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EXISTENTIAL INTERPRETATION.  II * 

Yuri Gurevich 

Abstract 

A method of existential interpretation was introduced in [2]. It allows proving 
undecidability of modest strata of many first order theories. Here we improve the 
method and its presentation, strengthen somewhat the previous results and prove 
a couple of new results. The reader is not supposed to be acquainted with [2]. 

Introduction 

Undecidability of a first order theory T is proved often by interpreting another 
first order theory T', known to be undecidable, in T. Suppose for simplicity that T' 
is a theory of a binary predicate P and each formula (p in the language of T' is 
translated into the language of T by replacing P by a formula rc with two free 
variables. Suppose that both rc and its negation are equivalent in T to existential 
formulas. Then the translation of an VP3...3 prenex sentence q9 is equivalent in T to 
an VP3...3 prenex sentence. That reduces the decision problem for VP3...3 
sentences of T' to the corresponding problem of T. That simple note gives an idea 
of the method of existential interpretation introduced in [2]. 
Undecidability of modest strata of some first order algebraic theories was proved 
in [23. Among those theories are the theory of partial order, the theory of lattices, 
the theories of different classes of metabelian groups and so on. Many additional 
results of that sort can be obtained by the existential interpretation method. The 
theory of one irreflexive symmetrical predicate is especially convenient to be 
interpreted in other theories. Call it ISP. According to [2], (i) the set of V33...3 
sentences satisfiable in models of ISP is decidable, and (ii) the set of V63...3 
sentences not satisfiable in models of ISP and the set of V63...3 sentences 
satisfiable in finite models of ISP are recursively inseparable. Here we prove that 
the set of logically false V53...3 sentences in the language of ISP and the set of 
V53...3 sentences satisfiable in finite models of ISP are effectively inseparable. In 
particular that improvement implies improvements in the results of [2] related to 
group theory. The decision problem for V43...3 stratum of ISP remains open. 
The results of 1"23 were reported in 1965 in Malcev's logic seminar in Novosibirsk. 

* Eingegangen am26.11.1979. 
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One of the listeners, Yuri Ershov, expressed an opinion that the existential 
interpretation method would not work for more sophisticated theories and in 
particular for the theory of two equivalence relations. Call the latter theory TER. 
Eventually the method does work for TER. It is proved below that the set of 
logically false VS3...3 sentences in the language of TER and the set of Vs3...3 
sentences satisfiable in finite models of TER are effectively inseparable. The 
inseparability results for ISP and TER were announced in [3]. 
An important aim of this paper is a better exposition of the existential in- 
terpretation method. The reader isn't supposed to be familiar with [2]. Section 1 is 
the main part of the exposition. The presentation there isn't in most general form. 
It gives enough to deal with the theories mentioned above and, we hope, it is easily 
readable. A number of generalizations are more or less evident. One is related to 
interpreting T' in T in such a way that elements in T' are coded by pairs (triples, 
etc.) of elements in T. Another generalization is related to different strata of 
formulas: V...V3...3 for example. 
Section 2 provides a foundation for the method based on the theory of recursive 
functions. Section 3 is related to a natural question how to start the interpreting 
process, where to take the first theory with undecidable modest stratum of 
sentences. As in [2] we begin with Buchi's description of Turing machines by 
modest first order sentences (see [1]). It produces a strong undecidability result in 
a natural, readable and elegant way. 
In [2] we dealt with recursive inseparability of the set of VP3...3 sentences false in a 
theory T and the set ofVP3...3 sentences satisfiable in finite models of T. According 
to Section 4 the stronger property, effective inseparability, is the right one. In 
particular recursive inseparability can be replaced by effective inseparability in all 
results of [2]. That improvement is of course in the spirit of [7, 8, 6]. (An idea of 
[4] makes the implementation easier. See the definition of p-reducibility in 
Section 1, resembling the definition of semi-conservative reduction in [4] and 
Theorem 1 in Section 4.) 
A simple note (see Theorem 3 in Section 4) strengthens the results of [2] in another 
direction. Let T be a first order theory axiomatizable by a finite number of VP3...3 
sentences. If the set of VP3...3 sentences false in T and the set of VP3...3 sentences 
satisfiable in finite models of T are effectively inseparable then the set of logically 
false VP3...3 sentences in the language of T and the set of VP3...3 sentences 
satisfiable in the finite models of T are effectively inseparable. 
According to [9] the set of satisfiable ~'a3...3 sentence in the language of one 
binary predicate is undecidable. Recursive inseparability of the sets of logically 
false and finitely satisfiable V33...3 sentences in that language was proved in [2]. 
(Some errors in that proof were corrected by Lewis [5]. The same result was 
proved independently by V. F. Kostyrko, unpublished.) That result (in the effective 
inseparability form) is proved once more in Section 5 and is used for subsequent 
reductions. It connects this paper with the classical decision problem for fragments 
of the predicate logic given by a type of prefixes and numbers of unary, binary, etc. 
predicate symbols. 
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Our notation and terminology are more or less standard. We write --~ q~ for the 
negation of a formula q~ and agree that a formula shall be of the form a--,fl or a~--~fl 
rather than a ^ f l  or a v f l  whenever there is a choice. Theorem 1.5 means 
Theorem 5 of Section 1 similarly Definition 1.6 means Definition 6 of Section 1. 
An earlier version of a part  of this paper  was included into a survey on the classical 
decision problem withdrawn from the press in USSR when the author left that 
country. My thanks to Dr. Harry  R. Lewis for translating that version into 
English. 

I. p-Reducibility 

All (formal) languages and theories in this paper are first order. Each language is 
identified with the set of its predicate and function symbols. Individual constants 
are treated as 0-ary function symbols. The language of a theory T is denoted by 
L(T). If the sign of equality belongs to L(T) it is interpreted as the identity in each 
model of T. Each theory is identified with the set of its theorems. 
Let PC be an ordinary version of the first order predicate calculus with equality. 
Each language in this paper is supposed to be a sublanguage and a decidable 
subset of L(PC). 
A sentence q0 in the language L(T) of a theory T will be called satisfiable 
(respectively finitely satisfiable) in T if it holds in some model (respectively in some 
finite model) of T. If ~0 is not satisfiable in T it will be called unsatisfiable in T or 
Jalse in T. 
An ¥P3...3 formula is a formula Vxl...xq3yl...y,tp where q N p and ~p is quantifier- 
free. 

Definition 1. A theory T' is p-reducible to a theory T if there is an algorithm 
associating an VP3...3 sentence q0* in L(T) with each VP3...3 sentence ~0 in L(T') in 
such a way that 
(i) If ~o is false in T' then rp* is false in T, and 

(ii) If ~o is finitely satisfiable in T' then q~* is finitely satisfiable in T. 

Note. For  each i = 1, 2 let T~ be a theory and F i (respectively Ui) be the set of VP3...3 
sentences in L(T~) finitely satisfiable in T~ (respectively unsatisfiable in T~). If T 1 is 
p-reducible to T z and there is no decidable set of sentences in L(TI) separating F1 
and U 1 then there is no decidable set of sentences in L(Tz) separating F 2 and U v 
For, i f f  p-reduces T l to T 2 and Y separates F2, U 2 then f -  ~ Y separates F~, U1. If 
p = 3 and T 1 is the theory of one binary predicate then there is not decidable set 
separating Ft  and U 1, that is proved below. These facts give some idea why 
p-reducibility is worth studying. 

Lemma 1. The conjunction of  VP3...3 formulas ~1,..., ~, is logically equivalent to a 
single VP3...3 formula ~. Moreover ~ is computable from ~1,'", ~m and every free 
variable of c~ is among the free variables of cq, ...,c%. 
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Proof  is clear. 

Definition 2. A theory T' is a p-extension of a theory T if L(T')=L(T) and T' 
extends T by means of a finite number  of axioms el ,- .- ,  en such that the universal 
closure of each e~ is equivalent in T to an ¥P~...3 sentence. 

Lemma 2. Each p-extension of a theory T is p-reducible to T. 

Proof Let T' be a p-extension of T. T' is axiomatizable in T by means of a finite 
number of VP3...3 sentences fll,. . . ,fl,.  For  each V~3...3 sentence ~o in L(T), 
compute an VP3...3 sentence q~* logically equivalent to fll ^ ..- A ft, A ~0. That  gives 
the desired reduction. 
Formulas with exactly m free variables will be called m-ary. If both a formula ~o 
and its negation ~ ~0 are equivalent to existential formulas in T then q~ will be 
called a neutral formula of T. The set of neutral formulas of T is closed under the 
Boolean operations. 

Lemma 3. Let T be a theory, n be an m-ary neutral formula of T, and T' be the 
theory obtained from T by introducing a new m-ary predicate P by means of n. I f  
m < p then T' is p-reducible to T. 

Proof Ifq~ is an VP3...3 sentence in L(T') let rp' be the result of replacing P by n in (p. 
Compute an VP3...3 sentence ~o* equivalent to (p' in T. That gives the desired 
reduction. 
Recall that elements a, b of a structure M are called indistinguishable if there is no 
formula q~ in the language of M with parameters from M such that q~(a) holds but 
q~(b) fails in M. We'll say that a binary formula e in the language of a theory T 
expresses indistinguishability in T if for every model M of T and elements a, b of M, 
a, b are indistinguishable in M iff e(a, b) holds in M. 

Lemma 4. Let T be a theory without equality, e be a neutral formula of T expressing 
indistinguishability in T, and T' be the theory obtained from T by introducing 
equality by means of e. I f  p >= 2 then T' is p-reducible to T. 

Proof If~o is an VP3...3 sentence in L(T') let (p' be the result of replacing equality by e 
in ~o. Compute an VP3...3 sentence rp* equivalent in T to ~o'. That  gives the desired 
reduction. 

Lemma 5. Let T be a theory without equality and e be a binary neutral formula of T. 
Let T' be the theory obtained from T by introducing equality by means of e. Suppose 
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that L(T) is finite, p >-3 and p is bigger than the arity of  any predicate or function 
symbol of  T. Then T' is p-reducible to T. 

Proof Write a ternary neutral formula e of T whose universal closure expresses 
that e is an equivalence relation. For  each m-ary predicate symbol A of T write an 
(m+ 1)-ary neutral formula fla of T whose universal closure expresses that A 
doesn't distinguish e-equivalent elements. If m = 2 then fla is 

e(X1, x2)....*(Axlx:3 .-.+ Ax2x3) A (Axax 1 -~ Ax3x2). 

For each m-ary function symbol f of T write an (m+ 1)-ary neutral formula y~ of T 
whose universal closure expresses that f x  1 ...x,,, fYl.--Y,, are e-equivalent if xl, 3,'i 
are e-equivalent for every i. If m = 2 the ~I is 

e(x,, x z )~e ( f x  lx3, fx2x3) A e(fx3x 1, fx3x2). 

Let T" be the extension of T by means of the axioms c~, flA, 7i- By Lemma 2 T" is 
p-reducible to T. By Lemma 4 7" is p-reducible to T". 
A structure M will be called economical if indistinguishable elements of M are 
identical. Identifying indistinguishable elements of an arbitrary structure M gives 
an economical structure which will be called the economical version of M. 

Definition 3. Let L be a language without function symbols, and 6 be a unary 
formula in L. For each model M for L satisfying 3xfi(x) the restriction M[6 of M by 

is the submodel of M formed by {a:f(a) holds in M}. For each theory T in L the 
restriction of T by 6 is the theory Th {M[6 : M is a model of T satisfying 3x6(x)}. 
The restriction of T by 6 is accurate if for each model M of Tw{~xfi(x)} with finite 
economical version of M]6 there is a finite model M' of T u  {Ex6(x)} such that the 
economical versions of MJ~ and M'[6 are isomorphic. 

Lemma 6. Let T' be the restriction of  a theory T by a formula & Suppose it is an 
accurate restriction. 
(i) Each finite model of T' is elementarily equivalent to the restriction of some finite 
model of T by 6. 
(ii) I f  fi is neutral then T' is p-reducible to T for any p. 

Proof For  each formula ~ let ~[fi be the result of restricting quantifiers by fi in ~. 
(i) If N is a model of T' then 

Tw {3xfi(x)} w {all : ~  Th(N)} 

is consistent and has a model M. Clearly Mt6 is elementarily equivalent to N. If N 
is finite then the economical version of Mlfi is finite and, thanks to accuracy of the 
restriction, there is a finite model M' of T such that the economical versions of MI~ 
and M'[6 are isomorphic. M' is the desired model. 
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(ii) For  each VP3...3 sentence ¢p in L(T) compute an VP3...3 sentence ¢o* equivalent 
to 3xf(x) A (~01~5) in T. 

Definition 5. Suppose L~L(T)  i.e. L is a sublanguage of the language of a theory T. 
For  each model M for L(T) let MIL be the reduction of M to L. The theory 

Th {MIL:M is a model of T} 

is the reduction of T to L. The reduction of T to L is accurate if for each model M 
of Twith finite economical version of M[L there is a finite model M' of T'such that 
the economical versions of MIL and M'IL are isomorphic. 
Note that the restriction of T to L is the intersection of T and the set of formulas in 
L. 

Lemma 7. Let T ~ be the reduction of T to a sublanguage L of L( T). Suppose it is an 
accurate reduction. 
(i) Each finite model of T' is elementarily equivalent to the reduction of some finite 
model of T. 
(ii) T' is p-reducible to T for any p. 

Proof (i) If N is a model of T' then TwTh(N) is consistent and has a model M. 
Clearly MIL is elementarily equivalent to N. If N is finite then the economical 
version of MIL is finite and, thanks to accuracy of the reduction, there is a finite 
model M' of T such that the economical versions of MIL and M'IL are isomorphic. 
M' is the desired model. 
(ii) Take q~* be equal to ~p. 

Definition 6. Let T' be a theory in a language L' without equality. T' is embedded 
into T if 
(1) L'C=L(T), 
(2) the reduction of T to L' extends T', and 
(3) for each finite economical model N of T' there is a finite model M of T such 
that the economical version of MIL' is isomorphic to N. 

Lemma 8. I f  a theory T' without equality is embedded into a theory T then T' is 
p-reducible to T for any p. 

Proof Take ¢o* be equal to ¢o. 

Definition 7. Let L' be a language without equality and T' be a theory in the 
language L'w{ = }. Let e be a binary neutral formula of a theory T. 7" is embedded 
into T modulo e if the following conditions are satisfied. 
(1) L'C=L(T). 
(2) For  each model M of T, e gives an equivalence relation on fMI and e-equivalent 
elements are indistinguishable in MIL' and the quotient structure (MtL')/e is a 
model of 7". 
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(3) For  each finite model N of T' there is a finite model M of T such that (M[L')/e 
is elementarily equivalent to N. 

Lemma 9. I f  a theory T' with equality is embedded into a theory T modulo a formula 
e of  T then T' is p-reducible to T for any p. 

Proof For each '¢P~...3 sentence q~ in L(T') compute an VP~...3 sentence ~0" 
equivalent in T to the result of replacing equality by e in ~o. It gives the desired 
reduction. 

2. Effective Inseparability 

Let W0, Wt, ... be a canonical numeration of recursively enumerable sets of natural 
numbers, and A, B, C, D be sets of natural numbers. Recall that A, B are called 
effectively inseparable if there exists a recursive binary function F (under which A, 
B are said to be effectively inseparable) such that for every disjoint W m and IV,, if 
A~ W, and B~_W, then F(m,n)q~WmuW~. We cite that definition as well as most 
statements of this section from [8]. 

Corollary 1. I f  A, B are effectively inseparable they are recursively inseparable i.e., 
there is no recursive C including one of them and disjoint from the other. 

Corollary 2. Let C, D be disjoint and A c= C, B c= D. I f  A, B are effectively inseparable 
then so are C, D. 

Theorem 3. There exists a pair of recursively enumerable effectively inseparable 
sets. 

Proof See Section 1 in Chapter V of [8]. 

Theorem 4. Let A, B be recursively enumerable and effectively inseparable. For every 
disjoint and recursively enumerable C, D there exists a recursive fimction f such that 
C= f - I ( A )  and D= f - I (B) .  

Proof See Section 17 in Chapter V of [8]. 

Theorem 5. Let f ( A ) c  C and f(B)C= D where A, B are recursivety enumerable and 
effectively inseparable, f is a recursive function and C, D are disjoint. Then C, D are 
effectively inseparable. Moreover there exists a recursive binary function F such that 
C, D are effectively inseparable under F and the range of f includes the range of 
F. 

Proof See Proposition 4 and its proof in Chapter V of [8]. 

The next theorem is essentially Theorem 1 in [4]. 
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Theorem 6. Let A, B, C, D, f be as in Theorem 5. There exists a recursive function g 
such that A =g-1(C), B=g-1(O) and the range of f includes the range of  g. 

Proof Without loss of generality C = f(A) and D = f(B). By Theorem 5 there is an 
F such that C, D are effectively inseparable under F and Rng(F)_ Rng(f). By 
Theorem 12b and its proof in Chapter V of [8] there is a recursive binary function 
G such that Rng(G)c Rng(F) and C, D are doubly creative under G. (The definition 
of double creativity may be found in [8] too.) By Theorem 15(1) and its proof in 
Chapter V of [8] there exists a recursive function g such that A=g-I(C) ,  
B = 9- I(D) and Rng(g) _--- Rng(G). 

3. Buchi's Reduction 

Fix a certain G/Sdel numbering of Turing machines. Let Ha (respectively Ci) be the 
set of numbers of Turing machines M such that M halts (respectively enters a 
circle) starting on a blank tape in the initial state. 

Lemma 1. Ha and Ci are effectively inseparable. 

Proof Let A, B be recursively enumerable effectively inseparable sets of natural 
numbers. Define fn =0 if n~ A, and fn = 1 if ns B. f is a recursive partial function, 
hence there is a Turing machine M' computing f A simple adjunct turns M' into a 
Turing machine M* which halts if ne A, and enters a circle if ne B. For each n let 
M', be a Turing machine computing the constant function n, and M, be the 
concatenation of M', and M*. Let g(n) be the number of M,. Then g(A) c= Ha and 
g(B)~_ Ci. Now use Theorem 2.5. 

With each language in this paper we associate a certain G6del numbering of all 
formulas in that language. Formulas are identified with their numbers. Below P, Q, 
Pi, Qi are binary predicate symbols and R, R~ are unary ones. 
In [1] each Turing machine M is described by a sentence 

a M = (~xR 1 x) ^ Vx3yVz~  

in the language {P~, P2, P3, R1, R2,-..} in such a way that aM is logically false if 
M~Ha, and a~vt is finitely satisfiable (i.e., satisfiable in a finite set) if M~Ci. 
Actually aM is computable from M. 

Corollary 2. The sets of logically false and finitely satisfiable V3E...3 sentences in 
the language {P1, P2, P3, P~, R1, R2,-..} are effectively inseparable. 

Proof For each Turing machine M let 
t flM=(3xRlx) ^ (Vx3yP4xY)/x Vxyz(P4xY a~t ). 
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Every model of flu is a model of au. An appropriate definition of P4 turns each 
model of aM into a model of tiM- If M~Ha then a~a is logically false hence tim is 
logically false. If M s  Ci then ~M is finitely satisfiable hence flu is finitely satisfiable. 
Now use Lemma 1 and Theorem 2.5. 

4. p-Inseparability 

Fix a natural number p>3.  For  each theory T let FS(T) [-respectively US(T)] be 
the set of those ~'PS...3 sentences in the language L(T) of T which are finitely 
satisfiable (respectively unsatisfiable) in T. Let LF(T) be the set of logically false 
sentences in L(T), 

Definition l. A theory T is p-inseparable if FS(T) and US(T) are effectively 
inseparable. 

Corollary 0. PC (a version of the predicate calculus) is p-inseparable. 

Proof See Corollary 3.2. 

Theorem 1. Suppose that a p-inseparable theory T' is p-reducible to a theory T and 
FS(T'), US(T') are recursively enumerabte. Then T is p-inseparable and there is a 
recursive function g associating an VP3...3 sentence g(~o) in L(T) with each Vv3...3 
sentence q) in L(T') in such a way that (i) (pEFS(T') iff g(q))~FS(T), and (ii) 
q~ US(T') iff g(qo)~ US(T). 

Proof Let an algorithm f p-reduce T' to T. Algorithms are identified here with 
recursive partial functions. Without loss of generality f is total and the range of f 
consists of VP3...3 sentences in L(T). Now use Theorems 2.5 and 2.6. 

Theorem2. Suppose FS(T) and US(T) are recursively enumerable. I f  T is 
p-inseparable then PC is p-reducible to T. 

Proof By Theorem 2.3 there is a recursive function f such that 
FS(PC)=f-I(FS(T))  and US(PC)=f-I(US(T)) .  There is an VP3...3 sentence tp in 
L(T) which is satisfiable in T but isn't finitely satisfiable in T, otherwise FS(T) and 
US(T) are recursive. Define g(n)=f(n) if f(n) is an VPS...S sentence in L(T), and 
g(n) = ~p otherwise, g is the defined reduction. 

Theorem 3. Suppose that T is axiomatizable by a finite number of VP3...S sentences. 
I f  T is p-inseparable then FS(T) and LF(T) are effectively inseparable. 

Proof By Theorem 2 there is a recursive function f p-reducing PC to T. Let 
ex ..... e,~ be VP3...3 sentences axiomatizing T. For each ¥P3...3 sentence ~0 in L(PC) 



112 Yuri Gurevich 

compute an VP3...3 sentence g(q~) logically equivalent to cq ^ . . .  ^ c~,, ̂  f(q~). If  q~ is 
finitely satisfiable then g(q~)eFS(T). If  q~ is logically false then g(q))eLF(T). Now 
use Theorem 2.5. 

5. One Binary Predicate 

Recall that P, Q, P1, .-. are used for binary predicate symbols, and R, R~, ... are 
used for unary predicate symbols. If every theorem of a theory T is logically true 
we say T is a logic. 

Theorem 1. The logic of 5 binary predicates plus equality is 3-inseparable. 

Proof For  each m >  1 let S,, be the logic in {P~, P2, P3, P4, R~, ...,R,,}. Let T O be 
the logic in {P1, P2, P3, P4, Q, =}' In virtue of Corollary 3.2 and Theorem 4.1 it 
suffices to prove that S,, is 3-reducible to T uniformly in m. 
Let g(x, y)abbreviate Qxx ^ Qyy ^ Qxy ^ ~ Qyx, v l(x) abbreviate Qxx A P1 xx, and 
vi+~(x ) abbreviate 3y(v~(y)^ o-(y, x)) for 1 =< i < m. Every v i is logically equivalent to 
an existential formula. Let T~ be the 3-extension of T O by means of the axioms 

3 x v A x )  , 

v d x )  ^ v~(y)--,x = y ,  

cr(x, y) ^ cr(x, z ) - - ,  y = z .  

Each v~ is neutral in T t for its negation is equivalent to 3y(v~(y)^ x :t= y) in T 1. 
Let T 2 be the theory obtained from T~ by introducing unary predicates R ~, ..., R m 
by means of formulas 3y(vl(y)A Qyx), ..., 3y(vm(y)^ Qyx). These formulas are 
neutral in T 1 because the negation of 3y(vi(y)^Qyx) is equivalent in T 1 to 
3 Y( v i(Y ) A ,-, Qyx). 
Let T 3 be the restriction of T 2 by the formula ~ Qxx. It is an accurate restriction of 
course. Now we check that S m is embedded into T 3. Condition (3) of Definition 1.6 
is the only one we need to check. Given a model N of cardinaIity n build a model 
M of T z of cardinality n + m  such that (MI "~ Q)IL(S,,) is i somorphic  to N. 

By Section 1 every successor in the sequence T o, T 1, T 2, T 3, Sm is 3-reducible to its 
predecessor, hence Sm is 3-reducible to T o. Section 1 gives also the actual reduction, 
which is uniform in m. 

Theorem 2. The logic of a binary predicate is 3-inseparable. 

Proof Let T O be the logic of a binary predicate P and T 1 be the 3-extension of T O by 
means of the axioms 

3xPxx , 

Pxx ix Pyy--*(Pxz~ Pyz) ^ (Pzx-* Pzy). 

Any economical model of T~ contains exactly one P-reflexive element. 
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Let T 2 be the theory obta ined  f rom T 1 by introducing unary  predicate  R o, R 1, R2, 
R a by means  of the formulas  

,,~ Pxx  A 3y(Pyy ^ ++_ Pxy A 4- Pyx), 

which are neutral  in T r Let  T 3 be the theory obtained f rom T 2 by introducing 
equality by means  of  the formula  

(Pxx ^ Pyy) v ( ~  Pxy  ^ V { R i x  ^ Riy:O < i _  3 }). 

A model  M for L(Ta) is a model  of  T a iff it has exactly one P-reflexive element, 
P-irreflexive elements of M are par t i t ioned by R o, RI,  R2, R 3 in four classes and 
different elements in the same class are two-way connected by P. 
Let T 4 be the 3-extension of T 3 by means  of the axioms 

3xRox,  

Rox~3y(Rix  ^ Pxy), 

Rox A RIY A R~z A Pxy A Pxz-* y= z, 

where 1 -< i < 3. They  state that  for every R0-element x and  every i = t, 2, 3 there is 
exactly one R~-element y such that  Pxy holds. 
Let T 5 be the theory obta ined  f rom T 4 by introducing binary predicates Q p . . . ,  Qs 
by means of the formulas  

Rox /x Roy ^ 3x'y'(Rix' A Rjy' A Pxx' A Pyy' A Px'y'), 

where (i,j) is (1, 2), (2, 1), (1, 3), (3, 1) or  (2, 3) respectively. All 5 formulas  are neutral  
in T 4. 
Let T 6 be the restriction of T 5 by R o. It  is an accurate restriction of course. Let T v 
be the logic in {Q1, ..., Qs, -- }. Tv is embedded  into T 6 modulo  equality. [Given  a 
model  N of T 7 of  cardinali ty n build a model  M of T 5 of cardinali ty 4n + 1 such that  
(M]Ro)IL(TT) is i somorphic  to N.]  By Section 1 every successor in the sequence 
T o,.. . ,  T v is 3-reducible to its predecessor hence T 7 is 3-reducible to T o. By 
Theorem 1 T 7 is 3-inseparable hence T o is 3-inseparable. 

6. One Symmetric Predicate 

Lemma 1, Let T be the theory in the language {P, Ro, R~, R2} whose axioms state 
(i) P is irreflexive and symmetric, and 

(ii) Ro, R1, R 2 partition the universe i.e. each element satisfy exactly one of  these 3 
unary predicates. 
Then T is 3-inseparable. 

Proof Let T 1 be the theory obta ined from T by introducing equality by means  of 
the formula 

"~ Pxy /x V{R ix  /x RiY:O<_i<_2 } . 
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In each model of 7"1 different elements satisfying the same R i are connected by P. 
Let T 2 be the extension of T~ by means of the axioms 

Rox--* 3y(Riy ^ Pxy),  

Rox A RiY A Riz A Pxy  A Pxz-'-* y = z,  

where i =  1, 2. They state that each Ro-element is linked by P with exactly one 
R~-element and exactly one R2-element. 
Let T 3 be obtained from T 2 by introducing a predicate Q by the formula 

Rox ^ Roy ^ 3x' y '(Rlx'  /x Pxx'  ^ R2y' /x Pyy' ^ Px'y'),  

which is neutral in T 2. 
Let T 4 be the (accurate) restriction of T 3 by R o. 
Let T s be the logic of a binary predicate Q. We prove that T5 is embedded into T 4 
with respect to Definition 1.6. The condition (3) of that definition is the only one 
we need to check. Let N be a finite economical model of T 5. Build a model M for 
L(T3) as follows: 
[M[ = IN[ × {0, 1, 2}, we write a i for (a,  i). 
Ria j is true iff i=j.  
Palb i is true iff a4=b. Paob 1, Pbla o, Paob 2, Pb2a o are true if a=b,  and false 
otherwise. Pa~b2, Pb2a t are true if Qab holds in N, and false otherwise. 
Qalb j is true if i = 0 , j = 0  and Qab holds in N. 
Clearly M is a model of T 3. Hence MIR o is a model of T 4. But it is finite and 
(MIRo)I{Q} is isomorphic to N. 
By Section 1 T 5 is 3-reducible to T. By Section 5 T 5 is 3-inseparable. Hence T is 
3-inseparable. Q.E.D. 

Theorem 2. Let T be the theory in the language {P, R} whose only axiom states that 
P is irreflexive and symmetric. Then T is 3-inseparable. 

Proof Let T 1 be the extension of T by the axioms 

3xy(Rx ^ Ry /x ,-. Pxy) ,  

(Rx ix Ry ^ Rz)---',(Pxy v Pyz v Pzx),  

(Rx /x Ry  ^ P x y ) ~ ( P x z ~  Pyz). 

In each economical model of T 1 there are exactly two elements satisfying R and 
they are not connected by P. 
Let T 2 be the theory obtained from T 1 by introducing unary predicates 
Ri(i = 1, 2, 3) by means of the formulas 

,., R x  A 3yz(Ry /x Rz  A ~ Pyz  ^ ~i) 
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where 

a o = ,-, P x y  A ~-" P x z ,  

~1 = ~ ( P x y ~ P x z ) ,  

o~ 2 = P x y  A P x z .  

It is easy to see that the formulas defining R o, R~, R 2 are neutral in T r 
Let T 3 be the restriction of T 2 by ,-, Rx. It is an accurate restriction. 
Let T 4 be theory of Lemma 1. It is easy to see that T 4 is embedded into T 3. In 
particular each model N of T 4 of cardinality n can be augmented to a model M of 
T 2 of cardinality n + 2 in such a way that (M[ ~ R)[L(T4) is isomorphic to N. 
By Section 1 T 4 is 3-reducible to T. By Lemma 1 T 4 is 3-inseparable. Hence T is 
3-inseparable. Q.E.D. 

Theorem 3. The theory o f  one binary symmetrical predicate is 3-inseparable. 
Proof  Replace Ru by Puu in the proof of Theorem 2. 

7. One Irreflexive Predicate 

Theorem 1. The theory o f  one irreflexive binary predicate is 3-inseparable. 

Proof  Let T o be the theory in {P} whose only axiom states that P is irreflexive. Let 
a(x,y) abbreviate Pxy  A ~ P y x  and T 1 be the extension of T o by means of the 
axioms 

3y(e(x, y) v ~x(y, x)), 

(~(x, y) A c~(y, z)). 

Let T 2 be the theory obtained from T~ by introducing a unary predicate S by the 
formula 3yet(y, x). The negation of that formula is equivalent to 3yc~(x, y) in T 1 
hence it is neutral in T r For  each model M of T 2 the predicate P is irreflexive and 
symmetric in both submodels M]S and M] ~ S. 
Let T a be the extension of T 2 by the axioms 

Sx  A Sy A ~ Pxy-~  (Pxz--* Pyz) A (Pzx--, Pzy), 

Sx A Sy /x Sz-* ..~ P x y  v ~ Pyz  v ~ P z x ,  

3xy(Sx  A Sy A Pxy) .  

In each economical model of T 3 there are exactly two elements satisfying S and 
they are connected by P. 
Let T 4 be the theory obtained from T 3 by introducing a unary predicate R by 
means of the formula 

3yz(Sy /x Sz A Pyz  /x or(x, y) ^ c~(x, z)), 
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which is neutral  in T 3 for its negat ion is equivalent  in T 3 to 

Sx v 3y(Sy ^ - ~(x, y)). 

Let T s be the restriction of  T¢, by ,~ S. It  is an accurate  restriction. 
Let T 6 be the theory of Theorem 6.2. It  is easy to see that  T 6 is embedded  into T s. 
In par t icular  each model  N of T 6 of  cardinali ty n can be augmented  to a model  M 
of T 4 of  cardinali ty n + 2  in such a way that  (MI,,,S)IL(T6) is i somorphic  to N. 
By Section 1 T6 is 3-reducible to T o. By Section 6 T 6 is 3-inseparable. Hence  T O is 
3-inseparable.  

8. One Irreflexive Symmetrical Predicate and Equality 

Theorem 1. The theory of equality and one irreflexive symmetrical predicate is 
5-inseparable. 

Proof Let T O be the theory of equality and an irrefiexive symmetr ical  predicate  P. 
Let  

A(x, y, z), 6(x, y), ~(x, y) 

abbrevia te  the formulas 

Pxy ^ Pyz ^ Pzx, SzA(x, y, z), 3z((5(x, z) A 6(y, Z)) 

respectively. We say that  x, y, z form a triangle if A(x, y, z) holds, and x is a vertex if 
there are y, z such that  x, y, z form a triangle, and x is a point if it is not  a vertex. 
Let  T 1 be the 5-extension of To by means  of  the axioms 

a ( x ,  y, z) ,', A(x, u, w)--,y = u v y = w, 

Pxy-~3uw(A(x, u, w) v a (y ,  u, w)). 

The  first ax iom states that  different triangles can ' t  have a c o m m o n  vertex. Hence 
is an equivalence relation of vertices. Every triangle is an equivalence class of  ~. 
The  second ax iom states that  two points  can ' t  be l inked by  P. Hence  ,-, fi(x, y) is 
equivalent  in T 1 to an existential formula  stat ing that  either x, y are not  l inked by 
P or  there is a triangle containing exactly one of  them. Hence  6 is neutral  in T v 
Let T 2 be the extension of T 1 by means  of the axioms 

6(x, x') ^ 6(y, y') ^ ~ 6(x, y ) ~  ~,, Pxy ,  

3yPxy.  

The first ax iom states that  vertices of  different triangles can ' t  be l inked by  P. 
Let  T 3 be the theory  obtained f rom T 2 by  int roducing a unary  predicate  R by 
means  of  the formula  3yr(x, y), stating tha t  x is a vertex. Tha t  formula  is neutra l  in 
T 2 for its negat ion is equivalent  in T 2 to an existential formula  

3yuz(A(y, z, u) A Pxy ^ ~ Pxz  A ", Pxu). 
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Let T¢ be the theory obtained from T 3 by introducing a binary predicate E by 
means of the formula e(x, y), which is neutral in T 3 for ~ e(x, y) is equivalent in T 3 
to 

R x ^  R y ~ x ~  y ^ ~5 (x , y ) .  

Let c~(x, u, y) abbreviate 

]x'  y ' (Exx'  A Eyy' ^ ~ Exy  ^ Px'u /x Puy'),  

stating that x, y are vertices, their triangles are different and connected through the 
point u. 
Let T s be the extension of T¢ by means of the axioms 

R x  ^ R y A ... Exy--*3uw(cc(x, u, y) ^ ~(x, w, y) ^ u ~ w), 

~(X,U, y) A ~(X,V, y) A C~(X, W, y ) ~ u = v  V v= w V w = u ,  

stating that two different triangles are connected through exactly two points. 
Let T 6 be the theory obtained from T 5 by introducing a binary predicate Qxy by 
means of the formula 

3uwx'(~(x, u, y) ^ c~(x, w, y) ^ u ~ w A Exx'  /x ex 'u  i", Px'w),  

stating that x, y are vertices of different triangles and the two points connecting the 
triangles are linked with the same vertex of the triangle of x. That  formula is 
neutral in T 5 for its negation in equivalent in T 5 to an existential formula stating 
that if x, y are vertices of different triangles then there are two points connecting 
the triangles and linked to different vertices of the triangle of x. 
Let T 7 be the restriction of T 6 by R. It is an accurate restriction of course. Let T s be 
the reduction of T 7 to the sublanguage L = {E, Q} of L(TT). Again, it's an accurate 
reduction. 
Let T 9 be the theory of an irreflexive predicate Q. We prove that T 9 is embedded 
into T s. Condition (3) of Definition 1.6 is the only one we need to check. 
If N is a finite model of T 9 build a model M of T 6 as follows: 

lMl={ai :a~ lN[  and i~{1,2,3}}u 

{(a,b):a,b~lNl and ag=b}. 

Paia ~ holds if i+j .  Pal(a, b) holds always. If  Qab holds in N then Pal(b, a) holds. If 
Qab fails in N then Pa2(b, a) holds. P fails in all other cases. 
Ra~ holds, R(a, b) fails. 
E(a i, at) holds, E fails in all other cases. 
Q(a~, bj) holds if Qab holds in N, Q fails in all other cases. 
Let M ' = M I R ,  M " = M ' I { E , Q } .  M" is a finite model of T 8 and the economical 
versions of M"I{Q} and N are isomorphic. 
By Section 7 T 9 is 3-inseparable. Hence it is 5-inseparable. Use Section 1 to check 
that theories Ts,..., T O are 5-inseparable. 
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9. One lrreflexive Symmetrical Predicate 

Theorem 1. The theory of  one irreflexive symmetrical predicate is 5-inseparable, 

Proof  Let T O the the theory of an irreflexive symmetrical predicate P, A(x, y, z) 
abbreviate Pxy  ^ Pyz  ^ Pzx,  3(x, y) abbreviate 3z&(x, y, z). Let T 1 be the extension 
of T o by means of the axioms 

3yz~(x ,  y, z), 

~(X, y, Z 1) A/~(X, y, Z2) A ~ P z  i z2 ~ (Puz  1 ~ Puz  2)- 

Le t  T 2 be the theory obtained from T 1 by introducing equality by means of the 
formula 

.-~ P x y  ^ 3zu(~(x,  z, u) ^ A(y, z, u)), 

which is neutral in T 1 for its negation is equivalent in T1 to 

3z ~ (Pxz~---~Pyz). 

Let T 3 be the extension of T 2 by means of the axiom 

A(x,  y, z) ^ A(x,  u, w ) ~ y  = u v y = w. 

T 3 is the theory with equality of models M of T o such that each element of M 
belongs to exactly one triangle in M. Let e(x, y) abbreviate x = y v 6(x, y). Then e is an 
equivalence relation in T 3. 6(x, y) is neutral in T 3 for its negation is equivalent in T 3 to 

P x y - ,  3 u w(A(x, u, w) ^ y 4 ~ u ^ y 4 = w). 

Hence e is neutral in T 3. 
Let T 4 be the theory obtained from T 3 by introducing a binary predicate Q by 
means of the formula 

~ e(x, y) ^ 3uw(~(x, u) ^ ~(y, w) ^ Puw). 

That  formula is neutral in T 3 : its negation states that either x, y belong to the same 
triangle or no vertex of the triangle of x is connected with any vertex of the triangle 
of y. 
Let T 5 be the theory of equality and an irreflexive symmetrical predicate Q. We 
prove that T 5 is embedded into T 4 modulo e. The condition (3) of Definition 1.7 is 
the only one we need to check. Let N be a finite economical model of T 5. Build a 
model M for L(T,O as follows. 

[M[ = ] N I x  {1,2,3}. 

P(a, i) (a,j) holds if i+-j. If  Qab holds in N then P(a, 1) (b, 2) and P(b, 2) (a, 1) hold. P 
fails in all other cases. 
Q(a, i) (b,j) holds iff Qab holds in N. 
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It is easy to see that M is a finite model of T 4. For  each a the elements (a, 1), (a, 2), 
(a, 3) are indistinguishable in MI{Q}. (MI{Q}/e is isomorphic to N. 
By Section 1 T~+ 1 is 5-reducible to T i for every 0_-_i<5 hence T 5 is 5-reducible to 
T o. By Section 8 T 5 is 5-inseparable hence T o is 5-inseparable. 

10. Two Equivalence Relations 

Theorem 1. The theory of two equivalence relations is 5-inseparable. 

Proof. Let T O be the theory of equivalence relations A and B and T 1 be the theory 
obtained from T o by introducing equality by means of the formula Axy ^ Bxy. 
Equivalence classes of A (respectively B) will be called rows (respectively columns). 
Let co(x, y) [respectively fl(x, y)] abbreviate an existential formula saying that there 
is a column with at least 3 elements (respectively there are at least two columns) 
intersecting both the row of x and the row of y. Let T 2 be the extension of T 1 by 
means of an axiom saying that if two different columns intersect each of two 
different rows then each of the columns comprises exactly 2 elements. T 2 is a 
5-extension of T 1 and the formula 

~ A x y - - ,  ~ ( . (x ,  y) A N x ,  y)) 

is a theorem of T 2. Let T 3 be the extension of T 2 by the axiom 

~ / i x y ~ ( x ,  y) v N x ,  y). 

Let T 3 be the theory obtained from T z by introducing a binary predicate P by the 
formula 

~ .4xy  ^ fl(x, y), 

which is neutral in T 2 for its negation is equivalent in T 2 to 

", Axy--* c~(x, y). 

Let T 4 be the theory of an irreflexive symmetrical predicate P. We prove that T 4 is 
embedded into T 3. L( T4) C= L( T3) and the reduction of T 3 to the language {P} 
extends T 4. Let N be a finite economical model of T4. We're looking for a finite 
model M of T 3 such that the economical version of MI{P} is isomorphic to N. The 
idea of constructing M is simple. Put elements of N into different rows of a table. If 
Pab holds in N add 4 auxiliary elements forming two columns intersecting the 
rows of a and b. If Pab fails in N add 3 auxiliary elements forming one column 
intersecting the rows of a and b. The only problem is that in the latter case we have 
only two rows for a column of 3 elements. Build a model M for L(T3) as follows. 
tM] is the union of sets 

S=]N] x {1,2,3} [we write ai for (a,i)], 

{(ai, bj, k ) : N ~ P a b  and i ,j~{1,2,3} and ks{ i ,2}} ,  

{(al, b ) : N M ~ P a b  and i~{1,2,3}}. 
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A is defined in terms of rows, which are A-equivalence classes of course. Each row 
contains exactly one element of S. Elements (a~, b~, k) and (a i, b) are in the row of 

a i. 

B is defined in terms of columns, which are B-equivalence classes of course. For  
each a the three elements (al, a), (a 2, a), (a 3, a) form a column. I f a + b  and Pab fails 
in N then the six elements (a i, b), (b i, a) form a column. If Pab holds in N then for 
every i,j, k the two elements (a i, b i, k) and (b j, a i, k) form a column. 
I f x  is in the row o fa  i and y is in the row o fb  i then Pxy  holds i f fPab holds in N. 
It is easy to see that M is a finite model of T 3, the elements al, az, a 3 are 
indistinguishable in MI{P} and the economical version of MJ{P} is isomorphic to 
N. 
By Section 9 T 4 is 5-inseparable. By Section 1 T~÷ 1 is 5-reducible to T~ for 0 < i <  4. 
Hence T O is 5-inseparable. 
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