove the convergence of the damped V-cycle. 
Basically, we use the same techniques as in Chapter 7.2 of [10]. For the ease of 
presentation two auxiliary results which are crucial but rather technical are given 
in the Appendix. 

2. Wavelet Analysis 

2.1. Wavelet Packet System 

We will briefly recall various definitions and properties of wavelet packets [5] 
generated by the Daubechies scaling functions constructed in [6]. For a positive 
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integer N, the Daubechies wavelet packets {~//}/eN ~ of order N are defined as 
follows: There exist 2N real numbers ai, i = 0, 1 . . . . .  2N - 1, satisfying 

so that 

ak = 2 and ~ ak+2mak = 26o,m for all m e Z,  (2.1) 
k k 

2N - 1  

02'(x) = ~ akOl(2x- -k ) ,  (2.2) 
k = 0  

l = 0 ,  1,2 . . . .  

2N - 1  

O 2/+1(X) = 2"  bkOZ( 2x -- k), (2.3) 
k = 0  

where bk = ( -  1)ka2N-g-1. The function ~0 is called scaling function and ~t 1 is called 
wavelet. All wavelet packets are compactly supported, with supp(O ~) = [0, 2N - 1]. 
For  convenience, we define ak = 0 for k r [0, 2N - 1]. 

The wavelet packets are in C a(u), the space of H61der continuous functions with 
exponent e(N), where c~(2) ~ .55, e(3) ~ 1.09 and c~(N) ~ 0.2075. N for large N [9]. 
We refer to [ t5]  for comprehensive introduction to wavelet packets. 

For  the multilevel process defined in Section 3 we will need some of the second 
order connection coefficients ([2], [13]) 

Fd := f t t  (~ ) ' ( x  -- k ) (~ ) 'dx ,  2 - 2N <_ k <_ 2N - 2, l > O, (2.4) 

of wavelet packets with N > 3. Due to the recursive definition of wavelet packets, 
their coneetion coefficients can be easily computed from the connection coefficients 
F ~ of the scaling function ~0. 

2.2. Mallat Transformations 

The (periodic) Mallat transformations h, g: R" ~ R "/z, n even, of a vector v e R" are 
defined by 

1 2N - 1  

(hV)k = ~__ ~ a,v,+ 2k, (2.5) 
Vz  / = 0  

k = 0, 1 , . . . ,  n/2 - 1, 

1 2N -1  

(#V)k = ~ ,~0 b,v,+zk, (2.6) 

where we extend v periodically, i.e. vz = v,+,. The coefficients az in (2.5) and bl in 
(2.6) are those in (2.2) and (2.3), respectively. The Mallat transformations satisfy (see 
[6], El4]), 
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hth + gt9 = I ,  

hh t = 99 t = I ,  

9h ~ = h9 t = O. 

We use I to denote  the identity matrix of appropria te  size th roughout  this paper. 

2.3. Wavelet-Galerkin Discretization of the Model  Problem 

We introduce the Sobolev space HI(Y2 ), Y2 = (0,s) 2, with periodic boundary  
conditions, 

U~ = U~ (Y2) := {v ~ L2(Y2): vx, v , ~ L z (Y2), v(O, y) = v(s ,y) ,v(x ,0)=  v(x,s)}. 

The weak or variational formulat ion of the model  problem (1.1), (1.2), reads: 

u ~ HJ" d ( u ,  v) = f f v  dxdy,  for all v e H i ,  (2.7) find 
. /  f~ 

where d is the HJ-elliptie bilinear form 

sY(u,v) = [" (euxv~ + uyvy + uv)dxdy.  
J t? 

Due to the Lax-Milgram theorem [4] (2.7) has a unique solution u. For  a wavelet- 
Galerkin discretization of (2.7), we assume that  N _ 3 and that  s in (1.1) is an integer 
greater than 4N - 3. Further,  we set ~k(X)  = 2t/ZoO(2tX -- k) and introduce the 
wavelet-Galerkin spaces 

Vz= gt (0 ' s )  :=  { v E L2(O'S): v(X) -= k~z ~ CktP~k(X)' x ~ [O's]' and Ck = Ck+2@ " 

Obviously, V~ has the dimension nt = 2is. The wavelet-Galerkin approximat ion  ut 
to u in the tensor product  space V~ | Vz c HJ is the unique solution of 

d(u t ,  vt) = t ~  fvt dxdy,  for all v t s Vz | Vl. 

A convergence proof  of ut--* u is given in [18]. For  u t we have the following 
expansion U l ( X , y ) =  ~ i , j  t 0 0 ui,iOt.t(x)Ot,j(y) where the expansion coefficients u ! .  ,,i are 
periodic with period nt in each index. We now define f~lj = ~ f ( x ,  y)O2t(x)~k~j(y) dxdy. 
If we order  the u~,j's and f~Ifs, 0 _< i, j ___ n t - 1, lexicographically and denote  the 
resulting vectors U t and F t, respectively, then we have the following linear system 
for the n~ unknowns Ul, 

At,oU t = Ft, (2.8) 

where ( |  denotes the tensor product  of spaces, operators  and vectors) 

At, o = ec ~ |  + I | c o + I |  (2.9) 
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is the Galerkin approximation (stiffness matrix) of d in Vl | Vl. In (2.9) c o is a 
symmetric and circulant n~ x nt matrix I-8], which is completely determined by the 
connection coefficients F ~ (2.4), 

c o = ~7 ~ 

r r l  ~ . . .  r ~ o o . . .  o r 2 . . .  r ~ r ?  1 

r ~  ~ . . . . . .  r ~  . . .  o o r o . . .  r ~  I 

I 
L r o  . . .  r ~ o o o . . .  r o . . . . . .  r o r ~  

where p = 2N - 2 and ~ = 2 -~ is the discretization step-size. We denote a circulant 
matrix by its first row, 

c ~  ~ F ~ "" F ~ 0 "" 0 Fp ~ . . .  F ~  

3. Multilevel Scheme 

3.1 Definitions and Notat ion 

For the definition of the F D M G M  we supply some notation. A more detailed 
discussion of the wavelet variation of the F D M G M  can be found in [16], see also 
the original paper [11]. First, we define the matrices Az,,, ~ R 4 • by 

where 

At,,, := ec~ | I + I | c ~ + I |  (3.1) 

c[n=6i-2Cirn,(F~ " "" F~u_ z 0 ""  0 F~'N-2 "'" F~') (3.2) 

with the connection coefficients F~" (2.4) of the wavelet packet ~'~ (2.2) resp. (2.3). 
We have that 

A~_l,Zm = (h | h)At,m(h' | h t) and At_~,zm+~ = (g | h)At, m(g t | ht), 

where h and g are the Mallat transformations (2.5) and (2.6) of appropriate dimen- 
sion. All of the matrices At,,, are positive definite. 

The iteration matrix of the basic iterative method (BIM) (also called smoothing 
iteration 1-10]) with respect to Al,,, will be denoted by 

Sz,,,, I -~ = - W~,,,A,,m. (3.3) 

The matrix Wz,m characterizes the special BIM, for instance the choice W~, m = 
0[~ diag(Az,m), OZ, m e R, gives the daped Jacobi iteration. 

Now, we are able to formulate the recursive multilevel procedure. We let Le _> 0 be 
the coarsest level, that is the level where the corresponding linear systems are solved 
exactly, and we let L be the level number with respect to the finest discretization. 
We have four variable quantities in our procedure: 
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�9 I is the varying level, L e < l < L, 
�9 m is a non-negative integer on level l, 0 ~ m _< 2 L-I _ 1, 
�9 w e R "'~ is a starting guess, 
�9 b ~ R"~ is a right hand side or a defect. 

We then define the following recursive multilevel procedure MLP: 

MLP(/, m, w, b) 
b e g i n  

-1 i f  1 = Le  t h e n  w := At,rob else 
v1-1 

"gl w:=Sl,mW+ ~ l -1 St,mWz,mb (v 1 steps of the BIM) 
j=o  

d : = A l , m w - b ,  v o = 0 ,  v~ = 0  
MLP(I - 1, 2m, vo, (h | h)d) 
MLP(I - 1, 2m + 1, vl, (g | h)d) 
W : =  W -- flm(h t | ht)vo - tim(g' | ht)Vl (3.4) 

v2 -1 
v 2 w:=S~,mw+ ~ J -1 Sz, mWl, mb (v2 steps of the BIM) 

j=0  
end 

The above procedure describes a damped V-cycle with damping parameters tim > R. 
One step of the multilevel method for solving (2.8) on level L > 1 is performed by 

W : =  U ~ ,  

MLP(L, O, w, FL), (3.5) 

U~ +1 : ~  W. 

The V-cycle is an O(N.  nZ)-algorithm, see [11] and [16]. It is assumed that the 
connection coefficients are precomputed and stored. The precomputation of the 
connection coefficients {Fkm}m=o ..... 2L requires the solution of a linear system of 
dimension 4N - 3 for the F~ [13]; the other connection coefficients are generated 
from these by Mallat transformations involving 0(2 r.  N 2) operations. 

The convergence rates of the iteration (3.5) without damping (tim ~ 1) for L e {3, 4, 5} 
with L e = 0 and for the Daubechies wavelet packets N = 3 are plotted in Fig. 1. 
We used the damped Jacobi iteration as BIM with damping parameters 0~,m = 
E m/V IIq,"l [16] for an 2 and v2 o//.,k~ k ~, see explanation, and with vl = = 0. The Gaug- 
Seidel relaxation as BIM gives the same qualitative behaviour of the convergence 
speed. 

Next, we consider the iteration matrix ML, O(•I,V2) of the iteration (3.5). Let 
M~,,,(vl, v2) denote the iteration matrix of the iteration 

W : ~  Ui/L, 

MLP(/, m, w, F~), (3.6) 

U[l+l  : ~  W, 

that is, we start our multigrid procedure to solve A~,mU~ = F~ on level I. 
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The above defined matrices Ml,m(v 1, v2) , L e < 1 N L, for the iteration Lemma 3.1. 
(3.6) satisfy the recursion 

Ml, m(vl, v2) 

= S~,~(I -- tim(hi| ht){I -- M,_l,2m(vl,v2)}AtJl,2,~(h | h)A,,,, 

-- fim(gt| h ~) {I - Ml_l,2m+l(Vl, v2)}Ar @ h)Az, m)S~,' ~ (3.7) 

with ML~,m(Vl, V2) = 0. 

Proof: The recursion (3.7) follows by transferring the proof of Lemma 7.1.4 in [10] 
to our situation. 

3.2 Robustness of the Damped V-Cycle 

For our considerations we will need the Euclidean (spectral) norm Ilw[I = (w, w)  t/2 
as well as the energy-norms relative to the AI, m'S , Ilwll~,,~ -- (w, w)~/~ := (&row, w) 1/2. 
The associated matrix norms are denoted by the same symbols. With o(B) we 
abbreviate the spectral radius of B which is the largest absolute value of the eigen- 
values of B. 

The following proposition has been proved in [16]. 

Proposition 3.2. There exist positive numbers % < 1 being independent of e and 6~ 
such that 

A-1 -1 t O( l-l,amBl, mAt-l,2m+lBz,m) <- am (3.8) 

with Bl, m = (h | h)Al, m( f | h t) = ehc~g* | I. Further, the strong Cauchy inequality 

I(w,v),,m] < X/%~tlwllt,mllVll~,m 

holds true for all w, v ~ R"~ satisfyin# w = (hth | hth)w and v = (gt# | hth)v, 
respectively. 

The numbers % will play a critical role in our convergence analysis of the V-cycle 
presented in this section. They are uniformly bounded smaller than 1, i.e. 

a := sup{anita E No} < 1, (3.9) 

which will be proved in Lemma A.2 (Appendix). Table 1 shows the first a few am's 
for the wavelet orders N = 3 and N = 4. 

Table  1. The  n u m b e r s  % for the Daubech ies  wavelets  of  o rder  3 and  4 

o" o (3" 1 o- 2 0- 3 o- 4 0" 5 o- 6 0- 7 

N = 3 2.9E-1 2.8E-2 2.4E-3 2.3E-2 1.9E-4 1.6E-3 5.5E-3 5.0E-3 
N = 4 1.9E-1 8.5E-3 6.9E-4 6.3E-3 5.0E-5 5.1E-4 1.3E-3 1.4E-4 
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From now on we require a symmetry condition for our BIM, that is, the matrix 
Wz, ~ in (3.3) satisfies 

Wtlm = Wt,,. >- At , z  and [[W~,mH __< Cwgi  -2. (3.10) 

The notation A < B signifies that A and B are symmetric matrices and that B - A 
is positive semi-definite. 

Remark. The (sufficiently) damped Jacobi iteration as well as the symmetric GauB- 
Seidel iteration fulfill (3.10), see e.g. [10]. 

We introduce the abbreviations Po = h | h, p~ = g  | h and the transformed 
matrices 

] ~ l  m ( V l , V 2 )  1/2 ,, ~ 3 - 1 / 2  A - 1 / 2  . A 1 / 2  = Az,, ,Ml,, ,(vl,  Pi = i = O, 1 v 2 J i ~ l , m  , , Z Z l - l , 2 r n + i ! ] i ~ X l , m  

Sl m 41/2r a-~/2 = I - X~ m with Xt, m All2 |/1/'-1A1/2 
, = ~Xl ,  m O l ,  mZ~_l, m , ~ ~ l ,  m r r  m Z a t l ,  m . 

The recursion (3.7) implies 

~It,,,,(Vl,V2) = S~, m I - fl,,, ~ l ~ { I  - M~-l,2,,+~(Vl,V2)}l)~ S~, m. 
i = 0  

Before we formulate the robustness result for the damped V-cycle in Theorem 3.8 
we first supply some preparatory lemmas and corollaries. 

Lemma 3.3. I f  tim �9 [0,(1 + x/~s -1 ] then 

-- ~m(PoPo + PIP1) <- I .  (3.11) 0 _< Ql,m := I ^t ~ ^t ^ 

^t ^ Proof." The relation (3.11) is equivalent to 0 < ~,,(/~i0 o + PIP1) < I which is satis- 
fied if tim ~ [-0, t)(i0~i0 o + i0[i01) -1 ] because i0~i0 o + 10~p 1 is positive semidefinite. We 
have that P~Po + P ~ / ) l  d l / 2  / ' T t F I - 1 / - [ 3 1 / 2  = ~ . z , ~  . . . .  Z,m with the 2 x 2-block diagonal matrix 
D = diag(At-1,2,,, Al-1,2~+1) and with the mapping U: R'~ ~ R C2 defined by 

Pl g |  
(3.12) 

Now, let us estimate the spectral radius ,,13:/2 UtD-1UA~/2): k" t I "1, m 

Q'31/2rrtn-lUA~,/2) Q(D-1UA,  ,nUt) = Q(I (I D-1UA, ,mUt) )  
k~X l ,  m ~ x~, ~ -  , - -  - -  

< 1 + ~(I - D- tUAz ,mUt ) .  

The estimate (3.8) in Proposition 3.2 implies that 

rm@, ~ ) : =  Q(I - D-1UAI ,  mU t) <_ ~ m "  (3.13) 

Lemma 3.4. Suppose (3.10) and let Qg, m := I - -  A l ,  mU1/2 t ( U A l ,  m Ut)-lrrA1/2~t,,,. Then,  

0 <<_ Ot, m <~ CX~,m, (3.14) 

where C is a constant being independent o f  e, 61 and m. 

Proof: We follow the proof of Lemma 6.4.6 in [10]. The statement of Lemma B.1 
- 2  - 1  (Appendix) implies Qz,m <- CA6[At, m and (3.10) can be rewritten as I <_ Cw6l Wt.m 

which gives A~, m <_ CW~72Xt,  m . Hence, (3.14) holds with C = CACw. 
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Corollary 3.5. Suppose (3.10) and let fi" e [0,(1 + x / ~ ) - l ] .  Then, 

0 <_ Qz, m <- CXz,,, + dmI, (3.15) 

where d,, = 1 - f l ' (1  - x/%~) and where C is the constant from (3.14). 

Proof: W e  h a v e  t h a t  Q ~ , ' -  Qz," = A~,/2Ut((UAt,mUt) - 1 -  f l 'D-1)  trA1/2,..~r.l, m with  U 
a n d  D as in the  p r o o f  of  L e m m a  3.3. Fu r the r ,  

Q(Qt, m - Qz,') = Q(I - f l ' D - 1 U A t , ' U  t) 

= Q((1 - f l ' ) I  + fl ' (I  -- D-aUA, , 'Ut) )  

<_ 1 --  fl" + ~ ' Q ( I  --  D - 1 U A , , , .  U')  

_< 1 -  = d ' ,  

where  we used  (3.13). F r o m  (3.14) fo l lows tha t  

0 <_ Qz," <- Qt, m + Q(Q,,m - QLm) I 

<__ CX~," + d j .  [] 

W e  set M~," := )~rl, '(v/2, v/2) which  fo rm a l l y  m a k e s  sense for  a n y  real  v _> O. 

L e m m a  3.6. Suppose (3.10). Let fl" E [0, (1 + x / a ' )  -1 ] and let d"  = 1 - f l ' (1 - x//%~). 
if  

0 ~ ~ i 1 _ 1 , 2 " +  i ~ ~ 1 _ 1 , 2 " + i  I ,  0 ~ ~ l - l , 2 " + i  ~ 1, i = 0, 1, (3.16) 

then 

0 <_ ~ll," <<_ {l,m I,  {l," = m i n  m a x  f ( x , y ) ,  (3.17) 
dm(1-~t,m)+~Z,m < y < l  O_<x_<l 

with ~Z,m = m a x { ~ l - l , 2 " ,  ~z-1,2"+1} and f ( x , y )  = (1 - x)~(y + (1 - y)Cx/(1 - dr,)) 
where C is the constant from (3.14). 

Proof'. T h e  p r o o f  is s imi lar  to  the  p r o o f  of  L e m m a  7.2.1 in [10].  

Since Ml , "  q~/2/l ~v/2 /~ ~v/2 ~-~ 1 ~ t ~  ~ #~/2 a n d  since Mz-1 2,, +i > 0, = O l , ' ~ . l , ' O l . z m  -1- p, mL, l , m / , i = O  F i ~ ' * l - - l , 2 m + i F P a l , "  , - -  

i = 0, 1, (3.11) p r o v e s  Ml, m >_ O. U s i n g  (3.16) a n d  (3.11) we o b t a i n  

2(4l " < S~,/2{ I fi'/3~i0o(1 { , -1 ,2")  f l 'PlPl(  1 ~/2 , __ __ __ ^t  ^ - -  ~ l _ l , 2 " + l ) } S l , "  " 

-- -- ~Z,')flm(POPo + PlPl)}S~," 
%/2 - - 8vl2 =- SI , ' {~ , , ' I  + (1 -- ~,,')Qm, l}Sl, m: 

By (3.15) a n d  (3.11) we get  0 < (2z," < c~CX~,m + (c~d= + (1 - e ) ) I  for  all e e [0, 1]. 
Hence ,  . , 

M, , "  < g~.~{~(1 --  ~, , ' )CX, ,"  + (1 --  c~(1 --  ~ , , ' ) (1  --  dm))I}S~,~ 

= S ~ ( 1 - ~ / = C X , , ' +  y I ) S ~ , / 2  

for  all y e [ d ' ( 1  - ~ , , ' )  + ~ l , ' ,  1]. T h e  s t a t e m e n t  (3.17) fo l lows b y  0 < Xl, m _< I.  
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Coro l lary  3.7. We adopt the assumptions and notations o f  Lemma 3.6. Further, let 
fl,, = (1 + x/%~) -~. Then, there exists a positive integer ~ independent of  e, 6z and m 
such that 

~O(]~ll,m) --< ~l,m = 1 - -  1 - -  /~%~mm . ~ l - l , 2 m ,  1 - -  ~ 1 - 1 , 2 m + 1 }  1 + mln(1 - 

1- (1 = 1 - - max{~,_l,2, . ,  ~z-1,2,.+1}) 
1 + ,fg2  

for  all v >_ ~. 

Proof: The part ial  derivative f~(x ,y)  = (1 - x) ~ l ( - ( v  + 1)(1 - y)Cx/(1 - d,.) - 
vy + (1 - y)C/(1 - din)) shows that  f~(x,y)  <_ 0 for y e [d,.(1 - ~,,.) + ~,,~, 1] if 
v ___ 7 with g sufficiently large. The  lower bound  7 does not  depend on m because 
the % ' s  are uniformly bounded  smaller than  1, see (3.9). The function f is mono ton i -  
cally decreasing in x. Using the s ta tement  of L e m m a  3,6 we est imate 

~l,,~ = m i n  f (0 ,  y) = m i n  y 
d,,,( 1 - ~z,,~) + ~z,m -< y -< 1 din( 1 - ~z,m) + ~z,m -< Y -< 1 

= 1 -- tim(1 - x/%~)(1 - ~l,m)- [ ]  

Now,  we are able to formulate  and to prove  our  ma in  result which shows that  the 
convergence rate of the d a m p e d  V-cycle of  the F D M G M  depends a t  mos t  on the 
n u m b e r  of  levels. 

T h e o r e m  3.8. Let  ML, O(V, v) be the iteration matrix of  the iteration process (3.5) with 
damping factors tim = (1 + , J ~ ) - 1 .  Further, let ~ be the positive integer determined 
in Corollary 3.7. I f  2v >_ ~ then 

Q(ML, o(V, V)) = IIML, o(V, V)IIL, o <-- 1 -- + ~ j  , 

where 0 < a < 1 is defined in (3.9). 

Proof." We have that  0(M t ,,(v,v)) = Q()Plz,,,(v, v)) = IIMl,,,(v, v)l[z,,,. Since (t - ~ ) /  
(1 + ~/%~) > (1 - x/a)/(1 '+ , J a )  for all m and since er~,,, = 0, 0 < m < 2 L-L~ - 1, 
an inductive appl icat ion of Corol la ry  3.7 proves  Theo rem 3.8~ 

Remark: The s ta tement  of  Theo rem 3.8 holds also true if we d a m p  uniformly, i.e. 
. 

We have numerical  evidence that  a =  a o holds true, e.g. see Table  1. 

In  Fig. 2 the convergence rates of  the F D M G M  (3.5) are plot ted for L e {3, 4, 5} 
with L~ = 0 and for the uniform damping  pa rame te r  fl = tim = 0.9. The  underlying 
Daubechies  wavelet  packets  have order  N = 3. Again, the d a m p e d  Jacobi  i terat ion 
was used as B I M  with the damping  paramete rs  described in Section 3.1 and with 
v~ = 2, v2 = 0. The choice v~ = v2 = 1 leads to the same convergencer  rates. If  we 
replace the Jacobi  i terat ion by the symmetr ic  Gaul3-Seidel i terat ion then we have 
better  cor~vegence rates, However ,  the dependence on the levels remains  unchange& 
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Figure 2. Damped V-cycle convergence rates of the wavelet variation of the FDMGM for different 
discretization step-sizes and for a uniform damping parameter fl = 0.9 

In principle, one can compute reasonable approximations to the tim's by explicit 
formulas for the am'S, see [16], in an efficient way. This parameter  choice gives worse 
convergence rates than the presented rates for the uniform damping parameter  
fi = 0.9 which is larger than the maximum flo = 0.65 of the fl,,'s for N = 3. One 
reason for this behaviour we find in (3.13) where we see that an optimal damping 
parameter  should depend on m, ~ and 6z. For instance, if6~ is fixed then rm(e, 61) tends 
to zero as e ~ 0. Further, an explicit expression of rm given in [16] shows that the 
assumption rm(e, 6z) = 0 is reasonable ire << 6~. Moreover, in the extreme case ~ = 0 
where no damping is needed the proofs in Chapter 7.2 of [10] can be transfered to 
the F D M G M  without any modifications and yield the contraction number  

C 
I[ML, o(Vl, v2)ltL, o -< 

4. Conclusion 

In this paper, we showed that the convergence rate of the sufficiently damped V-cycle 
of the wavelet variation of the F D M G M  depends at most on the number  of levels 
(Theorem 3.8). This is a first V-cycle convergence result for the F D M G M  introduced 
in [11] and [12]. The presented result might be improved by chosing another 
damping strategy than (3.4), that is, both branches of the coarse grid correction are 
damped separately, and by investigating the dependence of the damping parameters 
on m, e and ~ more carefully. 

Appendix 

A. Uniform Boundedness of the am'S 

In this Appendix the proof  of (3.9) will be given. 
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We define 

1 2 N - 1  

= ~=o ake-ik~ i =  ~ - -  1, (A.1) H(co) 2 k= 

with the coefficients ak from (2.1). The trigonometric polynomial H satisfies 

H2(co) + H2(~o + ~) = 1, (A.2) 

see [6] or [7]. Further we will need the positive cosine series 

2 N  - 2  

2"(0) = Fo ~ + 2 ~ F~cos(kco) (A.3) 
k = l  

with the second order connection coefficients F~ (2.4). We have the following 
recursion formula 

22m(co) = 4(IH(co/Z)[22m(co/2) + ]H(e)/2 + ~)122m(c0/2 + r0), (a.4) 

22m+~(co) = 4(IH(co/2 + ~Z)12,~m(co/2) + [H(oo/2)122m(o~/2 + re)), (a.5) 

see [16]. With these definitions we are able to express the numbers % from 
Proposition 3.2 by 

Rm(c~ (a.6) 
= O'm 0_<suP2r~ Rm(co) + 2m(co/Z))cm(co/2 + ~) 

where Rm(co) = IH(co/2)I 2 IH(o~/2 + rc)l=(2m((~/2) - 2m(c0/2 + re)) 2, see also [16]. 

In the lemma below the bracket expression [. ] denotes the 'greatest integer' and ld 
denotes the logarithm with respect to the basis 2. 

Lemma A.1. The inclusion 

0 < min .~1(C0) ~ 4-[ldml2m(o)) N max ,~1(co) < ~ (A.7) 
0 <:o)_< 2 ~  0_<~o_< 2re 

holds true for all m >_ 1. 

Proof." Both inner inequalities follow inductively from (A.4), (A.5) and (A.2). The 
leftmost inequality was shown in Lemma 2.3 (iv) in [16]. 

Lemma A.2. The supremum of the %' s (A.6) is bounded smaller than 1, 

sup{%lm ~N0} < 1. 

Proof: We assume that sup{%lm > 1} -- 1. Then, for any c~ > 0 there exists an 
integer m, > 1 and an c% ~ [0, 2r0 such that 

Rm~(o3,) 
> l - - a ,  

%~ - Rm~(co~) + 2"'(co,/2)2"~(~,/2 + ~) - 

which is equivalent to 

16-t ld mJ2m,(oJ~/2)2~(COJ2 + ~) 
> > 0. (A.8) 

16 -~ + 16 -E~a mj2m'(c%/2)2"'(C%/2 + re) 
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By (A.7) and by ]H(co/2)12lH(o3/2+zc)]2< 1/4 which follows from (A.2) we 
derive 0 < 16 -t~dmJRm=(co=) <_ (maxo<~_<2=21(co)) 2. Therefore,  (A.8) implies that  
16 -tld m=12r"~176 + g ) ~  0 as e tends to zero. However ,  this contradicts 
4-[ldml)~m(c0) _> mino_<o,_<2=21(c0) > 0, see (A.7). Hence, sup{%lm > 1} < 1. Since 
% < 1 Lem ma  A.2 is proved. 

B. An Approximation Property 

Our  goal is to verify the approximat ion  proper ty  stated in Lemma B.1. 

Lem ma  B.1. Let  the matrices Az, m be defined as in (3.1) and the mapping U as in 
(3.12). Then, 

[IA,-~ - g ' ( g & , m g ' ) - l g l l  <_ CA(~I  2 ,  

where C A is a constant being independent o f  e, e l and m. 

First we note  that  2~ = (~[-2~m(27C/fl/nl), fl = 0 , . . . ,  n l - -  1, are the eigenvalues of c[" 
(3.2) where the function 2 m is given in (A.3). All circulant matrices of the dimension 
n t share the same system of /2 -o r thonormal  eigenvectors v,, # = 0, . . . ,  nt - 1, 

1 
(V#) k = - -  e-i2~z~k/nt, 

see [8]. Consequently,  the matrices At, m have the eigenvalues 

Am;,.~ = af2(e,~m(2~a/n0 + .~~ + 1. 

0 _< #, v _< n~ - 1, with corresponding eigenvectors v,,~ = v~ | v,. 

Lemm a  B.2. We have that 

I[Vt(OAt,mOt)-lVAt,m][ < C, 

where the constant C does not depend on e, at or m. 

Proof." The proof  will be very technical and we will use results proved in [16]. 

The matr ix UAt, m U ~ has the following block structure 

UAt, m U t =  \ B t A l _ l , 2 m + l  

with B m,~ = hcTg t. Again, c~_1 = ec~_ 1 | I and cz-~ is a circulant matrix, 

"'~ = 6~-_zl Cir,, ~(Fo ~'~ F~' . . . . . . . . . . . . . . . . .  , Cl-1 F ~ N -  2 0 "'" 0 I ' ~ _ 2 N  /21) 
determined by the (mixed) connect ion coefficients 

r~', ~ = f ~  (oem)'(x - k)(O2"+l) '(x)dx.  

The eigenvalues of ct-lm'c are denoted by 2'~ "~ = 3~_212m'c(21rp/nz_l), 0 _< la -< nl-1 - 1, 
where 2m'~(C0) V2N-2 F,"'Ce -ik~ satisfying / & = 2 - 2 N  k 
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.U"'~(co) = H(co/2)H(co/2 + ~)(2m(co/2) - 2"(co/2 + ~)), (B,1) 

with H as in (A.1). The inverse of UAI, m U t can be expressed by its b lock entries 

(UA t roUt) -1 ( A o l (  I - -  B A 1 1 ~ - I B t A o  1) --Ao1BA11~-~-l~ 
, = \ _ A ~ Z _ ~ B t A o l  A ~ Z _  ~ ] (B.2) 

where X = I -  A~BrAo~B.  For  convenience we set A o := Az_l,2m and Az : -  
A~_l,Zm+~. The  matr ix  S is invertible because 

0(I - Z) _c ~ < 1 ( B . 3 )  

due to (3.8) and (3,9). Let  f be in R"~. Then, 

IIU'(UA~,~Ur)-~UA,,mf[t 2 = ~ ~ Am;.,~Am;~,~ 
#, v ct, fl 

x ( (UA,,,. Ut) -~ Uv., . ,  (UAz. m U') -1Uva,~ > ( f ,  vv, .)  

x </ ,~ ,~>.  

A simple calculat ion shows that  

(H((%)H(cov)~z..2~] 
Uvu, v = \ G(co.)H(co~)52.,2~/ " 

(B.4) 

Here,  co. = 2~p/n I and G(co) = 2 -1 ~ 2 { o l  bke -ik~ with the bk's f rom (2.3). The  vec- 
tors v2.2~ are tensor  products ,  v2. 2~ = v2. | v2~, where (v2u)k = x f2  e-i2~2"k/"'/xfn~l, 
k = 0 . . . . .  n~_~ - 1. No te  that  g2u, 2~ is an eigenvector of the circulant matrices A o, 
A 1, B and B t, respectively. Using (B.4) as well as (B.2) leads to 

with 

( U A l , m U t ) - l u v . , v  = (r" 'vv2" '2v  t 
\ t . ,vV2u.2v/  

= H(co~)I-l(cojA:,~,2~,2~(1 + A~,2.,2~ i"#, v --1 --1 

--1 c 2 --1 c -1 
IA2,.,2.,2J A2,.~2.,2~ 2.,2~A2m+l;2.,zJ), X (A2m+l;2.,2v -- A2rn; 

-i -i -c  -1 1), t#, v = G(co.)H(cov)A2m+l;2.,2vA z;2l~,2v(- A2m;2.,2vA2m;2.,2v + 

where c _ - 2  m,c - 1  c 2 - 1  A2m;2.,2~-e6t_12 (2co.) and Az;2.,2~= 1-A2m;2.,2~lA2m;2.,2~[ A2m+l;2u, 2~. 
Since 

< ( V A l .mUt )  -1 U v . .  v, ( U Al.m Ut)  -1 Uva, fl ) = (r.,vra,/~ + t#,vta, fl) (~2.,2v, ~2a, 2p) 
- t ~ , ~  v,p = (r . ,&,~ + t,,,~t~,~)3,,, 3 . ,  

(here A~ff = 1 if I# - ~[ = knt/2, k ~ Z, ad A~ff = 0 otherwise) we have that  

IIU'(UAz,~Ut)-~UA~,mfl[ < 31lfil max  A.;u . . (%, . I  + 16,~l)- 

In the last step of the p roof  we show that  the m a x i m u m  is independent  of e, 6~ and 
m. Therefore  we supply a bunch of estimates. First, 

-- - -  A2m;2. .2v[A2m;2, .2vl  A2m+1;2,.2v < (7 A_r;2#,2v > 1 G and -1 c 2 -1 (B.5) 
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by (B.3) and (3.8), (3.9), respectively. Further,  

IH(cou)H(co~)lAm;u,~ < 4 sup IH(co)H(r/)l(e2m(co) + 2~ + 62) 
A2m;2.,2v 0<co, r/_<2~ g22m(2co) + 2~ + 32-1 

t IH(co)l 2m(CO) IH(~/)I 2o(t/) ~ 2 }  
< 4 max sup , sup , . 

~o_<~_<2~ 22m(2co) o_<._<2~ 2~ a~_, 
k .1 k .7 

V 
= E l  = E 2  

I fm > 1 then (A.7) implies that  E 1 is uniformly bounded in m. For m = 0, E 1 equals 
E 2. Due to part  (ii) of Lemma 2.3 in [-16] 2~ *) is equal to zero if and only if 
co* e {0, re, 2re}. For  co* ~ {0, 2~c}0 the limit lira . . . .  2~176 exists. In the case 
co* = re, the function H(co) has a zero at least of order 3 (N > 3), see [6] or [7]. 
However, the zero of 2~ in co* = zc is only of order 2, Lemma 2.1 (i) in [16]. 
Consequently, E1 and Ez are finite and hence, 

I H(cou)H(co~)lA,..,~ 
' ' <_ C1, C1 ~ C,(e,6t, m). (B.6) 

A2m;2tt.2v 
Next, 

I G(co~,)H(co~)lA,,.,, I a(~o)H(~)l (e2"(co) + 2~ + 62) 
' ' _< 4 sup e22m+,(2co ) + 2o(D/) + 62__ 1 A2m+1;2#,2 v o <~o,t/_< 2u 

t 2o(co) i.(.)120(,) # 
< 4 max sup ~ 2 ~  ,, sup , ~ . 

L0_<o~<Z~ A. tZ (-O) 0_<.<2r~ 2~ 6z-lJ 
-r -.r 

= E  3 ~ E  2 

Using (A.7) we are able to estimate E 3 _< maxo, 21 (co)/min~ 21(co) for m > 1. Hence, 
E 3 is uniformly bounded in m and 

I a(cou)n(co~)lA,,.u~ 
' " < C2, C2 r C2(e,61,m). (B.7) 

A2m+l;2/t,  2v 

Finally, let j be 0 or 1, then 

el2 m'~(2co) l IA2rn;2#'Zv[ ~ 4 s u p  
Agm+j;zu,2~ o_<o,.~<2~ e22m+J(2co) + 2~ + 62-, 

12",~(2co)1 
_< 4 sup 

0_<o~_<2~ 22m+J(2CO) 

Y 
= E 4  

We have that  ]2m'c(2co)l ~ max~ 2re(co) by (B.1) and by IH(co)H(co + 7c)[ < 1/2. The 
cases j = 1 a n d j  = 0 with m > 1 yield E~ _< max,o 2*(co)/min~,21(co). It remains to 
consider j = 0 and m = 0. However, this was already done in Lemma 2.4 of [16]. 
Altogether we have shown that  

[A~m;2/t'2v] ~ C 3 ,  C 3 5~ C3(e, Ol, m), (B.8) 
A 2rn +j; 2,u. 2v 



170 A, Rieder and X. Zhou 

forj  = 0, 1. We finish the proof  of Lemma B.2 by 

Am;,,~lru,vl <_ C1(1 + (1 - a ) - l ( o  + C3)), 

Am;,,vlt,,~l < C2(1 - o ) - l ( C 3  -[- 1) ,  

where we have used (B.5), (B.6), (B.7) and (B.8). 

Proof ofLemma B.I: We will need the estimate I](I - U'U)A?,ll[ < C'6 2 which can 
be verified by a simple modification of the proof  of Lemma 5.3 in [ 16]. The constant 
C' does not  depend on e, 6t or m. N ow ,  

I lAz-~-  U~(UAt,,,,U')-~UII = II(/- U'(UA,.,.U9 ~UA,,,~)(I- s~g)A[~ll 

_< I1(I-  Ut(UAz,mUt)-IUA,,,,,)II I1(I-  U'U)A?,lll 

_< 

with C A = (1 + C)C' where the constant C is as in Lemma B.2. 
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