
J. Cryptology (1996) 9 :1-19  
Journal of 

CRYPTOLOGY 
© 1996 International Association for 
Cryptologic Research 

Substitution-Permutation Networks Resistant to 
Differential and Linear Cryptanalysis* 

Howard M. Heys and Stafford E. Tavares 
Department of Electrical and Computer Engineering, 

Queen's University, Kingston, Ontario, Canada K7L 3N6 

Communicated by Thomas A. Berson 

Received 11 November 1993 and revised 22 September 1994 

Abstract .  In this paper we examine a class of product ciphers referred to as 
substitution-permutation networks. We investigate the resistance of these cryptographic 
networks to two important attacks: differential cryptanalysis and linear cryptanalysis. In 
particular, we develop upper bounds on the differential characteristic probability and on 
the probability of a linear approximation as a function of the number of rounds of substi- 
tutions. Further, it is shown that using large S-boxes with good diffusion characteristics 
and replacing the permutation between rounds by an appropriate linear transformation 
is effective in improving the cipher security in relation to these two attacks. 

Keywords. Product cipher, Substitution-permutation network, S-box, Differential 
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1. Introduction 

The class of  product ciphers considered in this paper is based on principles introduced 
by Shannon [28]. Shannon suggested that secure, practical product ciphers may be 
constructed using a "mixing transformation" consisting of a number of layers or rounds 
of "confusion" and "diffusion". The confusion component is a nonlinear substitution 
on a small subblock and the diffusion component is a linear mixing of the subblock 
connections in order to diffuse the statistics of the system. 

Feistel [13] and Feistel et  al. [14] were the first to introduce a practical architecture 
based on Shannon's concepts with a network structure consisting of a sequence of rounds 
of small substitutions (referred to as S-boxes), easily implemented by table lookup and 
connected by bit position permutations or transpositions. Such ciphers are generally 
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referred to as substitution-permutation networks or SPNs. The fundamental principles 
of an SPN form the foundation for many modern product ciphers, including DES [20], 
FEAL [29], and LOKI [10]. 

Recent cryptanalysis techniques have had a notable effect on the perceived security 
of many product ciphers. For example, DES has been found to be theoretically crypt- 
analyzable by differential cryptanalysis using a chosen plaintext approach [5] and by 
linear cryptanalysis using a known plaintext approach [ 18]. In this paper we examine 
the security of  SPNs with respect to these two powerful cryptanalysis techniques and 
suggest structures that aid in resisting the attacks. In particular, we develop upper bounds 
on the probability of  a differential characteristic and on the deviation of the probability of  

i The objective of  such an analysis is to a linear approximation from the ideal value of  ~. 
determine a flexible architecture that can be efficiently implemented in as few rounds as 
possible to provide suitably small probabilities for differential characteristics and linear 
approximations. 

2. Background 

We consider a general N-bit SPN as consisting of  R rounds ofn  × n S-boxes. The number 
of  S-boxes used in each round is represented by M where M = N/n. The plaintext 
and ciphertext are N-bit vectors denoted as P = [PI P2 P,v] and C = C1 C 2  " " " CN], 
respectively. An S-box in the network is defined as an n-bit bijective mapping S: X --~ Y 
where X = [Xl X2 . . .  X,]  and Y = [Yl I"2 ' "  Y,]. A simple example of  an SPN is 
illustrated in Fig. 1 with N = 16, R = 4, and n = 4. 

In general S-boxes may be keyed using one or both of the following methods: 

1. Selection keying: key bits are used to select which mapping from a set of  mappings 
is to be used for a particular S-box. 

2. XOR mask keying: key bits are XORed with the network bits prior to entering an 
S-box. 

p/amtext 

P l 1 " " 1  I [ I I ] I I I I I I P 1 6  

?:It, 
C. ... C16 

ciphertext 

Fig.  1. SPN with N = 16, R = 4, and n = 4. 
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Note that method 2 may actually be considered as a special case of method 1. Method 2, 
however, ensures that all mappings in the set of possible mappings for an S-box are 
from the same cryptographic equivalence class [30]. We assume in our discussion that 
the network is keyed using XOR mask keying by XORing N bits of key (as determined 
by the key-scheduling algorithm) before the first substitution, after the last substitution, 
and between all substitutions. Decryption is performed by applying the key-scheduling 
algorithm in reverse and using the inverse S-boxes. 

Rather than strictly confining ourselves to the basic form of substitutions connected 
by permutations, in this paper we consider the more general model of substitutions 
connected by invertible linear transformations. However, for consistency, we still refer 
to the more general architecture as an SPN. 

Many papers have examined the cryptographically desirable properties of SPNs and 
their components. Acknowledged design criteria for the network S-boxes include non- 
linearity [26], [19], [3], [21] and information-theoretic properties [15], [12]. Preferred 
permutation structures promote the influence of input bits [16], [4], [11]. 

Of particular importance to our discussion is the notion of nonlinearity and we use 
the following nonlinearity measures when referring to a boolean function or an S-box. 
The nonlinearity of an n-input boolean function, f :  {0, 1 }n ~ {0, 1 }, is defined as the 
Hamming distance to the nearest affine function: 

UI ..... U.,V~{0,1} i=1  
(I) 

Consequently, the nonlinearity of an n × n bijective mapping or S-box S is defined as 
the minimum nonlinearity of all nonzero linear combinations of output functions: 

NL( S) = min NL , 
WI ..... W,,~{0.1}, all Wi¢O 

(2) 

where f~ represents the n-input function of the ith output of the S-box. Letting S -~ 
represent the inverse of S-box S, it can be shown that NL(S -I)  = NL(S) [22]. 

3. Two Important Classes of Cryptanalysis 

In this section we discuss two important classes of cryptanalysis which have had signif- 
icant success against product ciphers. 

(a) Differential Cryptanalys& 

In a series of papers [5]-[8] Biham and Shamir successfully demonstrate the suscepti- 
bility of several product ciphers to differential cryptanalysis. Notably, differential crypt- 
analysis has been successful in breaking weakened versions of DES and can theoretically 
compromise the security of the full 16-round DES algorithm using 247 chosen plaintexts. 
As well, differential cryptanalysis has been successfully applied to the FEAL cipher for 
up to 31 rounds of substitutions. 
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Differential cryptanalysis is an attack which examines changes in the output of the 
cipher in response to controlled changes in the input. In general, we are interested in bit 
changes or XOR differences within the network when two plaintexts, P' and P" are se- 
lected as inputs. We represent the XOR difference of the two plaintexts by AP = P' @ P". 
Let the input and output difference to a particular round i be represented by AUi and 
AVi, respectively. Differential cryptanalysis relies on the existence of highly probable 
"characteristics" where an r-round characteristic, f2r, is defined as a sequence of differ- 
ence pairs: ~'2 r = { ( A U I ,  A V I )  . . . . .  ( A U r ,  AVr)}. The algorithm tries an appropriate 
number of chosen plaintexts with AP = AUI and counts the number of times that a 
subkey consisting of a subset of the key bits is consistent with the ciphertext differ- 
ence, AC, assuming that the characteristic has occurred. If the characteristic occurs with 
probability Pnr, the correct subkey bits are consistent with a probability of at least Par. 
After an appropriate number of trials (typically several times more than 1/pfz,. chosen 
plaintext pairs) the correct subkey will be counted significantly more times than incorrect 
subkeys. 

In this paper we assume that a characteristic probability is determined by the product of 
the probabilities of the occurrence of a one-round difference pair. Letting P(AUi, AVi) 
represent the probability of occurrence of the ith-round difference pair, then 

r 

Pnr = I-~ P(AUi, AVi). 
i=l  

(3) 

Equation (3) gives exactly the characteristic probability taken over the independent 
distributions of plaintext and key. Hence, it strictly applies only when the plaintext and 
the keys applied at each round are independent and uniformly randomly selected for the 
encryption of each plaintext pair. In practice, (3) has been found to provide a reasonable 
estimate of the characteristic probability in ciphers with mutually dependent round keys. 

Differential cryptanalysis of a basic SPN can be applied similarly to the attack on 
DES-like ciphers. For a DES-like cipher, differential cryptanalysis determines key bits 
associated with the input to the last round function by using knowledge (directly available 
from the right half of the ciphertext) of the two input values (and their difference) to 
the last round function combined with probabilistic knowledge of the output difference 
of the. last round function. Similarly, differential cryptanalysis of a basic SPN can be 
used to determine the key bits XORed to the output of the last round of S-boxes by 
using knowledge of the two ciphertext values (and their difference) and the probabilistic 
knowledge of the input difference to the last round of S-boxes. 

Hence, a differential attack of an SPN may be successful if the cryptanalyst is aware 
of a highly probable characteristic for the first R - 1 rounds, f2R-1. The attack tar- 
gets the round R S-boxes that are affected by the output changes of the characteristic, 
AVR_~. The targeted subkey contains the key bits which are XORed with the output of 
the targeted S-boxes. Consequently, trying all subkey values, the cryptanalyst can use 
the known ciphertext values to decrypt the portion of round R associated with the tar- 
get S-boxes. (Ciphertext pairs which have bit changes in the output of nontargeted 
S-boxes may be discarded since they cannot be generated by characteristic f2n-l). If 
the XOR difference of the target S-box inputs determined by the partial decryption 
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corresponds to AVn- l ,  then the corresponding subkey count is incremented. The actual 
subkey may be deduced as the key which is consistent most frequently over a number 
of trials. 

Similarly to the analysis of  the differential cryptanalysis of DES by Biham and Shamir 
[5], it can be assumed that, in circumstances where a highly likely (R - l)-round char- 
acteristic of probability p~_~ is known, the number of chosen plaintexts required to 
determine the subkey may he approximated by No where 

l 
N o -  P~R-," (4) 

In practice, the number of chosen plaintexts required will be greater than No since we 
have neglected the factor of 2 (which arises from the fact that the chosen plaintexts are 
encrypted in pairs) and since many incorrect subkeys, as well as the correct subkey, are 
counted at least once. 

Let AX and AY represent the input and ouput XOR differences, respectively, to 
an S-box when a plaintext difference AP is applied to the cipher. The existence of 
highly probable characteristics depends on two factors: the distribution of S-box XOR 
difference pairs, (AX, AY), and the diffusion of bit changes within the network. We 
define the probability of an S-box XOR pair (AX, AY) to be the probability that AY 
occurs given that one of the input values for X is randomly selected and the other is 
related by the difference AX. Let the probability of the most likely S-box XOR pair 
(other than (AX = 0, AY = 0)) be p~. 

Characteristics derived from S-box XOR pairs with high probabilities will typically 
occur with high probability. Several authors [ 12], [21 ], [2] have related the information- 
theoretic and nonlinear (bentness) properties of S-boxes to minimizing p~ and suggest 
that S-boxes based on these principles provide resistance to differential cryptanalysis. 
In [25] O'Connor shows that, for large n, the S-box XOR pair probability is expected 
to be at most n/2 n-I . Hence, the expected maximum XOR pair probability decreases as 
the size of the S-box is increased. For 8 x 8 S-boxes, the expected maximum XOR pair 
probability satisfies p~ _< 2 -4.  

High probability characteristics will also occur when poor diffusion of bit changes 
results in a characteristic involving a small number of S-boxes [17], [25]. Consider, for 
example, a four-round characteristic for an SPN with 4 x 4 S-boxes that have a maximum 

l XOR pair probability of pa = ~. It is possible that a characteristic might exist with only 
one S-box affected in each round, i.e., an input change of one bit leads to an output 
change of one bit in all rounds. This is illustrated by the highlighted lines in Fig. 2(a). 
Since such a characteristic involves the fewest number of S-boxes possible, it is clear 
that the probability of a four-round characteristic is bounded by 

P~24 ~ -~- 2 -8. (5) 

Assume now, instead, that all S-boxes are such that a one-bit input change must cause 
at least two output bits to change and that the permutation used in the network is such 
that no two outputs of an S-box are connected to one S-box in the next round. The 
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Fig. 2. High probability characteristics. 
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four-round characteristic which affects the fewest number of  S-boxes is similar to that 
1 shown in Fig. 2(b). Assuming p~ = ~, we now find that the characteristic probability is 

bounded by 

Pa, -< = 2 -12, (6) 

which is a significantly smaller characteristic probability than the previous case. 

(b) Linear Cryptanalysis 

In [ 18] Matsui presents an effective linear cryptanalysis method for DES. The attack uses 
a known plaintext technique to extract key information by finding a linear equation con- 
sisting of plaintext, ciphertext, and key terms which is statistically likely to be satisfied. 
The full 16-round DES algorithm is susceptible to the attack with 247 known plaintexts 
and it is shown that the attack can even be modified to be successful on an eight-round 
version of DES with 229 encrypted ASCII-coded English blocks using a ciphertext-only 
attack. In order to attack an SPN using the linear cryptanalysis technique, the cryptanalyst 
is interested in the best R-round linear approximation of the form 

Pi~ ~ " "  • ['iv @ Cj, @ . . .  ~ Cj¢ = Kk, @ . . .  ~ Kk,. (7) 

I f  we let PL represent the probability that (7) is satisfied, in order for the linear approxi- 
1 and the best expression is the equation for which I PL - ½l is mation to be valid PL :~ 

maximized. If  the magnitude IPL - ½1 is large enough and sufficient plaintext-ciphertext 
pairs are available, the equivalent of  one key bit, expressed by the XOR sum of the key 
bits on the right-hand side of  (7), may be guessed as the value that most often satisfies 
the linear approximation. 

A basic linear attack, presented as Algorithm 1 in [18], may be executed using an 
algorithm based on a maximum likelihood approach. If PL > 1, then the sum of the 
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key bits is assumed to be 0 if the left-hand side of (7) equals 0 for more than half the 
known plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be 1 if 

i then the sum of the the left-hand side equals 1 for more than half the pairs. If  PL < 7, 
key bits is assumed to be 1 if the left-hand side of (7) equals 0 for more than half the 
kr~own plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be 0 if 
the left-hand side equals 1 for more than half the pairs. 

An appropriate linear expression is derived by combining a number of linear ex- 
pressions for different rounds such that any intermediate terms (i.e., terms that are not 
plaintext, ciphertext, or key terms) are cancelled. Let the best linear approximation of an 
S-box, in the form a l X l ~ . . . • an Xn = b l Y1 ~ " "" @ b, ,  Y , , ,  be satisfied with probability 
p, assuming input X is randomly selected. In this paper we consider the probability that 
a system linear expression is satisfied to be taken over the independent distributions of 
plaintext and key. Hence, since the key bits XORed to the network bits prior to entering 
the S-boxes are independent and uniformly random, the inputs to the S-boxes involved in 
the linear approximation are independent and uniformly random. Under this assumption, 
it then follows from Lemma 3 in [ 18] that 

1 2,~-x IPL -- 71 ----- I m -  ½l = , (8) 

where ce is the number of S-box linear approximations combined to give the overall 
linear approximation. 

In Lemma 2 of [ 18] Matsui develops an expression for the number of plaintexts 
required by the basic linear attack (Algorithm I in [18]). From this it is shown that the 
number of known plaintexts required to give a 97.7% confidence in the correct key bit 
may be approximated by NL where 

NL = I P '  - ½l - z .  (9) 

It is obvious that NL can be increased by decreasing IPL -- ½1. Hence, selecting S-boxes 
• I will clearly aid in thwarting the attack. As well, the larger the number for which p~ ~ 7 

of S-boxes, ~, involved in the system equation, the smaller I PL -- ½1 and the more known 
plaintexts required for the cryptanalysis. 

4. S-box Design Criteria 

In this section we consider S-box design criteria that are relevant to the two attacks 
and examine the procedures that may be followed to generate S-boxes that satisfy such 
design constraints. 

(a) D i f f u s i o n  

As suggested in the previous section, S-boxes that effectively diffuse bit changes increase 
resistance to differential cryptanalysis. The diffusion properties of an S-box can be 
considered by examining the relationship between input and output XORs. Let w t  ( . )  
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represent the Hamming weight of  the specified argument and consider the following 
definition. 

Definition 1. An S-box satisfies a diffusion order o f  2., X > 0, if, for wt (AX) > 0, 

{~ + 1 -- wt (AX) ,  wt (AX)  < 2. + 1, 
w t (AY)  > 0, otherwise. (10) 

Note that all bijective S-boxes satisfy 2. = 0 and that DES S-boxes satisfy 2. = 1 [9]. As 
well, the diffusion order is bidirectional, i.e., the inverse S-box S -1 satisfies the same 
diffusion order as S-box S. 

Other properties related to the diffusiveness of  an S-box are the strict avalanche cri- 
teflon (SAC) [31] and the propagation criterion [27] (also referred to as higher-order 
SAC [1]). An S-box satisfies SAC if, given that a single input bit is complemented,  

I Similarly, an S-box satis- the probability that each output bit changes is exactly : .  
ties the propagation criterion order k if each output bit changes with a probability of  
! when k or less input bits are complemented. The SAC and propagation criterion prop- 2 
erties of  an S-box imply that the expected number of  output changes will not be small 
(i.e., on average half the output bits will change) even if the number of input changes is 
small. However, unlike the diffusion order of  an S-box, SAC and the propagation crite- 
rion cannot be used to guarantee a lower bound on the number of  output changes given a 
small number of  input changes. As will be seen in Theorem 1, it is this guaranteed lower 
bound on the number of  output changes defined by the diffusion order which is useful 
in ensuring low probability differential characteristics. 

Let FI represent the set of permutations for which no two outputs of  an S-box are 
connected to one S-box in the next round. Note that the set FI will only be nonempty if 
M > n .  

L e m m a  1. Let 7:~-t and ~r+l represent the number o f  S-boxes included in a charac- 
teristic f rom round r - 1 and round r + 1, respectively. For an SPN with M >_ n S-boxes 
in each round, using a permutation Jr E 1-I and S-boxes with a diffusion order of) , ,  

'P~-i + ~r~+l > ~ . + 2 .  (11) 

Proof.  Let Wx and w~, represent the number of input and output bit changes for a 
particular S-box in round r selected such that w x  ~ O. From the constraint placed on the 
permutations of  FI and considering that M > n and wx ,  wy < n, we see that apt-1 > Wx 

and ¢rr+l > wr .  Hence, 

7:~-1 + ~r+l > w x  + wv.  (12) 

From the definition of  diffusion order, w x  + wv > 2. + 2 and the inequality of  (11) 
follows. [] 

Theorem 1. Consider an SPN o f  R rounds o f  M S-boxes such that R is a multiple 
o f  4 and M > n. Using a permutation 7r E I-I, the probability o f  an (R - 1)-round 

characteristic satisfies 

P~R-, < (Pr) (O'+2)/2)R-(x+l), (t3) 
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where all S-boxes satisfy diffusion order L and p~ represents the maximum S-box XOR 
pair probability. 

Proof. An upper bound on the most probable (R - 1)-round characteristic can be de- 
rived by considering the concatenation of the most probable (R -4) - round characteristic 
and the most probable three-round characteristic. Further, a bound on the most likely 
(R - 4)-round characteristic can be determined as (R - 4)/4 iterations of the most prob- 
able four-round characteristic, and hence, the (R - 1)-round characteristic probability 
satisfies 

_ [ n m a x ~ ( R - 4 ) / 4 £ n m a x ' ~  
Pf2R_~ < ~.~,J~2 4 J ~'/'J~'~3 / '  (14) 

where p ~  and p~aX are upper bounds on the probability of three- and four-round 
characteristics, respectively. 

In general, an upper bound on a characteristic probability can be derived by determin- 
ing the characteristic which involves the fewest number of S-boxes. From Lemma 1, the 
minimum number of S-boxes used by a characteristic in any four consecutive rounds is 
2(X + 2) and therefore 

p~aX ----_ (p~)2(X+2). (15) 

As well, by considering that the constraint of Lemma 1 applies to the first and third 
rounds of a three-round characteristic and that the second round has only one S-box, the 
minimum number of S-boxes used by a characteristic in any three consecutive rounds is 
L + 3. Therefore, 

p~aX ----- (p8)~.+3. (16) 

Combining (14), (15), and (16) results in (13) and the theorem is proven. [] 

From Theorem 1 we see that S-boxes satisfying a high diffusion order can be used 
to decrease the upper bound on characteristic probabilities and thereby strengthen a 
network against differential cryptanalysis. One obvious approach to generate such S- 
boxes would be to select randomly an n x n bijective mapping and discard those which 
do not satisfy the appropriate property. Unfortunately, we have found experimentally that 
S-boxes which satisfy diffusion orders of ~ > 1 are extremely rare and cannot generally 
be found by random search. The following lemma is useful in determining the likelihood 
of finding such S-boxes. 

Lemma  2. Assume that the event that an S-box XOR pair (AX, AY) violates diffusion 
order L = 1 is independent o f  other XOR pairs violating X = 1. Then the probability 
that a randomly selected n x n bijective S-box satisfies diffusion order X = 1 is given by 

n.2n-I  

P()~ = 1 ) =  -2-T_- ~ . 

Proof. Since the assignment of any two output values and their corresponding AY is 
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random, the probability that the XOR pair (AX, AY) satisfies ~. = 1 given wt (AX) = 1 

is simply 

P ( w t ( A Y )  > 1 I w t (AX)  = 1) = 
#{AY I wt (AY)  > 1} 

#{AY I wt (AY)  # 0} 
2" - 1 - n  

2" - 1 
(18) 

Equation (17) follows by utilizing the independence assumption with the exponent deter- 
mined by considering the number of unique input pairs for which wt (AX) = 1. Letting 
X' and X" represent the S-box inputs such that AX = X' @ X", it may be seen that 

#{(X', X ' )  I w t ( A X  = X ' @  X ' )  = 1} = n .  2 ~-I (19) 

and the lemma is proven. []  

We have found experimentally that (17) is a good approximation of the probability 
that an S-box satisfies ~. = 1. Table 1 lists the estimated probability from (17) that an 
S-box satisfies ~. = 1 for a number of  values of  n, as well as the experimental value 
determined as described below. It is clear that, as n increases, S-boxes which satisfy 
~. = 1 become increasingly impractical to find by random search. 

Consider S-boxes for which X > 1. An S-box which satisfies diffusion order Z must, by 
definition, satisfy diffusion order ~. - 1. Hence, the probability that a randomly selected 
S-box satisfies ~. > 1 is less than or equal to the probability that the S-box satisfies ~. = 1 
and we conclude that as n increases such S-boxes are also impractical to find by random 
search. 

In Fig. 3 we present an algorithm to select the S-box output values using a depth-first- 
search approach as an efficient method of  generating S-boxes that satisfy a particular 
diffusion order. In the algorithm of Fig. 3 we use the variables i and S(i) to represent, in 
decimal form, the S-box input and corresponding output, respectively. As well, rand(.) 
represents the random selection of an element from the specified set. 

Considering the algorithm of Fig. 3 and letting P(li [ 1112... Ii-l) represent the 
probability of iteration i being successful given iterations 1 to i - 1 are successful, the 

Table 1. Probability of randomly selecting an S-box 

with ~. = I. 

Estimated Experimental 

n P(X = 1) PQ.--- 1) 

3 1.2 x 10 -3 3.6 x 10 -3* 

4 4.9 × 10 -5 3.8 × l0 -5 

5 7.7 × 10 -7 5.2 x 10 -7 

6 4.5 × 10 -9 2.5 × 10 -9 

7 9.3 x 10 -12 9.2 x 10 -12 

8 6.7 x 10 -~5 4.9 x 10 -15 

*Actual value is 144/8! ~ 3.6 x 10 -3. 
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r = {0, 1 , 2  . . . . .  2 -  - 1] 

A o = F  
i = 0  
do 

if  (Ai :7/= {0}) then 
S(i) = rand(Ai) 
A i = A i - { S ( / ) }  

i f  ((i, S(i))  satisfy ~.) then 
r = F - {S(i)} 
i = i + 1  
A i  = F  

endif 
else 

i ~ i - 1  
r = r + {S(i)I 

endif 
while (i < 2 n - 1) 
output: (i, S ( i ) ) forO < i < 2" - 1 
end 

Fig. 3. Algorithm to find S-boxes satisfying diffusion order ~.. 

11 

probability of  a randomly selected S-box satisfying ~ = I can be determined using the 
chain rule: 

2 n -- 1 

P O . - -  1 ) =  H P ( l i  l l l I 2 . . . I i - O .  
i = 1  

(20) 

Utilizing experimental values of P(I i  Ii 1 2 . . .  l i - l )  determined from executions of  the 
algorithm, it is possible therefore to derive an experimental estimate using (20). The 
resulting experimental probabilities for different n are listed in Table 1. 

There are limitations to the applicability of the depth-first-search algorithm. For ex- 
ample, while the algorithm successfully found many 8 × 8 S-boxes which satisfied 
diffusion orders of  ~. = 1 and ~. = 2, it could not successfully find S-boxes with ~. > 3. 
In the next section we show that, although the algorithm is designed to find S-boxes that 
satisfy a particular diffusion order, it is also valuable in generating S-boxes which are 
cryptographically strong in other respects. 

(b) Nonlineari ty  

An important cryptographic property for product ciphers is nonlinearity. Since the S- 
boxes are the only nonlinear components of an SPN, it is crucial to consider the amount 
of  nonlinearity required in S-boxes to provide adequate overall SPN security. The 
linear cryptanalysis method of  Matsui [18] is one basis for determining the amount 
of  nonlinearity required in an S-box. 

Consider an SPN in which the lowest nonlinearity of  an S-box is NLmin, i.e., N L ( S )  > 
NLmin for all S-boxes. Then the best linear approximation of  an S-box occurs with 
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Table 2. Nonlinearities of 8 x 8 S-boxes. 

~. Min NL Max NL %NL = 94 %NL = 96 %NL = 98 

0 86 98* 38.5 23.5 5.5 
i 86 96 48 26 0 
2 36 96 34 2 0 

*S-boxes with NL(S) = 100 have been found using a more thorough search. 

probability p~ where 

2"-  1 _ NLmi n 
Ip -½1- 2. (21) 

Since there must be at least one S-box approximation included in the linear expression 
of (7) for each round, the best possible linear approximation has a = R and satisfies 

I 2R-I ,[R 2 R _ l [ 2 n - l - N L m i n ]  R 
[PL -- ~] --< ]Pe -- ~ < ~ (22) 

It is known that there are n x n bijective mappings for which NL(S) > 2 n-l  - 2 "/2 [23]. 

Assuming that S-boxes are used that have NL(S) = 2 "-l  - 2 "/2, combining (9) and 
(22) we see that the number of known plaintexts required to determine one bit of key 
is at least 2 "R-2(R-I). For example, if an eight-round SPN was constructed using 8 x 8 
S-boxes with NL(S) = 112, it would take about 250 known plaintexts to determine one 

key bit. 
In [24] O 'Connor  shows that, as n gets larger, the expected distance of a randomly 

selected n-bit  function (not necessarily balanced) from the nearest affine function in- 
i creases and p~ approaches the ideal value of 2" In view of this, we expect that, as n 

gets large, S-boxes with high nonlinearities will be plentiful and easy to find by random 
search. 

In order to confirm this intuition, 200 8 x 8 bijective S-boxes (i.e., ~. = 0) were 
randomly generated and their nonlinearities examined. As well, 50 S-boxes were con- 
structed using the depth-first-search algorithm for the diffusion orders of ~. = 1 and 
L = 2. The results are given in Table 2. We surmise that, as the diffusion characteristics 
become more constraining, the S-box nonlinearities are adversely affected. However, for 

~. = 0, 1, or 2, it is still reasonable to expect to find S-boxes with high nonlinearities of 
94 or 96. 

5. Linear  Transformations Between Rounds 

The permutations of an SPN belong to a specialized class of the set of linear transforma- 
tions that may be used to achieve Shannon's diffusion effect. In this section we consider 
another class of invertible linear transformations that may be used between rounds of 

S-boxes to increase the resistance to differential and linear cryptanalysis. 
Let N be even and consider the class of invertible linear transformations defined by 

V = :r(Z3(U)), (23) 
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where V = [Vl V2 . . .  VN] is the vector of input bits to a round of S-boxes, U = 
[Ul U2 --- Uu] is the vector of bits from the previous round output, zr ~ H, and 
£(U) = ILl(U) . . .  LN(U)]. The set H is defined to be the set of permutations for 
which no two outputs of an S-box are connected to one S-box in the next round and 

L i ( U )  ----- U1 (~) • • • (~ Ui-i (~ Ui+l (~ ' ' '  (~ UN. (24) 

The linear transformation may be efficiently implemented by noting that each Li (U) can 
be simply determined by XORing Ui with the XOR sum of all Uj, 1 < j <_ N, i.e., 

Li (U) = Ui (~ Q, (25) 

where 

N 
Q=@uj. 

j = l  

(26) 

The following lemma illustrates the effect of the linear transformation on the diffusion 
of bit changes within the network. 

Lemma 3. Let W = L:(U) where £.(.) is definedabove and W = [Wl Wz . . .  WN]. 
Let AU = [AUI -. • AUN] be the XOR difference between two arbitrary values of  U, 
and AW = [AWl AWE . . .  WN] is the resulting XOR difference for  W.  Then 

AU, wt (AU) even, 

A W =  (AU), wt (AU) odd, 
(27) 

where (AU) is the complement of  AU. 

Proof. Let A U =  U' ~ U" and AUi = U[ @ U['. Therefore, 

AWi : Li (U ' )  ~) Li (U" )  

= [ U [ ~ Q ' ] ~ [ U [ ' ~ Q " ]  

= U [ ~ U [ ' ( 3 Q ' ~ Q "  

= A U i ~ A Q ,  (28) 

where 

N AQ=OAuj. 
j= l  

If wt(AU) is even, then AQ = 0 and 

{11 A W i =  0 
AUi = 1, 

AUi = O. 

(29) 

(30) 
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If wt (AU)  is odd, then A Q  = 1 and 

1, AUi =0, 
A w i =  0, A U i = l .  

Equation (27) follows and the lemma is proven. 
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(31) 

[] 

Lemma 3 is useful in developing the following result. 

Theorem 2. Consider an SPN o f  R rounds o f  M S-boxes such that R is a multiple 
o f  4 and M > n. Let n > 3 and let each S-box satisfy diffusion order ~ such that 
~. < ( n -  1)/2. Using the linear transformation of(23), the probability o f  an (R - 1)- 
round characteristic satisfies 

P~R-, <- (p~)((x+2)/2)n-~+l), (32) 

where p~ represents the maximum S-box XOR pair probability. Further, for  ~. = O, the 
characteristic probability can be more tightly bounded by 

p~_~ < (p~)(3/2)R-2. (33) 

Proof.  Consider separately the case for general ~. and the case for ~. = 0. 
(i) (General ~.) As in the proof of  Theorem 1, consider determining the upper bound 

on the most probable (R - 1)-round characteristic from the concatenation of  (R - 4 ) /4  
iterations of the most probable four-round characteristic with the most probable three- 
round characteristic. Hence, a characteristic probability satisfies (14). 

Consider first the determination of  the most likely four-round characteristic in order 
to determine p~ax of  (14). Let aPi, 1 < lpi _<< M,  represent the number of  S-boxes from 
round i involved in the characteristic and let r/i represent the number of  bit changes after 
the substitutions of round i and before the linear transformation rr(£(.)).  Consider two 
cases for the values of  r/i for four consecutive rounds r to r + 3. 

In the first case assume that at least one of  Or, 0r+l, or r/r+2 are odd. Without loss of  
generality assume that Or is odd. If  we let ~Pr < M, this implies that ~Pr+l > n, since, 
from Lemma 3, the n bits from an S-box in round r with no output changes must result 
in n bit changes after £(-),  which, due to the nature of  the permutation n ,  must then 
affect n different S-boxes in round r + 1. Further, since, in general, ~Pi > 1, then 

1/-rr "]- l~rr+l "4- l~rr+2 + ~rr+3 > n + 3. (34) 

Since M > n, (34) also holds if ~r = M. 
Now consider the second case where all of r/r, r/r+l, and r/r+2 are even. From Lemma 3 

and the definition of  the permutation rr, it may be seen that Lemma 1 may be applied as 
in the proof of  Theorem 1 and, therefore, 

~r  + 1/-tr+l + 1/fr+2 -'~ 1/rr+3 ~-~ 2(~. + 2). (35) 

Since ~. < (n - 1)/2, (35) always holds and 

p m~X = (pa)2cx+2). (36) 
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A bound on the probability of  a three-round characteristic may be determined similarly 
to the four-round characteristic. In this case if at least one of  Or or r/r+1 is odd, then 

~Pr + ~r+l + ~Pr+2 > n + 2. (37) 

If  both ~/r and r/r+l are even, then 

lpr -}- ~b'r+ 1 -{- lPr+2 ~ ). q'- 3. (38) 

Hence, since ~ < (n -- 1)/2, (38) always holds and 

p~aX = (pa)X+3. (39) 

From (14) in the proof of  Theorem 1, we can now see that, for general ~., (32) holds. 
(ii) ()~ = 0) From (35), we have 

l~r "q- l~rr+ 1 "~- ~b-r+ 2 + l~r+3 >> 4.  (40) 

However, for the case where Or, rlr+l, and r/r+2 are all even, 7ti ~ 1 for any two 
consecutive rounds since the permutation Jr spreads the effect of more than one output 
change to more than one S-box. However, if ~Pr = 1 and r/r = 2, then ~Pr+l = 2. Hence, 
7tr + ~r+l > 3 and, consequently, 

lpr + 1/rr+ 1 -a t- 1/rr+ 2 "-[- l~r+3 >_> 6.  (41) 

From (34) we can see that (41) also holds for the case where one or more of  rlr, r/r+j, 
and r/r+2 is odd, as long as n > 3. 

Similarly, it may be shown that 

1/r r q- 1/rr+ I + 1/rr+ 2 > 4 (42) 

and, applying (14), we have now proven the case for L = 0. [] 

Note that for ~. = 0 the linear transformation has decreased the upper bound on the 
characteristic probability and for ~. > 0 the bound on the characteristic probability has 
remained unchanged. 

Consider now the effects of  the linear transformation on the applicability of  linear 
cryptanalysis. Using the linear transformation ensures that there are a large number of  
S-box approximations included in the system linear approximation, thereby increasing 
the number of  required plaintexts. 

Theorem 3. Consider an SPN of  R rounds of  M S-boxes such that R is even and 
M > n. Using the linear transformation of  (23), the best possible R-round linear ap- 
proximation requires t~ = 3R/2  S-box approximations and the probability o f  the linear 
approximation satisfies 

1 _ 2(3/2)R-1 11(3/2)R 
I p L - ~ 1  < I P ~ - ~  ' (43) 

where PE represents the probability of the best S-box linear approximation. 
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Proof.  Using the linear transformation of  (23), it is impossible to involve only one 
S-box per round in the linear approximation. Let the number of  S-boxes from round 
i involved in the overall system linear approximation be represented by ~Pi. Consider  
round r to contribute only one S-box to the linear approximation, i.e., ~Pr = 1. The linear 
approximation of  this S-box involves a linear combination of  the input bits, a lX l  
a2X2 ~) . . .  ~) a, Xn, where a = [at - . .  an], ai E {0, 1}, and a linear combination of  
the output bits, blYl @ bzY2 ~ "'" ~ bnYn, where b = [bl - . .  bn], bi ~ {0, 1}, so that 
the probability of  

. + 
ai Xi = bi Yi (44) 

i = l  i = 1  

I (Note that the trivial case of  a = 0 and b = 0 is of  no use in l inear does not equal $. 
cryptanalysis and is ignored.) 

Without loss of  generality, assume that the S-box included in the system linear ap- 
proximation from round r is the first S-box so that 

X = [ X  1 X 2 . - .  Xn] = [Vl  V2 " ' "  Vn] 

where V,. is the ith input bit to round r.  The input to round r is determined by the 
permutation Jr so that V~ = Lji ( U )  where U is the vector of  output bits from the S-boxes 
of  round r - 1. Subsequently, we have Xi = Uj, ~ Q where Q is defined in (26) and 
each Uj,, 1 < i < n, comes from a different S-box (as a result of  the definition of  the 
permutation zr). We now have 

tl n 

~ a i X i  = ~ a i  " (Uji @ Q) 
i = 1  i = 1  

n n 

= ~ a i U j ,  @ ~ a i Q  
i = I  i : 1  

n 

ai Uj, @ O, wt  (a) odd, 

= i=t (45) 
n 

~ a i U j , ,  w/(a)  even. 
i = 1  

Hence, if wt (a) is odd, then the sum used for the input of  the round r S-box is determined 
by N - wt  (a) outputs of  round r - 1 since a term is removed from Q when ai = 1. 
If  wt  (a) is even, then the sum used for the input of  the round r S-box is determined 
by wt (a) outputs of  round r - 1 since a term is only included in the summation when 
ai = 1. If, for example,  wt (a )  = 1, then the corresponding S-box input bit used in the 
linear approximation is a function of  N - 1 output bits from round r - 1 and, hence, 
~Pr-1 = M. If, however, wt  (a) = 2, then ~Pr-1 = 2. Hence, considering other values for 
wt (a), 1 _< wt (a )  < n, we may now conclude that, given lPr = 1, ~0r_l >_ 2. 

A similar analysis may be used to determine a lower bound on the number of  S-boxes 
included in the linear approximation from round r + 1, aPt+l, given ~r = 1. This is 
possible due to the following easily verifiable observations: £ -1  _ £,  r r - i  6 I-I, and 
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£.(zr (.)) = rr(E(.)). Hence, we have 

U* = zr -1 (E(V*)), (46) 

where U* is the vector of output bits of the round r substitutions and V* is the vector 
of input bits to the round r + 1 substitutions. Since (46) is of a similar form to (23), we 
may determine the bound for ~Pr+l analogously to the bound for lPr-l. Hence, it follows 
that ~Pr+i > 2 given ~Pr = 1. 

We conclude, therefore, that the number of S-boxes involved in the linear approxima- 
tion from any two consecutive rounds must be at least three and for an R-round SPN, 
assuming R is even, a > 3R/2. [] 

Note that results similar to Lemma 3, Theorem 2, and Theorem 3 can be derived for 
/~(U) defined as other invertible linear transformations where each Li (U) may contain 
fewer than the N - 1 terms of (24). 

6. Summary of Results 

In Table 3, for SPNs of eight rounds, we have summarized lower bounds on the values 
of No and NL (defined in (4) and (9), respectively). The networks are assumed to be 
composed of 8 x 8 S-boxes where the maximum S-box XOR pair probability is P8 = 2 - 4  

and the minimum S-box nonlinearity is NLmin = 96. Results are presented for networks 
using permutations from the set FI and for networks using a linear transformation of the 
form of (23). Note that the analysis of Table 3 is equally applicable to the decryption 
as well as the encryption network. (This is important since the decryption network may 
also be attacked using either cryptanalysis method.) 

Consider a 64-bit eight-round SPN that uses a linear transformation of the form of 
(23) and 8 x 8 S-boxes with ~. = 2, Pa = 2-4, and NLmin = 96. Assume that the network 
is keyed using a 64-bit key with XOR mask keying. Application of the key bits at each 
round is determined by a key-scheduling algorithm. Such a network has high values of 
N~ in = 2 52 and N~ nin = 2 50, is comparable in size with DES (64-bit blocks, 56-bit key), 
but is implemented in half the number of rounds. 

Table 3. Resistance to cryptanalysis for networks 
with R = 8 using 8 x 8 S-boxes with p~ = 2 -4 and 

NLmin = 96. 

Type 3. N~ in N~ nin 

Permutation 0 228 234 
zr(.) 1 240 

2 252 

Linear transform 0 240 250 
rr(E(.)) 1 240 

2 252 
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7. Conclusion 

In this paper we have developed bounds on the probabilities of a differential characteristic 
and a linear approximation for substitution-permutation networks. It is important to note 
that the bounds are of interest, not because they give a provable lower bound on the 
complexity of the cryptanalysis, but because they suggest the level of difficulty required in 
implementing the attacks. For example, in a differential attack, the cryptanalyst typically 
identifies a high probability input difference to the last round by searching for high 
probability differential characteristics. Similarly, for linear cryptanalysis, a good linear 
approximation can be practically used by a cryptanalyst to determine which subsets of 
plaintext and cipbertext bits to examine in the attack. 

The analysis presented in this paper suggests the following general design principles 
for substitution-permutation networks: 

• Large, randomly selected S-boxes are very likely to have high nonlinearity. 
• S-boxes which have good diffusion properties increase the resistance to differential 

cryptanalysis. 
• The use of an appropriate linear transformation between rounds increases the re- 

sistance to linear cryptanalysis. 

Consequently, with an appropriate selection of S-boxes and linear transformations be- 
tween rounds of substitutions, security in relation to differential and linear cryptanalysis 
can be improved, resulting in an efficient implementation with fewer rounds required to 
provide adequate security. 
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