Skip to main content
Log in

Iterations for solving linear variational inequalities on domains with nonlinear boundaries

Iterationsverfahren für lineare Variationsungleichungen auf Bereichen mit gekrümmten Rändern

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper deals with numerical methods for solving linear variational inequalities on an arbitrary closed convex subsetC of ℝn. Although there were numerous iterations studied for the caseC=ℝ n+ , few were proposed for the case whenC is a closed convex subset. The essential difficulty in this case is the nonlinearities ofC's boundaries. In this paper iteration processes are designed for solving linear variational inequalities on an arbitrary closed convex subsetC. In our algorithms the computation of a linear variational inequality is decomposed into a sequence of problems of projecting a vector to the closed convex subsetC, which are computable as long as the equations describing the boundaries are given. In particular, using our iterations one can easily compute a solution whenC is one of the common closed convex subsets such as cube, ball, ellipsoid, etc. The non-accurate iteration, the estimate of the solutions on unbounded domains and the theory of approximating the boundaries are also established. Moreover, a necessary and sufficient condition is given for a vector to be an approximate solution. Finally, some numerical examples are presented, which show that the designed algorithms are effective and efficient. The exposition of this paper is self-contained.

Zusammenfassung

Diese Arbeit behandelt numerische Methoden zur Lösung linearer Variations-Ungleichungen auf einer abgeschlossenen konvexen Teilmenge des ℝn. Es gibt zwar zahlreiche Iterationsverfahren für den FallC=ℝ n+ für den Fall einer beliebigen abgeschlossenen konvexen TeilmengeC wurde aber nur wenig vorgeschlagen. Die wesentliche Schwierigkeit in diesem Fall liegt in den Nichtlinearitäten des Randes vonC. In dieser Arbeit werden Iterationsverfahren zur Lösung linearer Variations-Ungleichungen auf einer beliebigen abgeschlossenen konvexen TeilmengeC entwickelt. In unseren Algorithmen wird die Berechnung einer linearen Variations-Ungleichung zerlegt in eine Folge von Projektionen eines Vektors auf die abgeschlossene konvexe TeilmengeC, die berechnet werden können, solange die Bestimmungsgleichungen des Randes gegeben sind. Insbesondere kann mit unseren Iterationsverfahren leicht eine Lösung berechnet werden fürC als Würfel, Kugel, Ellipsoid etc. Außerdem werden Näherungs-Iterationen, Abschätzung der Lösungen für unbeschränkte Bereiche und die Theorie der Randapproximation untersucht. Weiters wird eine notwendige und hinreichende Bedingung dafür angegeben, daß ein Vektor eine Näherungslösung ist. Schließlich werden einige numerische Beispiele präsentiert, die zeigen, daß die vorgestellten Algorithmen effektiv und effizient sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, G.: Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl.58, 1–10 (1977).

    Google Scholar 

  2. Ahn, B. H.: Solution of non-symmetric linear complementarity problems by iterative methods. JOTA33, 175–185 (1981).

    Google Scholar 

  3. Cottle, R. W., Golub, G., Sacher, R. S.: On the solution of large structured linear complementarity problems: the block partitioned case. Appl. Math. Optim.4, 347–364 (1978).

    Google Scholar 

  4. Cryer, C. W.: The solution of quadratic programming problems using systematic over relaxation, SIAM J. Control9, 385–392 (1971).

    Google Scholar 

  5. Dafermos, S.: Traffic equilibrium and variational inequalities. Transport. Sci.14, 42–54 (1980).

    Google Scholar 

  6. Dafermos, S.: An iterative scheme for variational inequalities. Math. Prog.26, 40–47 (1983).

    Google Scholar 

  7. Fridman, V. M., Chernina, V. S.: An iteration process for the solution of finite-dimensional contact problem. USSR Comp. Math. Math. Phys.8, 210–214 (1967).

    Google Scholar 

  8. Glowinski, R. Lions, J. L. Tremolieres, R.: Numerical analysis of variational inequalities. Amsterdam: North-Holland 1981.

    Google Scholar 

  9. Isac, G.: Fixed-point theory, coincidence equations on convex cones, and complementarity problems. Contemp. Math.72, 139–155 (1988).

    Google Scholar 

  10. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. New York: Academic Press 1980.

    Google Scholar 

  11. Kostreva, M. M.: Direct algorithms for complementarity problems. Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1976.

    Google Scholar 

  12. Kostreva, M. M.: Block pivot methods for solving the complementarity problems. Lin. Alg. Appl.21, 207–215 (1978).

    Google Scholar 

  13. Mangasarian, O. L.: Solution of symmetric linear complementarity problems by iterative methods. JOTA22, 465–485 (1977).

    Google Scholar 

  14. Moré, J. J.: Coercivity conditions for nonlinear complementarity problems. SIAM Rev.16, 1–16 (1974).

    Google Scholar 

  15. Ostrowski, A. M.: Solution of equations and systems of equations, 2nd edn. New York: Academic Press 1969.

    Google Scholar 

  16. Ortega, J. M.: Numerical analysis, a second course. New York: Academic Press 1972.

    Google Scholar 

  17. Pang, J. S. Chan, D.: Iterative methods for solving variational and complementarity problems. Math. Prog.24, 284–314 (1982).

    Google Scholar 

  18. Raimondi, A. A., Boyd, J.: A solution for finite journal bearing and its application to analysis and design, III. Trans. Am. Soc. Lubr. Eng.1, 194–209 (1958).

    Google Scholar 

  19. You, Z. Y., Zhu, S. Q.: A constructive approach for proving the existence of solutions of variational inequalities. Kexue Tongbao31 (1986).

  20. You, Z. Y., Zhu, S. Q.: On global convergence and approximate iteration of the linear approximation method for solving variational inequalities J. Comput.4 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S.Q. Iterations for solving linear variational inequalities on domains with nonlinear boundaries. Computing 54, 251–272 (1995). https://doi.org/10.1007/BF02253616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253616

Key words

Navigation