
Journal of Systems Integration, 1, 7-34 (1991)
�9 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Developing Control and Integration Software for
Flexible Manufacturing Systems*

NF_fflB BEN HADJ-ALOUANE
Advanced Technologies Laboratory, The University of Michigan, 1201 Beal Avenue, Ann Arbor, MI 48109-2120

JARIR K. CHAAR
Advanced Technologies Laboratory, The University of Michigan, 1201 Beal Avenue, Ann Arbor, MI 48109-2120

ARCH W. NAYLOR
Advanced Technologies Laboratory, The University of Michigan, 1201 Beal Avenue, Ann Arbor, M1 48109-2120

Received October 10, 1990. Revised January 10, 1991.

Abstract. The slow growth of computer-integrated manufacturing is attributed to the complexity of designing
and implementing their control and integration software. This article expands on a methodology for designing
and implementing this software that was introduced in [16]. The goal of this methodology is to build flexible
and reusable control and integration software for computer-integrated manufacturing systems. It hinges upon the
concepts of software/hardware components, their assemblages, a distributed common language environment, for-
mad models, and generic controllers. Major sources of flexibility are obtained by decoupling process plan models
from the model of the factory floor and by using a generic controller. Reusability is achieved by building self-
contained software/hardware components with general, possibly parametrized, interfaces. The interplay between
simulated and actual hardware internals of software/hardware components is used as the basis of a testing strategy
that performs off-line simulation followed by on-line testing.

The methodology has been applied in designing and implementing the control and integration software of an
actual Prismatic Machining Cell. The article also reports on the details of this implementation.

Key words: computer-integrated manufacturing systems, automation, software components, models.

I. Introduction

Not too many years ago there was considerable enthusiasm for computer-integrated manufac-
turing systems, but in recent years this enthusiasm has died down, indeed almost disap-
peared in some companies, as more and more difficulties have been revealed. At one ex-
treme are all the mundane problems of just being able to connect things together, at the
other are the cultural problems of changing company organization to accommodate major

increases in levels of automation. In between is the daunting problem of designing and
implementing the required software for such systems. This problem is perhaps the major
reason for the slow growth in computer-integrated manufacturing, and is addressed here.
In particular, it is the general problem of developing control and integration software for
real-time distributed systems.

*The names of the authors appear in alphabetical order.

N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

Our starting point is the claim--that many would agree with--that current practices for
such software are archaic and often result in a high cost, and extended development period,
and extremely inflexible systems. We argue--as many have [4]--that the key is software
reusability based on the careful design of software components and their assemblages.
However, we go beyond these customary ideas to argue that developing reusable software
for the real-time distributed control of computer-integrated manufacturing systems requires
additional concepts and approaches. In particular, we claim that:

1. Control and integration software need to be segregated,
2. Generic control algorithms are necessary to reduce the amount of labor that is involved

in reusing control software, and formal models are needed to provide the necessary sup-
port for the design and implementation of these algorithms,

3. The first concept is best achieved by developing control software on a single computing
platform and then distributing it a later stage,

4. Simulation that captures the real-time aspects of manufacturing devices is needed for
the testing of control and integration software of manufacturing systems.

Computer-integrated manufacturing systems differ from other, more familiar, distributed
computer systems in a fundamental way: In addition to the software that constitutes tradi-
tional distributed computer systems, computer-integrated manufacturing systems involve
manufacturing devices and mechanical interactions among such devices. This difference
is behind the need for the four concepts listed above.

The structural diagram of Figure 1 illustrates our view of a typical computer-integrated
manufacturing system. A and B are two software components driving mechanical devices
(referred to later in this article as software/hardware components); these two components
are assembled to form a larger third component. Within the assembly, the devices of A
and B can interact mechanically; moreover, the nature of this interaction depends on the
way these devices are configured on the factory floor. 1 More importantly, the nature of
the top-level control software of the assembly (illustrated in Figure 1 by a box marked "con-
trol software") in turf depends on the nature of the interactions that occur between the
devices of A and B, and, hence, on the factory floor configuration. Consequently, if this
configuration is changed, the top level control software of the assembly may need to be
modified in order to maintain the original functionality of the system.

I ControlSoftwarel

Figure 1. An assembly.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE

Computer-integrated manufacturing software is typically distributed and involves inte-
gration as well as control software; integration software handles the communication be-
tween the factory floor computers and the interfaces with the device controllers. Without
proper care, control software and integration software may be entangled. This entangle-
ment may present a hindrance to the reuse of computer-integrated manufacturing soft-
ware (i.e., identifying appropriate control sofware and modifying it when the target fac-
tory floor configuration differs from the original one can become a considerably difficult
task). Hence, the need for the first concept.

The second concept--generic control algorithms--can be used to eliminate the need for
control software modifications whenever computer-integrated manufacturing software is
reused. These algorithms are supplied with a formal model of the underlying system and
take control decisions by consulting this model. This idealistic view, however, has not
yet been fully achieved. Instead, a restricted, and yet powerful, version has been imple-
mented and is presented in this article.

In our current implementation, generic algorithms take process plan models as data.
Hence, control and integration software can be easily and quickly reconfigured to make
new products, a much-needed feature in flexible computer-integrated manufacturing
systems. These systems are designed to produce a wide variety of products that are not
all known in advance. Switching to a new set of products is usually made on a short-term
notice and must happen within a short time span.

The third concept advocates developing control software on a single computing plat-
form and distributing it at a later stage. This approach has three main advantages. First,
it provides for the segregation of control software and integration software, since the two
are developed separately. Second, it facilitates the software development process since
it rids the programmer from having to think across processor boundaries, and instead con-
centrate on the real programming task. Third, this approach can benefit from automatic
program distribution tools such as the Ada-distributed translator developed at The University
of Michigan [19].

Although it is widely recognized that testing distributed software is a complex task due
to the interspersed nature of this software, this complexity is further augmented in testing
computer-integrated manufacturing control and integration software by the presence of
manufacturing devices and their mechanical interactions. On-line testing of control and
integration software is often not practical because of expense and danger. This process
is expensive because it prolongs the factory idle time associated with it. It is dangerous
because the bugs in the software may cause harmful system behaviors. Our remedy con-
sists developing a real-time simulation for each manufacturing device and testing the con-
trol and integration software off-line by interfacing it to these simulations. Once a reasonable
level of confidence in the correctness of the control and integration software has been
gained, the real manufacturing devices are incrementally incorporated in place of their
simulations. Furthermore, alternating between the simulations and the actual devices is
easily done and follows naturally from our use of software/hardware components.

The concepts of our methodology have been presented in [2, 11, 16]. Furthermore, these
concepts have been validated by applying it to the design and implementation of the con-
trol software of several systems [2, 3]. This article reports on the application of this
methodology to the design and implementation of the control and integration software of

10 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

a full-fledged real manufacturing system: a Prismatic Machining Cell of a major automobile
manufacturer. A highly-efficient implementation of this software has been carried out in
the Ada programming language. Some implementation details proved to be important issues.
In particular, adequate solutions to the one-way naming and multiple inheritance problems
(not supported by Ada) have proven necessary to designing and implementing reusable soft-
ware components and are discussed in this article.

The article is organized as follows. The next section reviews the relevant work in the
literature. This is followed by elaborating upon the various concepts of our methodology.
Next, a description of the Prismatic Machining Cell, including devices, layout, and func-
tionality, is provided. The last section reports on the design and implementation of the
control and integration software of this cell. We conclude by outlining the important con-
cepts and future research directions.

2. Related Work

Research in the area of manufacturing systems is heavily concentrated in modeling; very
few articles are actually concerned with control and integration software, and even fewer
are concerned with making this software reusable and flexible. The most popular models
of manufacturing systems are based on extensions of Petri Nets [6, 8, 12-14, 17, 18]. Among
those that actually implement control software are [12], GRAFCETs [18] and PROT nets
[6, 8].

Crockett et al. [12] is based on Petri net hierarchies. Places in these nets are either sim-
ple or macro places. Macro places are themselves Petri nets. The controller, developed
in C, associates a C procedure with every place in the net and acts as a Petri net interpreter
by executing this procedure whenever a token arrives in the place.

A similar approach is adopted by Thomas and McLean [18]. GRAFCET, an extension
to Petri nets is used. In a GRAFCET, a place is associated with an action, a macro place
is itself a GRAFCET and a transition is associated with a condition. Both conditions and
actions are coded as C expressions and procedures, respectively.

A methodology based on Process Translatable (PROT) nets that supports the specifica-
tion, rapid prototyping, and simulation of manufacturing systems is reported in [6, 8]. PROT
nets are extensions to Petri nets that associate attributes with tokens and model hierarchy
by enclosing other PROT nets in net transitions. PROT nets are translated into Ada pro-
gram structures to be used as the basis for control software prototyping [5, 6, 8]. The same
nets can be translated into OPS5 rules to derive a production schedule for the system [7,
9, 10].

A major shortcoming of the above approaches is the intermix in their models of process
plans, control, and cell operation. This intermix results in a rigid cell controller (i.e., a
change in a process plan or the control strategy calls for major changes in the controller).
In addition, software reusability is not a major issue, and the issues of simulation and on-
line testing are not considered.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 11

3. The Design and Implementation Methodology

To achieve the goal of developing reusable control and integration software our method-
elegy introduces the concept of software/hardware components. A software/hardware com-
ponent is a generalized version of a software component [16]. A software component is
an object-oriented construct that is characterized by a set of public software interfaces and
a body (internals) [4].

A software interface specifies a set of services that can be performed by this component.
Users can capture a distinct view of the component by accessing the services in a subset
of its software interfaces. The internals of the component implement the serivces listed
in its interfaces. The structure of software components promotes the well-known principle
of information hiding. This is achieved by separating the interfaces from the internals and
making the internals inaccessible to the users.

A software/hardware component generalizes the concept of a software component by
allowing the internals of the component to enclose hardware [20]; that is, these internals
are interfaced to and drive hardware devices. Moreover, the specification of a software/hard-
ware component provides a software interface, in the common implementation language,
to the hardware it drives. As an example, the Ada specification of a robot software/hard-
ware component is given as follows. This specification lists the main functions performed
by the robot.

W l T H C e l l _ D e f i n i t i o n s ;
PACKAGE Robo t IS

TYPE R _ S t a t u s IS (M o v i n g , I d l e) ; - - S t a t u s o f t h e r o b o t
TYPE G _ S t a t u s IS (Opened, O p e n i n g , C l o s e d , C l o s i n g) ; - - S t a t u s o f t h e g r i p p e r
SUBTYPEAcknowledgement I S C e l l _ D e f i n i t i o n s . A c k n o w l e d g e m e n t ;
SUBTYPE L o c a t i o n I S C e l l _ D e f i n i t i o n s . L o c a t i o n ;

FUNCTION P i ck_Up RETURN A c k n o w l e d g e m e n t ;
FUNCT I ON Put_Down RETURN Acknow I edgernent ;
FUNCTION Move (S o u r c e , D e s t i n a t i o n : IN L o c a t i o n) RETURNAcknow ledgemen t ;
FUNCTION R o b o t _ S t a t us RETURN R _ S t a t u s ;
FUNCTION G r i p p e r _ S t a t u s RETURN G _ S t a t u s ;

END Robo t ;

In addition to the software interface, a software/hardware component presents its users
with a hardware interface. This hardware interface consists of the portion of the compon-
ent's hardware that is accessible to and interacts with the external environment. A hardware
interface can be as simple as the gripper of a robot, such as in the above software/hardware
component, or, as complex as a set of automatically guided vehicles operated by a material
transport system. Figure 2 is a schematic diagram of a software/hardware component. Both
software and hardware interfaces are windows to the component. Each can be independently
used by the external environment to control and monitor the component's operation.
However, they usually provide different functionalities and views of their component.

Assembling software/hardware components involves, from a software perspective, inter-
connecting their software interfaces and, from a hardware perspective, interconnecting their
hardware interfaces. Manufacturing devices are designed as software/hardware components.
Manufacturing cells are assemblages of software/hardware components. Cells together with
their controllers are in turn assembled into factories. The decisions

12 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

Software Interface

S o f t w a r e

Hardware

Hardware Interface

~l-- i

I n t e r n a l s

Figure 2. A software/hardware component.

involved in designing and assembling software/hardware components into reuseable con-
trol and integration software are discussed next.

3.1. Designing Reusable Software~Hardware Components

Our methodology identifies two main features that are essential in promoting the reusabil-
ity of a software/hardware component. First, the software interface of the component should
be general and parametrized whenever possible. Second, the software/hardware compon-
ent should be self-contained. The software interface of the foregoing robot software/hard-
ware component is general because it does not reveal either the type of robot used or the
details associated with implementing the services of this robot. These services can be car-
ried out by a large class of robots. Hence, any one of these robots could be enclosed by
the component without affecting its users' software; only the internals of the component
need be changed to interface with the enclosed robot.

Self-containment is the decoupling of a component from its potential users' programs.
This means that the component shall not request any services from any other component
(not part of its internals) while other components, its users, can use its services. Hence,
the component should not be aware of any name outside its domain; a situation we refer
to as one-way naming. In reality, however, many systems require interacting with their ex-
ternal environments. As a result, it may seem that their software/hardware components
cannot be made reusable. Fortunately, this is not the case. A solution enforcing one-way
naming while still allowing components to interact with their environments is pi'ovided
in [3]. This solution is detailed as follows due to the surprisingly important role one-way
naming plays in designing and implementing reusable software/hardware components.

The nature of the one-way naming problem is a function of the interaction of a soft-
ware/hardware component with its environment. Two different situations can be identified.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 13

First, a component cannot avoid requesting services from its user; this is exemplified by
a cell software/hardware component requesting the factorywide material transport system
software/hardware component to remove pallets at its output dock. The cell component
is intended to be operated in conjunction with a multitude of factorywide material transport
systems. The problem is that both name and specifics of the remove operation may differ
from one material transport system to the other. The solution consists of creating an inter-
facing software component between the cell component and the factorywide material
transport system component--call it the intermediate component. The interface of this in-
termediate component lists the services required by the cell from the material transport
system component, among which is the remove pallet from output dock operation. The
internals of this intermediate component are assigned depending on the specifics of the
material transport system in use. Hence, a change of the material transport system coupled
with the cell requires modifying only the internals of the intermediate component.

In the second situation, the component operates in a multi-user environment where each
user can request services from the component by calling a procedure listed in the compon-
ent's interface. Furthermore, the nature of the request may necessitate that the component
notifies the originator of the request of the results whenever they become available. The
problem is that these results may not become available until long after the called procedure
has completed. Hence, the component must call a procedure of the user component to
deliver these results. This is not a satisfactory solution because it requires that the compo-
nent be tailored to the specifics of its environment (e.g., know the names of some pro-
cedures of the user's component). Instead, a solution involving the use of a mailbox system
is adapted as follows: a mailbox is associated, at run-time, with each user of the compo-
nent. A user's mailbox is used to deposit the results of a given user request. These results
are then retrieved by the threads of control spawned by this user.

Although dealing with the preceding issues can be considered essential to designing
reusable software in general, additional concepts and approaches are definitely required
in developing reusable control and integration software for computer-integrated manufac-
turing systems, discussed as follows.

3.2. Building Generic Controllers

Adopting a hierarchical control structure is key to enchancing the reusability of soft-
ware/hardware components; this structure blends naturally with our use of software/hard-
ware components and their assemblages and also simplifies considerably the control scheme
implemented by the control and integration software.

Figure 3 illustrates this hierarchical control structure. A set of software/hardware com-
ponents, whether enclosing manufacturing devices, cells, or factories, is assembled and
coupled with a control strategy to form another software/hardware component; the con-
stituents are considered at a lower level than their assembly. The software implementing
the control strategy of the assembly component plans, executes, and monitors the opera-
tions of its constituent software/hardware components.

14 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

p

�9 �9 S o f t w a r e I n t e r f a c e " �9 �9 �9 �9

�9 � 9 Control Strategy �9 �9

' ' - ' I I
" " Strategy � 9 1 4 9 Cell k i t Control ~ ,

, / so,, '~176176 I , I I', /
; , ' ~ ' , - - I S..~y~temn I' /
I t Control Strategy I 't I /

/ ~sub~ysto., 11 / , /

, Ioo*of i - - - i oo~ ,~1 ,,
, ~ _ _ _ ~ , o ~ o ~ , / ,' ~

,'. . . / c ~ , 1 , ~

, ,~"~Hardware Interl~c. ~ "

Figure 3. A hierarchical control structure.

An assembly software/hardware component can be viewed as a subsystem (see Figure
3) of a computer-integrated manufacturing system; this subsystem is operated through its
software and hardware interfaces; its internals enclose the control strategy (adopted by the
subsystem) implemented. In particular, when Ada is the implementation language, the body
of an assembly component package (labeled Control Strategy in Figure 3) encloses and
is completely devoted to implementing its application-specific control strategy; therefore,
this package is the only Ada unit that needs to be modified and recompiled whenever the
control strategy of an assembly component is modified.

Modifying the software that implements the control strategies of assembly components,
whenever they are reused, may involve major efforts especially when these components
are sizable (e.g., a cell component). Our ultimate goal is to develop a generic controller
that can be used in controlling any set of manufacturing software/hardware components
[16]. Figure 4 illustrates our perception of this generic controller. The role of the generic
controller is to generate the control strategy for the assembly software/hardware component.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 15

t " Formal Models of
,, Software Components

Interface

Generic
Controller

"Control Strategy

Other Input~
J

s

S o f t w a r e / S o f t w a r e / S o f t w a r e /
Hardware Hardware - - - Hardware
Component Component Component

Figure 4. The generic controller of a software/hardware component.

Our generic controller is a software component that accepts as inputs the formal models
of the constituent components of an assembly together with directions on how to assembly
them and executes the orders received through the interface of the assembly component.
The other inputs that may be needed specify, for example, models of process plans and
any control objectives that need to be achieved.

Our implementation of the Prismatic Machining Cell partly achieved the above goal
of building generic controllers by developing a simplified version of the generic controller
of Figure 4. The structure of this controller is shown in Figure 5. This controller is

Process Plan
Model

Order Stream

l
1 F

l T
Commands to C ~ I I Information from Cell

Figure 5. The prismatic machining cell generic controller.

16 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

presented with a model of the cell together with a model of the process plans and a stream
of orders. These inputs are used to determine, based on the current status of the cell and
orders, the appropriate commands to be executed by the cell software/hardware compon-
ent. The workings of this controller are described in the next section. In the meantime,
we describe the general structure of the formal models [15] used in building this cell
controller.

For our purpose, the formal model of a software/hardware component captures, at the
logical level [15], its functionality as viewed through both its software [16] and its hard-
ware interfaces. The logical level is, as the name suggests, largely concerned with logical
conditions and transformations of logical conditions. A typical condition might be stated
as "The robot is at the machining center." Transformations of conditions involve actions
such as moving the robot from one place to the other. The logical level is captured by
a simple first-order logic rule-based model. In this model, the state consists of a set of
predicates (relations) and constants (names). Rules, reminiscent of the familiar Artificial
Intelligence paradigm, are used to describe the state transitions. A rule consists of a set
of preconditions followed by a set of postconditions and is associated with a logical variable
(input) and a time delay. Whenever the preconditions are satisified by the current state
of the system and the rule is commanded by enabling its logical variable, its postconditions
are satisfied by the state of the system after the specified time delay.

3.3. Performing Simulation

An added advantage that is gained from casting manufacturing hardware into software/hard-
ware components is the ability to alternate their simulation and on-line testing. This altera-
tion reduces considerably the idle time of the manufacturing devices that can be manually
operated while the control and integration software of the system is being independently
developed and tested. Furthermore, the complexity of the task of testing the control and
integration software is reduced by eliminating hardware-related errors from the software
testing process.

Simulation is performed by assigning simulated internals to the hardware-dependent com-
ponents of a manufacturing system. This constitutes the first step in testing the control
and integration software of the system. The thoroughness of the testing process depends
on how well the simulated internals capture the mechanical interactions of the hardware
devices of the system. The next step gradually replaces each simulated internal by an inter-
face to the real hardare device. On-line testing is completed whenever the whole system
is fully operational.

Our simulation is performed in real-time, as opposed to GPSS-like event-driven simula-
tions, by using the concurrency and timing constructs offered by the implementation
language--in this case Ada. To further illustrate this point, let us consider a simulation
of the internals of the robot software/hardware component previously specified. An Ada
task is used to simulate the movement of the robot while a second task emulates the opera-
tions of its gripper. These two tasks execute in parallel because the robot can move and
operate its gripper at the same time. The duration of a given operation is simulated by
a delay statement that has the effect of blocking the execution of its associated task for
a specified period of time and then resuming normal execution afterwards.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 17

3. 4. Distributed Common Language Environment

The run-time environment for control software is inevitably distributed. It is composed
of a number of computers and device controller that are connected via a communication
network. Hence, a portion of the control software will be executing on several nodes of
the network.

Each portion, together with the required interprocessor communication, could be designed
and implemented independently of the other portions. This approach has many disadvan-
tages. First, partitioning the control software at an early stage of the design and develop-
ment process across processor boundaries might not result in the most logical partition,
and, more importantly will seriously affect the reusability of this software; a change in
the underlying network architecture, which is most likely to happen when the software
is ported to another system, might require the complete redesign of this software. Second,
coupling the design of the control software with the design of the communication soft-
ware runs the risk of entangling them together and further affects the reusability of the
control software. Third, it is well known that testing distributed software is much harder
and more complex than testing nondistributed software. One of the factors that contribute
to this complexity is the inability to perform compile-time error and data-consistency check-
ing across processor boundaries.

We opted for designing and implementing the control software of computer-integrated
manufacturing systems as a single program written in a single high-level language.
Distributing this software across the network is performed after the implementation and
testing stages are completed; the appropriate communication software is inserted either
by hand or automatically by means of a distributed translator [19]. This approach avoids
all the problems previously stated; in addition, the programmer can concentrate on the
task of implementing the control software without being concerned with its distributed
aspects.

Nevertheless, the single-platform approach is typically associated with two main disad-
vantages; however, with proper care their effects can be considerably reduced, if not totally
averted. Communication overhead is the most important concern when dealing with the
foregoing approach: Distributing a single program (in our case, the control software) across
a network involves transforming some of the local procedure and function calls into remote
ones; usually, the total communication delay entailed by the execution of these remote
calls is greater than the delay involved had the program been developed in a distributed
form. Although the above assertion is true, its significance can be considerably reduced
by the choice of an efficient network and communication protocol ([16, 19]). Moreover,
critical areas, where communication traffic is particularly heavy, should be identified and
the corresponding software should be appropriate tuned. The second concern involves the
transition from a sequential environment to a distributed one: for obvious reasons, the cor-
rect execution of a distributed program does not usually imply the correct execution of
a distributed version of this program. Although the foregoing statement is true in general,
it certainly is false in the case of a program consisting of assemblages of software com-
ponents destined for multiuser environments. 2.

The high-level language used must support the development of software components and
must easily interface with the variety of device-specific languages used by manufacturing

18 N.B. HADJ-ALOUANE, LK. CHAAR, AND A.W. NAYLOR

device controllers. There are several languages that meet these requirements such as Ada,
C ++, and Modula-3. We opted for Ada because, in addition to meeting the previous re-
quirements, it provides language constructs for expressing concurrency and other real-time
features that faciliate the task of simulation of the internals of software/hardware components.

Nonetheless, Ada proved to be deficient in a very important aspect of the assembly proc-
ess of software/hardware components. During this process, the software designer should
be able to designate one or more data objects, that are defined in the constituent com-
ponents of the assembly, as the same object in: the assembly component. Ada does not
unfortunately support this feature. Our solution, using the current Ada features, consists
of avoiding the use of private data types in the packages that implement the various soft-
ware/hardware components of a system, and declaring the data objects that are common
to a set of components in the environment package of these components.

4. The Prismatic Maching Cell

The Prismatic Machining Cell, as its name suggests, is intended for making a wide variety
of prismatic parts. Many parts are clamped on a standardized pallet and are machined
together. The cell layout is shown in Figure 6. This cell is composed of the following devices:
a Cincinnati Milacron T-10 Machining Center, a Cincinnati Milacron Shuttle, a Brown and
Sharpe 1057 PCR Coordinte Measuring Machine, a GMF S-400 six-axis pedestal robot,
and three Load/Unload stations. A brief description of the functionality of each device
follows.

�9 The Machining Center is capable of milling, drilling, boring, reaming, and tapping metal
workpieces. It is equipped with a single spindle, a machining table, an automatic tool
changer, and a 45-tool belt. The tool mounted on the spindle can operate on a set of
workpieces grouped on a pallet that is automatically clamped to the machining table.
The automatic tool changer can exchange the tool in the spindle with another tool from
the tool belt. The Machining Center is operated through a Cincinnati Milacron Acramatic
950 CNC controller.

�9 The Coordinate Measuring Machine is equipped with a probe that is used to inspect
a set of workpieces grouped on a pallet that is automatically clamped to a rotary table.
The Coordinate Measuring Machine is operated through a DEC Microvax II computer.

�9 The Shuttle is a two-slot rotating turntable. Each slot can hold one pallet and is equipped
with an automatic load/unload mechanism. The rotation angle of the turntable is an inte-
ger multiple of 90 ~ . Hence, the shuttle can service up to four surrounding tables. The
shuttle is operated through an Allen-Bradley Programmable Logic Controller.

�9 The Robot is used to transfer pallets among the shuttle, the coordinate measuring machine,
and the accessible load/unload stations. The robot is operated through a built-in controller.

�9 The Load/Unload station are standard tables used to hold the pallets in the cell. They
are equipped with sensors that can detect the presence/absence of a pallet. The Prismatic
Machining Cell is equipped with a Manual Load/Unload (L/U) station and a Robot
Load/Unload (L/U) station.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 19

.=:
c_
r -

Pal let
Manual IJU

,'K /
, 2.41-1 s I

I Robot L/U
I
I I

Palletl
t �9 %

%
%

r

- - I

J'
I

�9 � 9 t
S

S Sp I ~

I

I
t
t
!

I
I
I
I

I
I

!
1

/

Figure 6. Prismatic machining cell layout.

The Prismatic Machining Cell is controlled through an IBM PC/AT computer (the cell
controller) that is connected with the various device controllers of the cell through a MAP
carrier band network. The control software executing on the IBM PC~AT issues appropriate
commands to each device controller via the network. These device controllers can, in turn,
issue requests and report status information, via the network, to the cell control software.
The Prismatic Machining Cell control software operates the cell as follows.

The cell operator specifies a part type, the number of parts to be manufactured, and
the process plan to be used in manufacturing these parts. Based on this in:formation, the
control software requests the appropriate raw materials, usually on pallets, from a fac-
torywide (manual or automated) material transport system. Pallets enter the cell through
either one of the L/U stations shown in Figure 6. The operations performed on these

20 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

pallets within the cell are determined by the steps of the corresponding process plan. A
process plan step may specify a machining or an inspection operation; the details pertain-
ing to such operations (e.g., part programs, inspection programs, and tools) are enclosed
in the process plan step. Upon completing the operations specified by a process plan on
a particular pallet of parts, the finished product is removed from the cell via an L/U sta-
tion. The later operation is carried out by the factorywide material transport system.

Our implementation of the Prismatic Machining Cell control software allows the
simultaneous processing of several pallets of parts. Moreover, the current set of pallets
need not use the same process plan (i.e., several batches of parts can be processed in parallel).

5. The Cell Control Software

A hierarchical structure diagram of the control and integration software of the Prismatic
Machining Cell is shown in Figure 7. As mentioned previously, this structure results from
assembling together the constituent components of the cell. First, the software/hardware

I Hu~ Intel

I

Cont

'ma" I ~rface

l~llle r]

f
System System

I Prismatic I

Machining I Center

[i!ii!!~i!ilil
!iii!iiii~!iiiiiii~i~l

I Inspection System

I Insp4 Ce

iii!ii!i!i!i~!~iiiiiiflili]

%~ j %tri:o~t,~ria'

: "~176176 II

T

I iill I !iiiiiiiiiiiiiiiiiiii:!iiiiiii
Figure 7. Prismatic machining cell control hierarchy.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 21

components that directly enclose the physical devices (shown as shaded boxes) of the cell
are created and named to reflect the devices they enclose (i.e., Machining Cener, Inspec-
tion Center, Robot, and Shuttle). Next, the Robot__Map and Shuttle__Map software com-
ponents are formed, implementing the databases enclosing the road maps for the robot
and the shuttle, respectively. This is followed by assembling both Robot_Map and Robot
into the Robot Material Transport System software/hardware component and both
Shuttle_Map and Shuttle into the Shuttle Material Transport System software/hardware
component. These two material transport systems are then assembled into a single Material
Transport System software/hardware component. At the same time, the Dock System soft-
ware/hardware component is created to directly enclose the two Load/Unload stations in
the cell, and, a more abstract view of both Machining Center and Inspection Center is
also presented by the Machining_System and Inspection_System components, respec-
tively. The Dock System, Machining System, Inspection System, and Material Transport
System components are next assembled to form the Prismatic Cell software/hardware com-
ponent. The latter component, together with the cell control strategy, form the Cell Con-
troller software/hardware component. Finally, the Human Interface software component
presents the users of the cell with a software interface. The software assembly steps per-
formed during the design of the cell software/hardware components result in the fore-
going hierarachy where the components that present similar functional views can be thought
of as belonging to the same level in the hierarchy. We describe next the major components
of Figure 7.

5.1. The Machining System Software/Hardware Component

The Ada specification of the Machining System software/hardware component is shown
as follows. This component offers its users the capabilities of executing a set of part pro-
grams and querying for the status of the Machining Center. The center will be busy when
executing a part program and idle otherwise. The details associated with the execution
of a part program are not of interest to the user of the component, and, are hidden in
the component's internals.

WITH Machining_Center;
PACKAGE Machining_System IS

TYPE Machining_System_Status IS (Busy, I d l e) ;
SUBTYPE Part _Program IS Machining_Center.Part_Program;
SUBTYPE Acknowledgement IS Machining_Center.Acknowledgement;

FUNCTION Execute_Part_Program(Part_Prograrn_name: Part_Program)
RETURN Acknowledgement;

FUNCTION Query_Machining_System_Status RETURN Machining_System_Status;
END Machining_System;

The set of part programs that can be executed by the Machining Center is stored in a
database. A code segment and a data segment are associated with each part program. These
are declared as private types to hide their internal data structures from the user of the database
and the database is implemented as a generic package. Both the Machining Center and

22 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

the Factory are users of the database. The Machining Center is provided with a read-only
view of this database. It can query for the availability of and download part programs into
its local memory, On the other hand, the Factory is presented with the complete view of
the database. It is responsible for populating it with new part programs and deleting or
updating old part programs.

While a part program is executing, it can request the use of a set of tools from the machin-
ing center tool belt. A local tool database keeps track of the set of tools on the tool belt
together with their associated data. Again, this database is implemented as a generic Ada
package and private types are used to hide the details of the tool records. The Machining
Center requests the Factory component to bring tools to or remove tools from the belt;
this is an example of a first situation one-way naming problem. The tool database is up-
dated accordingly whenever these requests are executed.

To execute a part program, the availability of this part program is checked with the
database. If available, the program is loaded into the local memory. This operation is followed
by loading the set of tools to be used by the part program on the tool belt of the Machining
Center. If a tool is not loaded on the belt, a request is issued to the factory to bring it
to the belt. The new tool is either placed in an empty slot on the belt or swapped with
a tool from the belt that is not to be used by the current part program. All these com-
plicated operations are simulated by Ada tasks that rendezvous with each other to perform
the requested operations. The actual execution of the part program can only be started when
the program is loaded into the controller, all the required tools are loaded on the belt and
the first tool is mounted on the spindle of the Machining Center.

5.2. The Inspection System Software~Hardware Component

The Ada specification of the Inspection System software/hardware component is very similar
to the specification of the Machining System software/hardware component and is shown
as follows. This component offers its users the capabilities of executing a set of inspection
prorams and querying for the status of the Coordinate Measuring Machine. This Machine
will be busy when executing an inspection program and idle otherwise. The details associated
with the execution of an inspection program are not of interest to the user of the compo-
nent and are hidden in the component's internals.

WITH Inspect ion_Center ;
PACKAGE Inspection_System IS

TYPE Inspection_System_Status IS (Busy, I d l e) ;
SUBTYPE Inspection_Program IS Inspect ion_Center . Inspection_Program;
SUBTYPE Acknowledgement IS Inspection_Center.Acknowledgement;

FUNCTION Execute_lnspection_Program(Inspection_Program_.name:
Inspection_Program) RETURN Acknowledgement;

FUNCTION Query_lnspection_Systern_Status RETURN Inspection_System_Status;
END Inspection_System;

The set of inspection programs that can be executed on the Coordinate Measuring Machine
is stored in a database identical to that of the Machining Center. The execution of an

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 23

inspection program is similar to that of a part program with the exception that no tools
are needed and a single inspection probe is used.

5.3. The Material Transport System Software~Hardware Component

The Material Transport System software/hardware component is an assemblage of the Robot
Material Transport System component and the Shuttle Material Transport System compo-
nent. As their names suggest, the robot material transport system encloses the robot and
the shuttle material transport system encloses the shuttle. A shuttle is characterized by
its number of slots, hence, this number is specified as a parameter of the generic package
implementing the Shuttle software/hardware component, a subcomponent of the Shuttle
Material Transport System. Each of these two material transport systems is responsible
for transferring pallets among a subset of the locations of the cell; a single transfer can
take place at any given time within either robot or shuttle material transport system. The
two subsets covered by the robot and shuttle material transport systems are labeled the
shuttle map and the robot map, respectively. Each map is implemented as a database. The
topology of the cell can be easily changed by appropriately updating the map databases
of either robot or shuttle material transport systems.

The Ada specification of the Material Transport System software/hardware component
is shown as follows. It offers its users the capabilities of transferring pallets between the
various locations of the cell. The user of this component can check the feasibility of a
pallet transfer operation and obtain an estimate of the time it takes to perform this opera-
tion. He or she can also query for the status of an ongoing transfer and the time remaining
for this transfer to complete. In accordance with our philosophy, both the details of the
map and the details associated with executing a feasible pallet transfer between a pair of
locations of this map should not be revealed by the interface of the Material Transport
System component. In our case, however, the full adoption of this strategy would result
in a nondeterministic software interface for the Material Transport System Component;
this nondeterminism can complicate the design of the cell controller. Hence, the Material
Transport System interface reveals enough details as to eliminate any nondeterministic
aspects (the structure of the cell material transport system map is revealed as a union of
robot and shuttle material transport system maps). This decision is a typical example of
the trade-off encountered when dealing with abstraction.

WITH C e l l _ D e f i n i t i o n s ;
WITH Robot_Mater ia l_Transpor t_Sys tem;
WITH Shu t t l e_Ma te r i a l _T ranspo r t_Sys tem;
PACKAGE Mate r ia l_T ranspor t_Sys tem IS

TYPE Move_Type IS PRIVATE;
TYPE Move_Status IS (In_Progress , Done);
SUBTYPE Acknowledgement IS Ce l l _De f i n i t i ons .Acknow ledgemen t ;
SUBTYPE Loca t ion I S C e l l _ D e f i n i t i o n s . Loca t ion ;
SUBTYPE Pa l le t_Type I S C e l l _ D e f i n i t i o n s . P a l l e t s ;
SUBTYPE Status_of_Mapl_Moves IS

Shu t t l e_Ma te r i a l _T ranspo r t_Sys tem. Shu t t l e_Ma te r i a l _T ranspo r t_Sys tem_Sta tus ;
SUBTYPE S ta tus_o f~ap2_Moves IS

Robot_Mater ia l_Transpor t_Sys tem. Robot_Mater ia l_Transpor t_Systern_Sta~us;

24 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

PROCEDURE Move_Pal le t (Source_Stat ion, Des t i na t i on_S ta t i on : IN Locat ion;
P_Name: IN P a l l e t s ; P_Type: IN Pal le t_Type; S ta r ted : OUT Acknowledgement;
M_ld: OUT Move_Type);

PROCEDURE Estimate_Move_Time(Source_Station, Des t i na t i on_S ta t i on : IN Locat ion;
Estimated_Time: OUT Durat ion; Feas ib le : OUT Acknowledgement);

PROCEDURE Status_Of_Move(M_ld: IN Move_Type; Remaining_Time: OUT Durat ion;
M_Status: OUT Move_Status);

FUNCTIONStatus_of_Shutt le_Mater ial_Transport_System
RETURNStatus_of_Mapl Moves RENAMES

Shut t le_Mater ia l_Transpor t_System,Sta tus_of_Shut le_Mater ia l_Transpor t_System;
FUNCTION Status_of_Robot_Mater ia l_Transpor t_System
RETURN Status_of_Map2_Moves RENAMES

Robot_Mater ial_Transport_System. Status_of_Robot_Mater ia l_Transport_System;

PRIVATE
-- The implementation of the above p r i v a t e types.

END Mater ia l_Transport_System;

In order to transfer pallets from a source location to a destination location, both loca-
tions are reserved and access to the pallet on the source location is secured for the transport
vehicle responsible for carrying out the pallet transfer operation. Next, the pallet is loaded
on the vehicle, the source location is freed, and the transfer is started. After a predeter-
mined travel time, the vehicle reaches the destination location where the pallet is unloaded,
access to it is cleared, and the destination location freed. The scheduling algorithm associated
with the Material Transport System gives priority for the use of the robot over the shuttle
in transferring pallets between locations that are common to both maps.

5.4. The Dock System Software~Hardware Component

The Ada specification of the Dock System software/hardware component is as follows. It
offers its users the capabilities of bringing a raw pallet of a specified type into the cell
and removing a finished pallet from the cell. These services are carried out in collabora-
tion with the factorywi ~e material transport system. The services of this material transport
system are invoked from within the internals of the Dock System component. When these
services are completed (i.e., the specified pallet has been brought or removed), the fac-
torywide material transport system notifies the Dock System component by calling either
Pallet_Brought or Pallet__removed. Moreover, the user of this component can locate a
given pallet within the cell or check the status of the locations of this cell by testing the
values of the sensors of these locations.

WITH C e l l _ D e f i n i t i o n s ;
WITHSensors;
PACKAGE Dock_System IS

SUBTYPE P a l l e t _ T y p e I S C e l l _ D e f i n i t i o n s . P a l l e t _ T y p e ;
SUBTYPE P a l l e t s I S C e l l _ D e f i n i t i o n s . P a l l e t s ;
SUBTYPE L o c a t i o n IS C e l l _ D e f i n i t i o n s . L o c a t i o n ;
SUBTYPE Acknowledgement IS C e l l _ D e f i n i t i o n s . A c k n o w l e d g e m e n t ;
SUBTYPESensor_Status IS Senso rs .Senso r_S ta tus ;

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 25

FUNCTION REmove_Pal le t (Pa l le t : IN P a l l e t s ; Source: IN Locat ion)
RETURN Acknowledgement;

FUNCTION B r i n g _ P a l l e t (P a l l e t : IN Pa l le t_Type; Source: IN Locat ion)
RETURN Acknowledgement;

FUNCTIONRemoving_Pallet(Source: IN Locat ion; Pal_Name: IN P a l l e t s ;
P a l l e t : IN Pa l le t_Type) RETURN Acknowledgement;

PROCEDURE Removed_Pallet(Source: IN Loca t ion) ;
FUNCTIONBr ingJng_Pal le t (Dest inat ion: IN Locat ion) RETURN Acknowledgement;
PROCEDURE B r o u g h t _ P a l l e t (D e s t i n a t i o n : In Locat ion; P a l l e t : IN Pa l le t_Type) ;
PROCEDURE Locate_Pallet(P_Name: IN P a l l e t s ; S t a t i o n : OUT Locat ion;

Found : OUT Acknowledgement) RENAMESSensors,Locate_Pallet;
PROCEDURE Query_S ta t i on (S ta t i on : IN Locat ion; P_Name: OUTPal le ts ;

P_Type: OUT Pa l le t_Type; State :OUT Sensor_Status)
RENAMES Sensors,Query_Stat ion;

END Dock_System;

5.5. The Cell Controller Software~Hardware Component

The structure diagram of the Cell Controller component is shown in Figure 8. This com-
ponent controls the operation of the Prismatic Cell software/hardware component, a sim-
ple union of the Dock System, Machining System, Inspection System, and Material Transport
System component (i.e., the interface of the Prismatic Cell component is the union of the
interfaces of its constituents, and its internals are also the union of the internals of its

Commands

~ lStatu s

I Controller I

 ,an r, mat,o rae ,n I Con,ro'
Database Cell System Search

Model [

Figure & The structure diagram of the prismatic machining cell controller.

26 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

constituents). The Cell Controller accepts commands, through the Human Interface com-
ponent (Figure 7), to make a batch of pallets of a certain type. Each pallet type is associated
with a unique process plan that describes the making of this type of pallets and is stored
in the process plan database shown in Figure 8. Status information, including the current
state of the cell and its devices, is constantly reported by the Cell Controller component
to the cell operators.

The internals of the Cell Controller component implement a generic control strategy
for planning, executing and monitoring the sequence of actions performed by the Prismatic
Machining Cell. This control strategy is based on the models of both the Prismatic Cell
software/hardware component and the process plans. First, a brief and informal discussion
of these models is given. This is followed by outlining the generic control strategy.

5.5.L The Prismatic Cell Model. In a manner analogous to the construction of the Prismatic
Cell software/component, its model of behavior, as observed through its software inter-
face, is constructed as the simple union of the models of its constituent components (i.e.,
the set of predicates and constants that form the state of this model is the union of the
corresponding sets of the constituent models; moreover, the set of rules of this model is
the union of the corresponding sets of the constituent models). These constituent models,
in turn, capture the behavior of their software/hardware components, as observed through
the software interfaces of these components. They are presented in the following sections.

Machining System Model. The predicates and constants of the Machining System model are:

�9 MACHINING_CENTER, IDLE, EXECUTE~PROGRAM, and COMPLETE__PRO-
GRAM are the constants of the model.

�9 Part__Program(.), Pallet(.), and Location(.) are unary predicates true of all part pro-
grams, pallets, and locations, respectively. These predicates are referred to as static pred-
icates because the relations they denote do not change as the system evolves in time.

�9 Iexecute~.,3 is a binary predicate input to the model true when the rule is commanded.
This predicate is dynamic because the relation it denotes is allowed to change with time.
Moreover, some of these changes may be caused by the controller of the model.

�9 CT(.,.) is a binary predicate that captures the general notion of contact between entities
of the model, physical or otherwise.

The software interface of the Machining System software/hardware component is composed
of two functions. One function is a query; the dynamics of its execution are not relevant
for the purpose of controlling the component and, hence, are omitted from the model.
Note, however, that the result of this query is captured by a well-formed formula whose
truth of falsity can be checked within the context of the current state. On the other hand,
the dynamics of the Execute__Part__Program function are captured by the following rule:

�9 Execute__P~rogram(pp, p) executes part program pp to machine the pallet p current-
ly on the machining table. This rule is executed whenever it is commanded by the con-
troller, pallet p is an MACHINING_CENTER, MACHINING_CENTER is IDLE, and

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 27

program pp can be executed. The execution of this rule occurs in two stages. The first
stage takes place instantaneously and marks both MACHINING_CENTER and pp as
busy. The second stage occurs tip time units later and frees MACHINING CENTER
and pp.

f lexecute (pp,p)) Part__Program(pp) A Pallet(p)
(u A CT(MACHINING_CENTER, l) --* CT(p,l))
CT(MACHINING_CENTER, IDLE)
CT(pp, EXECUTE_PROGRAM)

(t) ~.

I ~ Iexecute(pp,p) -~
CT(MACHINING_CENTER, IDLE) ~ (t),

-1 CT(pp, EXECUTE__PROGRAM) _)

CT(MACHINING_CENTER, IDLE) (t + tpp)
CT(pp, COMPLETE_.PROGRAM) J

Inspection System Model. The model of the Inspection System software/hardware compon-
ent is analogous to that of the Machining System model. Hence, only the dynamics of the
Execute_Inspection_Program rule are presented.

�9 Execute__InspectiOll__Program(ip,p) executes program ip to inspect the pallet p currently
on the inspection table.

f I execute (ip,p)] lnspection__Program (ip) A Pallet(p)
(u A CT(INSPECTION_CENTER, l) ~ CT(p,l)) , (t)
CT(INSPECTION_CENTER, IDLE)
CT(ip, EXECUTE_.PROGRAM)

(7 Iexecut e (ip,p) "~
-I CT(INSPECTION_CENTER, IDLE) I, (t),

CT(ip, EXECUTE__PROGRAM) J

cCT(INSPECTION_ CENTER, IDLE) (t + tip)
T(ip, COMPLETE__PROGRAM) J

Material Transport System Model. The Material Transport System has two sets of loca-
tions Mapl = {L1, /-.2, /,3, L4} and Map2 = {/-3, L4, Ls}. Pallets can be moved between
any two locations within each map. /--3 is common to both maps, and is used to move
pallets between locations in different maps. Only one move can be progressing within a
given map at any given time. The dynamics of Move_Pallet are captured by three rules.
The first rule applies when both source and destination are located in Map1 and are not

28 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

common to both maps. The second rule applies when both source and destination are located
in Map2 and are not common to both maps. The third rule applies whenever a transfer
of pallets takes place between locations common to both maps.

�9 Map1 Moves. Move_Pallet(s, d, p) models the transfer of pallet p from location s to
location d. Both s and d are in Map1. s or d can be in Map2 but not both.

Imove (s ,d,p)
Map~ (s) A Mapl (d)
-~ (Mapz(s) A Map2(d))
CT(p, s) A -7 (~y)(Pallet(y) A CT(y, d))
-, CT(s, RESERVED)
-, CT(d, RESERVED)

CT(MOVE_Mapb ON GOING) _~

(t)

f ~ Im~ t CT(s, RESERVED)
CT(d, RESERVED) (t),
CT(MOVE_Mapl, ON_GOING)

~ -7 CT(p,s) t ~- CT(p,d) -~
-~Cr(s, RESERVED) (t + t]d) ~- -,Cr(d, RESERVED) ~ (t + t~d)

(,_ "-1CT(MOVE_Map1, ON GOING) _J

�9 Mapz Moves. Move_Pallet(s, d, p) models the transfer of pallet p from location s to
location d. Both s and d are in Map2.

Imove (s ,d,p)
Map2 (s) A Map2 (d)
CT(p, s) A --l(3y)(Pallet(y) A CT(y, d))
-1 CT(s, RESERVED)
-1 CT(d, RESERVED)

CT(MOVE__Map2, ON GOING)

(t)

f "1 Imove(s,d,p) t CT(s, RESERVED)
CT(d, RESERVED) (t),
CT(MOVE~I4ap2, ON_GOING)

~ CT(p,d))

CT(s, RESERVED) CT(MO VE__Map2, ON_GOING)

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 29

�9 Common Moves. Move_Pallet(s, d, p) models the transfer of pallet p from location
s to location d. Both s and d are in Mapa and Map2.

r

Imove (s,d,p)
Map1 (s) A Map1 (d)
Map2(s) A Map2(d)
CT(p, s) ^ -, (3y)(Pallet(y) A CT(y, d))
"-, CT(s, RESERVED)
--, CT(d, RESERVED)
-1CT(MOVE_Mapl, ON_GOING)
CT(MOVE__Map2, ON GOING)

.M

(t)

f ~ Im~ t CT(s, RESERVED)
CT(d, RESERVED) (t),
CT(MOVE__Mapl, ON_GOING)

2 (t + t~d) _CT(d, RESERVED) (t + t2d)
"~ C Z (s ~ RESERVED) CT(MOVE_Map2, ON_GOING)

Dock System Model. The dynamics of Bring__Pallet and Remove_Pallet of the Dock
System model are captured as follows:

�9 Bring_Pallet(t, l) loads a pallet of type t of raw parts at input location l of the cell.
Predicate AE(.) marks the parts that are currently being processed within the cell.
Type_off(.,.) indicates the type of a pallet, tb is a random variable that depends on when
the factorywide material transport system honors the request to bring a pallet.

I Ib,~ng~pallet (t,l) t Pallet_Type (t)
~1 Location(l) A "-1 CT(I, RESERVED)
{ (Vx)(Pallet(x) A --1 CT(x, I) --1
~_ (3y)(Pallet(y) A Type_of(y, t) A AE(y))

-1 Ibring_pallet(t, l) -~
AE(y) ~ (t),
CT(I, RESERVED.)

(t)

(9 CT(I, RESERVED)) (t + to)
CT(y, l)

�9 Remove__Pallet(p, l) unloads a pallet p of machined parts from output location l of the
cell. Predicate AE(.) marks the parts that are currently being processed within the cell.
tr is a random variable that depends on when the factorywide material transport system
honors the request to remove a pallet.

30 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

Iremove__pallet (p, l))
Pallet (p) A Location (I) (t),
CT(p, l) A ~ CT(I, RESERVED)

. c r (l , RESERVED)
-'l[rem~) (t), } - - lAB(p) (t "~- tr)

L CT(I, RESERVED) ~L (vx)(CT(x, p)) _~

5.2.2. Process Plans Model. Traditionally, the set and sequence of operations that need
to be followed when manufacturing a product are specified by a process plan. In our view,
the model of such a process plan consists in part of an acyclic directed graph (the fixed
part of the model). The nodes of this graph represent process plan steps, and the arcs indi-
cate the precedence relation that exists among these steps. Each step specifies a manufac-
turing operation; in the Prismatic Machining Cell, the specification of such an operation
involves naming either a part program or an inspection program. In addition, a process
plan model tracks the current status of each part being manufactured in accordance with
this plan. Moreover, the model captures the dynamics involved in carrying a part through
the process plan (traversing a path of the graph).

A single model is required to capture all the process plans currently being used in the
cell. The unary predicates Process_Plan(.) and Process_Plan__Step(.), and the binary
predicates Predecessor(.,.) and CT(.,.) represent the fixed part of the model. Process_Plan
and Process_Plan__Step are true, respectively, of all process plans and process plan steps
currently in use. CT indicates which steps belong to which process plan (e.g., CT(pp, pps)
means that pps is a step of process plan pp). Predecessor indicates the precedence relation
among the steps of each process plan (e.g., Predecessor(ppsl, pps2) means that step ppsl
must be executed prior to executing pps2).

The dynamics of the processing plan model are, in turn, captured by the following rules:

�9 Start_Process~t'lan(pp, pps, p) starts the execution of the first step pps of process plan
pp on pallet p.

Istart execute(pp,pps,p)
Pallet(p) A -~ CT(p, COMPLETED_.PLAN)
Process~lan (pp) A Process__PlanJtep (pps) A CT(pp, pps)
Oz)(Pallet_Type(z) A Type of(p, z) A -1CT(z, p))
(Vx)(Process__Plan_Step (x) A ~ CT(x, p))
(u)(Process__Plan_Step (y) A --1 Predecessor(y, pps))

(t)~

--1 Istart execut e (pp,pps,p)
CT(p, pp) ~ (t)

CT(p, COMPLETEDSTEP)_)

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 31

�9 Start__Process_Step(pp, pps, p) starts the execution of a step pps of process plan pp
on pallet p. Process plan step pps should not be the first step of process plan pp.

f lstart_execute (pp,pps,p) t Pallet(p) A CT(p, COMPLETED_STEP)
Process__Plan(pp) A Process_et~.__Step(pps) A CT(pp, pps) (t)
(~y)(Proc ess_Plan__STEP (y) A Predecessor(y, pps) A CT (y,p))

~ "n Ista~ execut e (pp,pps,p)
CT(p, y) A CT(p, pps) ~ (t)

CT(p , COMPLETED_STEP)J

�9 Complete_Process_Step (pp, pps, p) completes the execution of a step pps of process
plan pp on pallet p. Process plan step pps should not be the last step of process planpp.

f Icomplete_execute (pp,pps,p) t Pallet(p) ^ Process_Plan(pp) ^ Process__Plan-step(pps)
CT(pp, pps) A CT(p, pps) A -~CT(p, COMPLETED-STEP) (t)
(3y)(Process_.Plan__STEP(y) A Predecessor(pps, y))

"1 Icomplete_execute (pp,pps,p) ~
CT(p, COMPLETED-STEP) f (t)

�9 Complete_Executing__Last__Process_Plan_Step (pp, pps, p) completes the execution of
the last step pps of process plan pp on pallet p.

f lcomplete_execute (pp,pps,p) t Pallet(p) A Process__Plan(pp) A Process_Plan_Step(pps)
CT(pp, pps) A CT(p, pps) A -~CT(p, COMPLETED_STEP) (t)
(u)(Process_Plan___Step (x) A Predecessor(pps, x))

~ "n lcomplete--execute (pP,pps,p)
CT(p, COMPLETED-STEP)~ (t)
cry, coueLereD_ez v)3

A process plan database is used to store the graph structure (and other pertinent infor-
mation) associated with all the process plans that may be used during the course of opera-
tion of the Prismatic Machining Cell. A database management system is used to add, delete,
and update process plans and perform other useful operations on this database. When-
ever a process plan is required by the Prismatic Cell controller, this database is queried
and the appropriate process plan is added to the current process plans model (the predi-
cates Process__Plan, Process~Plan__Steps, Predecessor, and CT are set accordingly). This

32 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

process plan is removed from the process plans model whenever it is no more required
by the controller of this cell; this process plan, however, may still exist in the process plan
database).

5.5.3. The Control Strategy. In our implementation, an assembly of the Prismatic Cell model
and process plans model (Figure 8) is presented to the controller as a set of procedures,
each implementing a rule of the model; the details of the process used to assemble these
models are described in [1].

The Control Search component (Figure 8) consults the Assembly Model to determine
the current set of "useful" rules; this set is then reported to the controller. A "useful"
rule is defined as one that is executable, given the current state of the cell (as indicated
by the Tracking System), and whose execution can eventually lead to executing a process
plan step. The set of "useful" rules is determined by searching a tree of depth n, the max-
imum number of rules needed to start a process plan step. The nodes of this tree are states
of the Assembly Model. A node Sp is a predecessor of a node S s if and only if the state
captured by Ss can be reached from the state captured by Sp by executing a rule of the
assembly model. The search is performed in a depth-first manner. In order to improve
the efficiency of the search procedure (performed on-line), the data structure enclosing
the search tree is built off-line (once and for all) and is simply updated each time it is
traversed, whenever a new set of "useful" rules is to be determined.

The Controller selects from a given set of "useful" rules a subset of "nonconflicting"
ones. Two rules are labeled "conflicting" if they cannot be executed in parallel (their postcon-
ditions can be satisfied at the same time); this can occur, for example, if the execution
of these rules requires th same resource. The commands corresponding to the subset of
"nonconflicting" rules are issued by the controller to the cell component. The state of the
tracking system is then updated in accordance to the resulting state of the prismatic machining
cell. The control search component is then instructed to generate a new set of "useful"
rules by consulting the current state of the Tracking System (Figure 8).

6. Conclusion

In this article, the concepts of a methodology for designing and implementing the control
and integration software of computer-integrated manufacturing systems are presented. The
goal of this methodology is to build flexible and reusable software. Software flexibility
is obtained by decoupling the process plan models from the factory floor model and using
a generic control algorithm. Reusability is achieved by building self-contained software/
hardware components with general, possibly parametrized, interfaces. These reusable com-
ponents can be used to populate manufacturing software libraries. Off-the-shelf components
can then be assembled into manufacturing systems. Moreover, the interplay between
simulated and actual hardware internals of software/hardware components is used as the
basis of a testing strategy that performs off-line simulation followed by on-line testing.

DEVELOPING CONTROL AND INTEGRATION SOFTWARE 33

The application of the methodology to the design and implementation of the control and
integration software of a Prismatic Maching Cell is also reported. A highly efficient imple-
mentation of this software has been carried out in the Ada programming language and
is currently fully operational. Surprisingly, some implementation details proved to be im-
portant issues. In particular, adequate solutions to the one-way naming and multiple in-
heritance problems (not supported by Ada) are necessary for designing and implementing
reusable software components.

Our planned future work includes three main directions. First, the development of soft-
ware tools for specifying and cataloging software/hardware components. Second, building
fully generic controllers for computer-integrated manufacturing systems; the goal of building
generic controllers requires the design and implementation of a language for expressing
our formal models together with its associated compiler. Third, developing user-friendly
human interfaces to computer-integrated manufacturing software; we believe that these
interfaces, whenever designed and implemented, can be easily coupled with our current
control and integration software.

Notes:

1. For instance, two robots sharing a common work space have the possibility of crashing into each others.
This possibility can be eliminated, however, by placing them further apart.

2. Carefully note that proper distribution of such a program is an underlying assumption of the statement. For
example, consider the assembly of Figure 1, with A and B as multiuser components; a proper way of distributing
the assembly involves A, B, and the top-level control software of the assembly executing on three different
machines; on the other hand, splitting the top-level control software can have undesirable consequences.

References

1. N. Ben Hadj-Alouane, Ph.d. thesis proposal, "Assembly of the Formal Models of Software/Hardware Com-
ponents in Flexible Manufacturing Systems;' technical report, RSD-TR-11-90. Robot Systems Division, The
University of Michigan, 1990.

2. N. Ben Hadj-Alouane, J. K. Chaar, and A. W. Naylor. "The design and implementation of the control and
integration software of a flexible manufacturing system," in The First Int. Conf. Systems Integration, April
23-26, 1990.

3. N. Ben Hadj-Alouane, J. K. Chaar, A. W. Naylor, and R.A. Volz, "Material handling systems as software
components: An implementation," technical report RSD-TR-10-88, Robot Systems Division--The University
of Michigan, May 1988.

4. G. Booch, Software Components with Ada: Structures, Tools, and Subsystems, Menlo Park, CA: Benjamin/
Cummings, 1987.

5. G. Bruno, "Using Ada for discrete event simulation," Software Practice and Experience, 14(7) pp. 685-695,
July 1984.

6. G. Bruno and A. Balsamo, "Petri net-based object-oriented modeling of distributed system," in OOP-SLA'86:
Object-Oriented Programming Systems, Languages and Applications Conf. Proc., September 1986, pp. 284-293.

7. G. Bruno and A. Ella, "Operational specification of process control systems: Execution of prot nets using
ops5," in H. J. Kugler, ed., Information Processing (IFIP) 86, 1986, pp. 35-40.

8. G. Bruno and G. Marchetto, "Process-translatable petri nets for the rapid prototyping of process control
systems," IEEE Trans. Soft. Eng., SE-12(2) February 1986, pp. 346-357.

9. G. Bruno and M. Morisio, "Petri-net based simulation of manufacturing cells" in 1987 IEEE Int. Conf. Robotics
and Automation, March 1987, pp. 1174-1179.

34 N.B. HADJ-ALOUANE, J.K. CHAAR, AND A.W. NAYLOR

10. G. Bruno and M. Morisio, "The role of rule based programming for production scheduling," in 19871EEE
Int. Conf. Robotics and Automation, March 1987, pp. 545-550.

11. J. K. Chaar and R. A. Volz, "On the Ada implementation of a component-oriented rule-based specification
language for manufacturing syste ms control software, in Proc. Fifth Annual Conf. on Artificial Intelligence
and Ada (A1DA-89), November 1989, pp. 39-50.

12. D. Croekel~, A. Desrochers, F. DiCesare, and T. Ward, "Implementation of a petri net controller for a machining
workstation," in Proc. 1987 IEEE Int. Conf. on Robotics and Automation, March 1987, pp. 1861-1867.

13. M. Kamath and N. Viswanadham, '~pplications of petri net based models in the modelling and analysis
of flexible manufacturing systems," in Proc. 1986 IEEE Int. Conf. on Robotics and Automation, March 1986,
pp. 312-317.

14. Y. Narahari and N. Viswanadham, "Modeling flexible manufacturing systems with map/I;' in Proc. the First
ORSA/TIMS Special Interest Conf. Flexible Manufacturing Systems: Operations Research Models and Ap-
plications, The University of Michigan, Ann Arbor, August 15-17, 1984, pp. 346-358.

15. A. W. Naylor and M. C. Maletz, "The manufacturing game: A formal approach to manufacturing software,"
IEEE Trans. Systems, Man, and Cybernetics, SMC-16(3) May/June 1986, pp. 321-334.

16. A. W. Naylor and R. A. Voltz, "Design of integrated manufacturing system control software" IEEE Trans.
Systems, Man, and Cybernetics, SMC-17(6) November/December 1987, pp. 881-897.

17. R. Ravichandran and A. K. Chakravarty, "Decision support in flexible manufacturing systems using timed
petri nets" J. Manuf. Systems 5(2), pp. 89-101, 1986.

18. B. H. Thomas and C. McLean, "Using grafcet to design generic controllers," in Proc. 1988 Int. Conf. Com-
puter Integrated Manuf., Rensselaer Polytechnic Institute, Troy, New York, May 23-25, 1988, pp. 110-119.

19. R. A. Voltz, P. Krishnan, and R. Therianlt, ' ~n approach to distributed execution of Ada programs" in
NASA Workshop on Telerobotics, May 1987.

20. R. A. Voltz and T. N. Mudge, "Robots are (nothing more than) abstract data types," in Proc. SME Conf.
Robotics Research: The Next 5 Years and Beyond, August 1984, p. MS84-493, pp. 1-16.

