Skip to main content
Log in

Theory and performance of a subroutine for solving Volterra Integral Equations

Theorie und Verhalten einer Subroutine für die Lösung von Volterraschen Integralgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The author considers Volterra Integral Equations of either of the two forms

$$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$

wheref, k, andg are continuous andg satisfies a local Lipschitz condition, or

$$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$

wheref,c j , andg j ,j=1,2,...,m, are continuous and eachg j satisfies a local Lipschitz condition in its second variable. It is shown that in each case the respective integral equation can be solved by conversion to a system of ordinary differential equations which can be solved by referring to a described FORTRAN subroutine. Subroutine VE1.

In the case of the convolution equation, it is shown how VE1 converts the equation via a Chebyshev expansion, and a theorem is proved, and implemented in VE1, wherein the solution error due to truncation of the expansion can be simultaneously computed at the discretion of the user. Some performance data are supplied and a comparison with other standard schemes is made. Detailed performance data and a program listing are available from the author.

Zusammenfassung

Der Verfasser betrachtet zwei Typen Volterrascher Integralgleichung; die erste besitzt die Form

$$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$

wobeif, k, undg stetig sind, undg eine lokale Lipschitz-Bedingung erfüllt; die zweite Gleichung ist

$$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$

wobeif,c j , undg j (j=1,...m) stetig sind und jede der Funktioneng j eine lokale Lipschitz-Bedingung in den zweiten Argumenten erfüllt. Für beide Fälle wird gezeigt, daß die Integralgleichung durch Zurückführung auf ein System gewöhnlicher Differentialgleichungen gelöst werden kann, wobei letzteres mit einer beschriebenen FORTRAN Subroutine VE1 behandelt werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bownds, J., Wood, B.: On numerically solving nonlinear volterra integral equations with fewer computations. SIAM J. Numer. Anal.13, 705–719 (1976).

    Google Scholar 

  2. Bownds, J.: On solving weakly singular volterra integral equations of the first kind with galerkin approximations. Math. Comp.3, 307–315 (1976).

    Google Scholar 

  3. Bownds, J., Wood, B.: A note on solving volterra integral equations with convolution kernels. Appl. Math. Comp.3, 307–315 (1977).

    Google Scholar 

  4. Bownds, J., Wood, B.: A smoothed projection method for singular nonlinear volterra equations. J. Approx. Theory25, 120–141 (1979).

    Google Scholar 

  5. Bownds, J.: On an initial value method for quickly solving volterra integral equations: a review. J. Opt. Thy. Appl.24, 133–151 (1978).

    Google Scholar 

  6. Bownds, J.: A modified galerkin approximation method for volterra equations with smooth kernels. Appl. Math. Comp.4, 67–69 (1978).

    Google Scholar 

  7. Bownds, J.: A combined recursive collocation and kernel approximation technique for certain singular volterra integral equations. J. Int. Eqns.1, 153–164 (1979).

    Google Scholar 

  8. Golberg, M.: Private communication, 1975.

  9. Goursat, E.: Détermination de la Résolvante d'une Equation. Bull. Sci. Math.57, 144–150 (1933).

    Google Scholar 

  10. Miller, J. P. C. (Foreword): Tables of Chebyshev polynomialsS n (x) andC n (x), Natl. Bureau of Standards. (Appl. Math. Series 9.) U.S. Govt. Printing Office 1952.

  11. Snyder, M.: Chebyshev methods in numerical approximation. Englewood Cliffs, N. J.: Prentice-Hall 1966.

    Google Scholar 

  12. Applebaum, L., Bownds, J.: A fortran subroutine for solving volterra integral equations. (Submitted.)

  13. te Riele, H. J. J.: Proposal for a testset for computing accuracy and efficiency of algorithms for the numerical solution of volterra integral equations of the second kind with nonsingular kernel. Preprint, Stichting Mathematisch Centrum, Amsterdam, 1978.

    Google Scholar 

  14. Casti, J., Kalaba, R., Ueno, S.: A cauchy system for a class of nonlinear fredholm equations. Appl. Analysis3, 107–115 (1973).

    Google Scholar 

  15. Forsythe, G. E., Malcolm, M. A., Moler, C. R.: Computer methods for mathematical computations. Englewood Cliffs, N. J.: Prentice-Hall 1977.

    Google Scholar 

  16. Shampine, L. F., Gordon, M. K.: Computer solution of ordinary differential equations: the initial value problem. San Francisco: W. H. Freeman 1975.

    Google Scholar 

  17. Garey, L.: Solving nonlinear second kind volterra equations by modified increment methods. SIAM J. Numer. Anal.12, 501–508 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by National Science Foundation Grant No. MCS-7902038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bownds, J.M. Theory and performance of a subroutine for solving Volterra Integral Equations. Computing 28, 317–332 (1982). https://doi.org/10.1007/BF02279815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02279815

AMS Subject Classification

Key words

Navigation