
Computing 53, 337{353 (1994)
Computing
c
 Springer-Verlag 1994

Printed in Austria

Box-Splitting Strategies for the Interval Gauss-Seidel Step

in a Global Optimization Method

D. Ratz, Karlsruhe

Abstract | Zusammenfassung

Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimization

Method. We consider an algorithm for computing veri�ed enclosures for all global minimizers x� and for

the global minimum value f� = f(x�) of a twice continuously di�erentiable function f : IRn ! IR within

a box [x] 2 IIRn. Our algorithm incorporates the interval Gauss-Seidel step applied to the problem of

�nding the zeros of the gradient of f . Here, we have to deal with the gaps produced by the extended

interval division. It is possible to use di�erent box-splitting strategies for handling these gaps, produc-

ing di�erent numbers of subboxes. We present results concerning the impact of these strategies on the

interval Gauss-Seidel step and therefore on our global optimization method.

First, we give an overview of some of the techniques used in our algorithm, and we describe the mod-

i�cations improving the e�ciency of the interval Gauss-Seidel step by applying a special box-splitting

strategy. Then, we have a look on special preconditioners for the Gauss-Seidel step, and we investigate

the corresponding results for di�erent splitting strategies. Test results for standard global optimization

problems are discussed for di�erent variants of our method in its portable PASCAL{XSC implementation.

These results demonstrate that there are many cases in which the splitting strategy is more important

for the e�ciency of the algorithm than the use of preconditioners.

AMS Subject Classi�cation: 65G10, 65K10, 65H20, 90C26.

Key words: Global optimization, interval arithmetic, Gauss-Seidel method, box-splitting strategies.

Box-Splitting-Strategien f�ur den Intervall-Gauss-Seidel-Schritt in einem globalen Opti-

mierungsverfahren. Wir betrachten einen Algorithmus zur Berechnung von veri�zierten Einschlie�un-

gen f�ur alle globale Minimalstellen x� und f�ur den Wert des globalen Minimums f� = f(x�) einer zweimal

stetig di�erenzierbare Funktion f : IRn ! IR im Intervall [x] 2 IIRn. Unser Verfahren beinhaltet den

Intervall-Gauss-Seidel-Schritt angewandt auf das entsprechende Nullstellenproblem f�ur den Gradienten

von f . Dabei ergibt sich die Aufgabe, die von der erweiterten Intervalldivision produzierten L�ucken

zu behandeln. Es ist m�oglich, verschiedene Box-Splitting-Strategien einzusetzen, die jeweils eine un-

terschiedliche Anzahl von Teilboxen erzeugen. Wir pr�asentieren Ergebnisse im Hinblick auf den Ein
u�

dieser Strategien auf den Intervall-Gauss-Seidel-Schritt und damit auf das globale Optimierungsverfahren.

Zun�achst geben wir einen �Uberblick �uber einige der in unserem Algorithmus angewandten Techniken, und

wir beschreiben die Modi�kationen, die durch Anwendung einer speziellen Box-Splitting-Strategie, die

E�zienz des Intervall-Gauss-Seidel-Schrittes verbessern. Dann betrachten wir spezielle Pr�akonditionierer

f�ur den Gauss-Seidel-Schritt, und wir untersuchen die entsprechenden Ergebnisse f�ur unterschiedliche

Splitting-Strategien. Testergebnisse f�ur Standardaufgaben der globalen Optimierung werden diskutiert

f�ur unterschiedliche Varianten unserer Methode in ihrer portablen PASCAL{XSC Implementierung. Die

Resultate zeigen, da� es viele F�alle gibt, in denen die Splitting-Strategie wichtiger f�ur die E�zienz des

Algorithmus ist als die Verwendung von Pr�akonditionierern.

338 D. Ratz

1. Introduction

We consider the problem of �nding the global minimizers of multi-dimensional nonlinear

functions. Our algorithm is based on the method of Hansen [5]. The algorithm com-

putes enclosures for all global minimizers and for the global minimum value of a twice

continuously di�erentiable function in a given interval vector.

Classical numerical global optimization methods for the multi-dimensional case start from

some approximate trial points and iterate. Thus, classical optimization methods sample

the objective function at only a �nite number of points. There is no way to guarantee that

the function does not have some unexpectedly small values between these trial points.

Hansen's algorithm uses interval arithmetic to evaluate the objective function and its

�rst- and second-order partial derivatives over a continuum of points, including those

points that are not �nitely representable on a computer. Interval analysis supplies the

prerequisite for solving the global optimization problem with automatic result veri�cation,
i.e. with the guarantee that the global minimum points and the global minimum values

have been found.

Let f : IRn ! IR be a twice continuously di�erentiable function, and let [x] 2 IIRn. We
address the problem of �nding all points x� in the interval vector [x] such that

f(x�) = min
x2[x]

f(x): (1)

We are interested in both the global minimizers x� and the minimum value f� = f(x�).

We use the branch-and-bound method of E. Hansen [5, 6] with the modi�cations described
in [15], [16], and [4]. Our method

� starts from an initial box [x] 2 IIRn,

� subdivides [x] and stores the subboxes in a list, and

� discards subintervals which are guaranteed not to contain a global minimizer,

until the desired accuracy of the intervals in the list is achieved.

The power and speed of the method comes not so much from the ability to �nd the answer

as from the ability to discard from consideration regions where the answer is not. The

tests we use to discard pending subboxes are

� midpoint test,

� monotonicity test,

� concavity test, and

� interval Newton Gauss-Seidel step.

The midpoint test determines or improves an upper bound ef for f� and discards all

intervals from the list L for which ef is lower than the lower bound of the the corresponding
interval function evaluation. The value ef is also used to check whether a newly subdivided

interval is to be entered in the list L.

Box-Splitting Strategies for the Interval Gauss-Seidel Step 339

The monotonicity test determines whether the function f is strictly monotone in an entire

subinterval [y]. If f is strictly monotone in [y], then [y] cannot contain a global minimizer

in its interior. The concavity test (non-convexity test) examines the concavity of f . If f is

not convex in a subinterval [y], then [y] cannot contain a global minimizer in its interior.

For details on these tests and on the method itself, see [4], [6], or [16]. The basic features

for our method are extended interval arithmetic and di�erentiation arithmetic, where the

latter is applied to compute the values of the derivatives of the objective function. An

introduction to these features is given in [4].

The algorithm is implemented in PASCAL{XSC [12], a portable PASCAL compiler ex-

tension including interval arithmetic. Therefore, the tests presented in this paper produce

identical results on the di�erent platforms for the PASCAL{XSC system (e.g. PC, Work-

station).

Given a list L, a list element E, a function f : IRn ! IR, and an interval vector [y] 2 IIRn,

we use the following notation in our algorithms:

Notation Meaning

L := f g Initialization of L by an empty list

L := L+ E Enter element E in L according to condition (2)

L := L� E Discard element E from L

E := Head (L) Set E to the �rst element of L

rf Gradient of f

r
2
f Hessian matrix of f

m([y]) Midpoint of [y]

fy Lower bound of the interval function evaluation [fy] := f([y])

f3() Machine interval evaluation of f

2. Global Optimization Algorithm

In the following, we give a simpli�ed algorithmic description and an overview on our

global optimization method.

Algorithm 1: GlobalOptimize (f; [x]; "; Lres ; [f
�])

1. [fc] := f3(m([x])); ef := fc; fCompute upper bound for f�g
2. [y] := [x]; L := f g; Lres := f g;
3. repeat fStart iterationg

(a) k := OptimalComponent ([y]); Bisection ([y]; k; [u1]; [u2]);

(b) for i := 1 to 2 do

i. [fu] := f([u]i);

ii. if ef < fu then nexti;

iii. [g] :=rf([u]i);

iv. if MonotonicityTest ([g]) then nexti;

340 D. Ratz

v. [H] :=r2f([u]i);

vi. if ConcavityTest ([H]) then nexti;

vii. IntervalGaussSeidelStep (f; [u]i; [H]; [V]; p);

viii. for j := 1 to p do

A. [fV] := f([V]j);

B. if ef < fV then nextj ;

C. [g] :=rf([V]j);

D. if MonotonicityTest ([g]) then nextj;

E. L := L+ ([V]j; fV); fStore [V]jg
(c) Bisect := false;

(d) while (L 6= f g) and (not Bisect) do

i. ([y]; fy) := Head (L); L := L� ([y]; fy);

ii. ef := minf ef; f(m([y]))g; MidpointTest (L; ef);
iii. if Accurate (f([y]); [y]; ") then

Lres := Lres + ([y]; fy);

else Bisect := true;

until (not Bisect);

4. ([y]; fy) := Head (Lres); [f�] := [fy; ef];
5. return Lres; [f

�];

Algorithm 1 manages the bisection of subboxes and their insertion in the pending list L.
The subdivided boxes [y] are stored as pairs ([y]; fy) in the list sorted in nondecreasing

order of lower bounds fy. Therefore, a newly computed pair is stored in the list L according
to the ordering rule (cf. [16]):

� either fw � fy < fz holds,

� or fy < fz holds, and ([y]; fy) is the �rst element of the list,

� or fw � fy holds, and ([y]; fy) is the last element of the list,

� or ([y]; fy) is the only element of the list,

9>>>>>>=
>>>>>>;

(2)

where ([w]; fw) is the predecessor and ([z]; fz) is the successor of ([y]; fy) in L. That is,

the second components of the list elements may not decrease, and a new pair is entered
behind all other pairs with the same second component.

In GlobalOptimize , we �rst compute an upper bound for the global minimum value, and

we do some initializations. Step 3 is the main iteration. Here, we �rst do a bisection of

the actual box [y]. Then in Step 3(b), we apply a function value check, the monotonicity
test, the concavity test, and the interval Newton step to the bisected boxes [u1] and [u2].

The interval Newton step results in p boxes. We have to handle them all in Step 3(b)viii,

where we again apply a function value check and a monotonicity test. If the actual box

Box-Splitting Strategies for the Interval Gauss-Seidel Step 341

[V]j has not been discarded, then it is still a candidate for a minimizer, and we store it

in L.

In Step 3(d), we remove the �rst element from the list L, i.e. the element of L with the

smallest lower bound of the interval function evaluation, and we perform the midpoint

test. Then, we check the tolerance criterion for the new actual interval. If the desired

accuracy is achieved, we store this interval in the result list Lres. Otherwise, we go to the

bisection step.

When the iteration stops because the pending list L is empty, we compute a �nal enclosure

[f�] for the global minimum value in Step 4, and we return Lres and [f�].

The closer the upper bound ef is to the global minimum value f�, the more intervals we

can delete in the midpoint test (Step 3(d)ii of Algorithm 1). Thus, the method can be

improved by incorporating an approximate local search procedure, to try to decrease the

value ef . See [6], [9], or [14] for the description of such local search procedures.

3. Interval Gauss-Seidel Step

In our global optimization method, we apply one step of the extended interval Newton
Gauss-Seidel method (cf. [1] or [8]) to the nonlinear system

rf(y) = 0; y 2 [y]: (3)

The subbox [y] is a candidate for containing a minimizer x�, which we have assumed must
satisfy rf(x�) = 0. When we apply the algorithm, three things may happen. First,
we may validate that [y] contains no stationary point, in which case we may discard [y].
Second, the Newton step may contract [y] signi�cantly. Subsequently, f can be evaluated
on the narrower box [y] with less overestimation, so the midpoint, monotonicity, and

concavity tests are likely to be more e�ective. Third, we may get splittings of the box [y]
due to gaps produced by the extended interval divisions applied in the Newton step. We
only apply one Newton step because this test is relatively expensive, and the other tests
(with bisection) may subsequently discard even subboxes containing local minimizers. In

addition, a stationary point is not necessarily even a local minimizer.

So, one step of the extended interval Newton Gauss-Seidel method shall improve an

enclosure of the set of solutions y of

g = [H] � (c� y)

where c = m([y]), g = rf(c), and [H] = r2f([y]). This method works better if we �rst

apply a preconditioning, by using a special matrix R 2 IRn�n for computing

b := R � g and [A] := R � [H];

and consider then

b = [A] � (c� y):

342 D. Ratz

Then, we compute N 0
GS([y]) according to

[z] := [y]

[z]i :=
�
ci �

�
bi +

nX
j=1
j 6=i

[A]ij � ([z]j � cj)
� .

[A]ii
�
\ [z]i

i = 1; : : : ; n

N 0
GS([y]) := [z]

9>>>>>>>>>=
>>>>>>>>>;

: (4)

In the following theorem, we summarize the most important properties of the interval

Newton Gauss-Seidel method.

Theorem 1 Let f : D � IRn ! IR be a twice continuously di�erentiable function, and

let [x] 2 I IRn be an interval vector with [x] � D. Then N 0
GS([x]) has the following

properties:

1. Every zero x� 2 [x] of rf satis�es x� 2 N 0
GS([x]).

2. If N 0
GS([x]) = ;, then there exists no zero of rf in [x].

3. If N 0
GS([x])

�
� [x], then there exists a unique zero ofrf in [x] and hence in N 0

GS([x]).

For proofs, see [6] or [13].

In a practical realization of the interval Newton Gauss-Seidel method (4), it is not nec-

essary to compute the [y]i in �xed order i = 1; : : : ; n. A well-known strategy is the
Hansen/Greenberg realization [7], which �rst performs the single component steps of the
Gauss-Seidel step for all i with 0 62 [A]ii and then for the remaining indices with 0 2 [A]ii
by using extended interval arithmetic. In this case, a gap can be produced in the corre-
sponding components [y]i of [y]. Therefore, N

0
GS([x]) may be given by one or more interval

vectors. This leads directly to the question of splitting strategies.

4. Splitting Strategies

If 0 2 [A]ii for several components i, then the extended interval divisions in the interval

Newton Gauss-Seidel method possibly produces several gaps in the actual box [y]. There-
fore, we have to split the result N 0

GS([y]) in two or more boxes. In this case, di�erent
splitting strategies may be applied. We give four examples:

1. Use only the largest gap to split the box [y].
This strategy is known from Hansen/Greenberg [7], and the Newton step results in
at most 2 boxes.

2. Use all gaps to split the box [y] in a special way.
This strategy we suggested in [16], and the Newton step results in at most n + 1

boxes. We give the details in the following paragraph.

3. Use at most three gaps to split the box [y].
This strategy was suggested by Hansen [6], and the Newton step results in at most

23 = 8 boxes.

Box-Splitting Strategies for the Interval Gauss-Seidel Step 343

4. Use all gaps to split the box [y].

As far as we know, nobody uses this strategy, because the Newton step results in

at most 2n boxes causing a proliferation of subboxes.

Let us now have a closer look on Strategy 2 suggested in [16] and also used in [4]. As

already mentioned, this strategy uses all gaps in a special way. That means: if a gap is

produced in the i-th component step, we store one part of the actual box [y] by using

one part of the component [y]i as i-th component of [y]. The other part of [y]i is used

to update [y] and to go on with the next component steps of the interval Gauss-Seidel

method. That is, we perform one component step of the Gauss-Seidel step according to

the scheme:

1. Compute [y]i = [v]i [[w]i.

2. If [v]i = [w]i = ;, then stop fno solution in [y]g.
3. If [w]i 6= ;, then set [y]i := [w]i and store [y].

4. Set [y]i := [v]i.

5. Continue with next i.

As an example, we now handle a box of dimension n = 3 assuming that the interval
Gauss-Seidel step produces a gap in each component. Incorporating the above strategy,
the three component steps of the method split the actual box [y] in the following manner:

[y] =

0
B@
[y]1
[y]2
[y]3

1
CA 1!

0
B@
[v]1
[y]2
[y]3

1
CA 2!

0
B@
[v]1
[v]2
[y]3

1
CA 3!

0
B@
[v]1
[v]2
[v]3

1
CA

#1 #2 #3
0
B@
[w]1
[y]2
[y]3

1
CA

0
B@
[v]1
[w]2
[y]3

1
CA

0
B@
[v]1
[v]2
[w]3

1
CA

Each step i is marked by a numbered arrow. The vertical arrows correspond to the storing
of a subbox, whereas the horizontal arrows correspond to the updating of the actual box

in the i-th component. Thus, the interval Gauss-Seidel step results in 4 boxes, i.e. the 3
boxes in the second row and the outmost right box in the �rst row of the graphic.

In the following, we give an algorithmic description of the interval Gauss-Seidel step
incorporating this strategy.

Algorithm 2: IntervalGaussSeidelStep (f; [y]; [H]; [V]; p)

1. Compute preconditioner R;

2. c := m([y]); [A] := R � [H]; [b] := R �rf3(c); [yc] := [y]� c;

3. p := 0; fInitialization for loopg

344 D. Ratz

4. for i := 1 to n do fInterval Gauss-Seidel step for 0 62 [A]iig
(a) if (0 2 [A]ii) then nexti;

(b) [y]i :=
�
ci �

�
[b]i +

nX
j=1
j 6=i

[A]ij � [yc]j
� .

[A]ii
�
\ [y]i;

(c) if [y]i = ; then return p := 0;

(d) [yc]i := [y]i� ci;

5. for i := 1 to n do fInterval Gauss-Seidel step for 0 2 [A]iig
(a) if (0 62 [A]ii) then nexti;

(b) [z] :=
�
ci �

�
[b]i +

nX
j=1
j 6=i

[A]ij � [yc]j
� .

[A]ii
�
\ [y]i; f[z] = [z1] [[z2]g

(c) if ([z] = ;) then return p := 0;

(d) [y]i := [z1]; [yc]i := [y]i � ci;

(e) if ([z2] 6= ;) then fStore part of [y] in [V]pg
p := p + 1; [V]p := [y]; [V]pi := [z2];

6. p := p + 1; [V]p := [y];

7. return [V]; p;

In the �rst steps, we compute a preconditioner R, the interval matrix [A], and the interval
vectors [b] and [yc]. We perform the single component steps of the Gauss-Seidel step for
all i with 0 62 [A]ii (Step 4) and then for the remaining indices with 0 2 [A]ii (Step 5).

Using this strategy, it is possible that the intervals [y]i become smaller by the intersections
with the old values [y]i in Step 4(b), before the �rst gap is produced in Step 5(b). If a
splitting is necessary in Step 5, then we store one part of the actual box [y] in the p-th
row of the interval matrix [V], and we continue the iteration for the other part of [y].
The variable p returns the number of subboxes produced in Algorithm 2. If an empty
intersection occurs, the value p = 0 is returned. Thus, IntervalGaussSeidelStep returns the

interval matrix [V] containing row by row the p interval vectors (boxes) [V]i, i = 1; : : : ; p,
where p � n+ 1.

5. Preconditioners

As already mentioned, the interval Gauss-Seidel method generally works better if we
�rst apply a preconditioning. A preconditioner matrix R commonly recommended in the

literature is the inverse of the midpoint of the interval matrix [H]. In Algorithm 2, we
also use this kind of preconditioner, that is, we compute

R � (m([H]))�1:

In our test results we refer to this case as \InvMid". For our tests, we also use Algorithm

2 without any preconditioning, i.e. with R set to the identity matrix I.

Box-Splitting Strategies for the Interval Gauss-Seidel Step 345

In [10], Kearfott introduced the concept of contracting and splitting preconditioners in

the context of root-�nding problems. In our special case of global optimization problems,

we investigated a combination of two kinds of these preconditioners: width optimal con-

tracting preconditioners and pivoting splitting preconditioners as suggested by Kearfott

and Hu [11]. We give only a very brief description of these preconditioning techniques.

The width optimal preconditioners are part of a class of preconditioners which can be

computed as solutions of linear programming problems [11]. A preconditioner row Ri

minimizes the diameter of

bi +
nX

j=1
j 6=i

[A]ij � ([y]j � cj);

where [A]i = Ri � [H] and bi = Ri � g.
Pivoting splitting preconditioners can be computed by simply solving g = [H] � (c � [y])

in each row for each variable [y]i (cf. [11]). This is done by computing

for m := 1 to n do

for i := 1 to n do

[y]i := ci � ([S]mi + gm) =[H]mi

where

[S]mi =
nX

j=1

j 6=i

[H]mj � ([y]j � cj):

When computing the [S]mi, we may use a special subtraction technique (cf. [11], [16]),
which avoids interval dependencies and allows to compute all pivoting preconditioners for

all variables in O(n2) operations.

An algorithmic scheme for the interval Gauss-Seidel step with special preconditioners
looks as follows:

Algorithm 3: PreconGaussSeidelStep (f; [y]; [H]; [V]; p)

1. c := m([y]); g :=rf(c); [z] := [y]; � := 10�6; � := 0:8.

2. SolveAllPivot ([y]; [H]; c; g; [V]; p).

3. if p = 0 then return p.

4. for i := 1 to n do

if d([y]i) � �j[y]ij and d([y]i) � �d([z]i) then

(a) Ri :=WOptimalCPrecon ([y]; [H]; i).

(b) OneStepOfGaussSeidel ([y]; [H]; g; c; Ri; i; [V]; p).

(c) if p = 0 then return p.

5. return [V]; p;

346 D. Ratz

In Algorithm 3, we use the hybrid scheme and the values � and � suggested by [11]. At

�rst, all pivoting preconditioners are used in SolveAllPivot , where splittings are produced

with respect to all gaps. Depending on a diameter criterion, we then compute width op-

timal contracting preconditioners and do additional component steps of the Gauss-Seidel

method. The variable p returns the number of subboxes produced. If an empty intersec-

tion occurs, the value p = 0 is returned. Due to the splitting with respect to all gaps and

to the storing of parts of [y] in the rows of the interval matrix [V], PreconGaussSeidelStep

returns the interval matrix [V] containing row by row the p interval vectors (boxes) [V]i,

i = 1; : : : ; p, where p � 2n.

6. Results

We use an implementation of Algorithm 1 including some minor modi�cations (cf. [16]) to

compare the di�erent versions of the interval Gauss-Seidel step. That is, in Step 3(b)vii

either IntervalGaussSeidelStep (Algorithm 2) or PreconGaussSeidelStep (Algorithm 3) is
called. In the following, we present results for problems which have been used previously
in testing global optimization methods in [16].

In our tables, we distinguish the results with di�erent splitting strategies and precondi-

tioners by the maximum number of subboxes (splittings) which could be generated in the
interval Gauss-Seidel step and by a shorthand description of the preconditioning used,
respectively. Furthermore, we give informations on evaluation e�ort for the function, gra-
dient, and Hessian values and on the maximum number of elements in our pending list.
The total time for optimizing the corresponding test function is given in STUs, where

the standard time unit STU is the computation time to evaluate the S5 test function (as
usual real function) 1000 times. In detail, we use the following rows of information in the
tables below:

Splittings 2 Use only one gap, Strategy 1
n+ 1 Special use of all gaps, Strategy 2

2n Use all gaps with splitting preconditioners

Preconditioning None No preconditioner, R = I

InvMid Inverse midpoint preconditioner, R � (m([H]))�1

WOptC/Piv Optimal preconditioners, Algorithm 3

FE Number of function evaluations

GE Number of gradient evaluations

HE Number of Hessian evaluations

E e�ort 1 Evaluation e�ort FE + n �GE + n�(n+1)

2
�HE

E e�ort 2 Evaluation e�ort FE +minf4; ng �GE + n �HE
L length Maximum number of list elements

STU Standard time units

We introduce the E e�ort values which combine the three values FE, GE, and HE to

a single value approximating the total evaluation e�ort in terms of objective function

Box-Splitting Strategies for the Interval Gauss-Seidel Step 347

evaluations. In this way, we are able to compare roughly the evaluation e�orts of our

di�erent variants of the Gauss-Seidel step by the E e�ort values. We give two E e�ort

values to take into account the two methods of automatic di�erentiation.

According to [3], we have W (f;rf;r2f) =W (f) � 7n2+3n+1 for the forward mode (1)

and W (f;rf;r2f) =W (f) � 11n+5 for the reverse or backward mode (2) of automatic

di�erentiation. These lead to the upper bounds FE + 3nGE + 7n2HE in mode (1) and

FE+4GE+11nHE in mode (2), respectively. The formulas for E e�ort 1 and E e�ort 2,

described above, approximate the evaluation e�orts for the average case.

For details and references concerning the used test functions, see [16].

As a �rst example, we compare Strategies 1 and 2 in minimizing Griewank's function

(G5) where x 2 IR5 and

fG5(x) =
5X

i=1

x2i
400

�
5Y

i=1

cos(
xip
i
) + 1;

within the initial box speci�ed by �500 � xi � 600, i = 1; : : : ; 5.

G5

Splittings 2 n+ 1

FE 62 247
GE 404 140
HE 96 44

E e�ort 1 3522 1607

E e�ort 2 2158 1027

L length 68 87
STU 13.5 7.1

We see, that the use of our special splitting strategy improves the performance of the
global optimization method, by drastically decreasing the number of Hessian and gradient

evaluations.

Very interesting results come from testing our method with the three functions of Shekel

(S5, S7, S10), where x 2 IR4 and

fSm(x) = �
mX
i=1

1

(x�Ai)(x�Ai)T + ci
;

348 D. Ratz

for m = 5, m = 7, and m = 10, with

A =

0
BBBBBBBBBBBBBBBBBB@

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3:6 7 3:6

1
CCCCCCCCCCCCCCCCCCA

and c =

0
BBBBBBBBBBBBBBBBBB@

0:1

0:2

0:2

0:4

0:4

0:6

0:3

0:7

0:5

0:5

1
CCCCCCCCCCCCCCCCCCA

:

The initial box was speci�ed by 0 � xi � 10, i = 1; : : : ; 4.

S5

Splittings 2 n+ 1 2 n+ 1 2n

Preconditioning None None InvMid InvMid WOptC/Piv

FE 25 95 28 99 316
GE 132 68 145 70 73

HE 29 19 31 19 19

E e�ort 1 843 557 918 569 798
E e�ort 2 669 443 732 455 684

L length 18 38 18 38 53

STU 1.8 1.1 2.0 1.2 1.4

S7

Splittings 2 n+ 1 2 n+ 1 2n

Preconditioning None None InvMid InvMid WOptC/Piv

FE 61 84 80 87 305
GE 298 68 366 70 72

HE 60 20 70 20 19

E e�ort 1 1853 556 2244 567 783
E e�ort 2 1493 436 1824 447 669

L length 38 28 44 28 44

STU 5.0 1.4 6.4 1.7 2.0

Box-Splitting Strategies for the Interval Gauss-Seidel Step 349

S10

Splittings 2 n+ 1 2 n+ 1 2n

Preconditioning None None InvMid InvMid WOptC/Piv

FE 64 99 84 104 338

GE 346 72 413 76 80
HE 74 21 83 21 20

E e�ort 1 2188 597 2566 618 858

E e�ort 2 1744 471 2068 492 738

L length 66 31 67 31 42
STU 8.2 2.2 10.2 2.4 3.1

These test results show clearly, that our special splitting strategy is more important for the
e�ciency of the algorithm than the use of preconditioners. Especially, we see that we get
the best performance if we use our special splitting strategy without any preconditioner
in the Gauss-Seidel step. Kearfott's optimal linear programming preconditioners work
much better than the inverse midpoint preconditioner with the standard splitting strategy

(Strategy 1). Another interesting result is given by the increasing evaluation e�ort of the
Sm-functions for increasing values of m. If the standard splitting strategy is used, then
the evaluation e�ort increases drastically. If our special technique is used, we have only a
slightly increasing evaluation e�ort.

Our next example is minimizing Hartman's function of dimension 6 (H6), where x 2 IR6

and

fH6(x) = �
4X

i=1

ci exp

0
@�

6X
j=1

Aij(xj � Pij)
2

1
A :

with

A =

0
BBB@

10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

1
CCCA ; c =

0
BBB@

1
1:2

3
3:2

1
CCCA ; and

P =

0
BBB@

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886
0:2329 0:4135 0:8307 0:3736 0:1004 0:9991

0:2348 0:1451 0:3522 0:2883 0:3047 0:6650

0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

1
CCCA :

The initial box is given by 0 � xi � 1, i = 1; : : : ; 6.

350 D. Ratz

H6

Splittings 2 n+ 1 2 n + 1 2n

Preconditioning None None InvMid InvMid WOptC/Piv

FE 4607 1491 22003 2229 10229

GE 18682 1087 81264 1613 3184
HE 3269 223 13334 289 379

E e�ort 1 185348 12696 776267 17976 37292

E e�ort 2 98948 7177 427063 10415 25539

L length 1652 274 5818 386 662
STU 772 57.3 3641 86.6 199

Again, we see that our special splitting strategy improves the e�ciency of the algorithm,

and we get the best performance if we use it without preconditioner. The inverse midpoint
preconditioning increases the evaluation e�ort by a factor of approximately 4.2 if standard
splitting (Strategy 1) is used. If we use our special splitting (Strategy 2), the factor is
only 1.4.

In the following, we compare some results of our new method including Strategy 2 (marked
by \New") with the results presented in [6] (marked by \Han"). For the test functions
fW4, fW10, and fW29 we choose " = 10�12 in our method.

Function W4 is de�ned by

fW4(x) =
5X

i=1

i cos((i� 1)x1 + i)
5X

j=1

j cos((j + 1)x2 + j)

+(x1 + 1:42513)2 + (x2 + 0:80032)2;

and the initial box is �10 � xi � 10, i = 1; 2. We have 760 local minima in the initial
box.

Function W10 is de�ned by

fW10(x) =
9X
i=1

y2i (1 + 10 sin2(�(1 + yi+1))) + sin2(�(1 + y1)) + y210;

where yi = (xi � 1)=4, i = 1; : : : ; 10;

and the initial box is �10 � xi � 10, i = 1; : : : ; 10. We have 1010 local minima in the

initial box.

Function W29 is de�ned by

fW29(x) = 100(x2 � x21)
2 + (x1 � 1)2;

and the initial boxes are de�ned by �1:2 � xi � 1:2, i = 1; 2 and �106 � xi � 106,

i = 1; 2.

Box-Splitting Strategies for the Interval Gauss-Seidel Step 351

Function W4 W10 W29

Initial box [x]i [�10; 10] [�10; 10] [�1:2; 1:2] [�106; 106]
" = 10�12 Han New Han New Han New Han New

FE 2166 59 559 89 640 111 12321 1213
GE 2021 319 497 177 583 187 12827 2399

HE 725 69 184 41 238 50 4949 593

E e�ort 1 8383 904 15649 4114 2520 475 52822 7790
E e�ort 2 7658 835 4387 1207 2282 585 47873 7197

Additional test results for the special splitting strategy are given in [16].

In Section 4, we mentioned two other strategies for splitting the box in the interval Gauss-

Seidel step. If we use Strategy 3 and 4, we get no improvement, in general. In many cases,

we have

0 2 [A]ii and (bi +
nX

j=1
j 6=i

[A]ij � ([z]j � cj))=[A]ii = (�1;1)

in the computation of N 0
GS([y]) according to (4). Thus, we get [z]i := (�1;1) \ [z]i

unchanged.

But if we use a little trick, we can get some advantage of the knowledge of this situation.

We use \gaps" of width zero, by splitting [z]i in [z]i = [v]i [[w]i with [v]i := [y
i
;m([y]i)]

and [w]i := [m([y]i); yi], whenever we have 0 2 [A]ii and [z]i remains unchanged. This is
actually a bisection step.

Testing our di�erent strategies including the trick for gaps of width zero, for Griewank's

function of dimension 5 and 7, we get the following encouraging results:

G5

Splittings 2 n+ 1 23 2n

Preconditioning InvMid InvMid InvMid InvMid

FE 127 199 233 447

GE 261 127 105 61

HE 78 40 34 19

E e�ort 1 2602 1434 1268 1037

E e�ort 2 1561 907 823 786

G7

Splittings 2 n+ 1 23 2n

Preconditioning InvMid InvMid InvMid InvMid

FE ? 1360 528 2045

GE ? 727 249 63

HE ? 173 74 20

E e�ort 1 >> 100000 11293 4343 3046
E e�ort 1 >> 100000 5479 2042 2437

352 D. Ratz

The results presented in this paper demonstrate that it is possible to improve the e�ciency

of global optimization method incorporating the interval Gauss-Seidel step including spe-

cial splitting strategies which use as much information (from the already computed data)

as possible. Future research work should investigate possible strategies for treating the

\gaps of width zero" more e�ective.

References

[1] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York,

1983.

[2] In: Atanassova, L., Herzberger, J. (Eds.): Computer Arithmetic and Enclosure Methods. North-

Holland, Elsevier, Amsterdam, 1992.

[3] Fischer, H.-C.: Schnelle automatische Di�erentiation, Einschlie�ungsmethoden und Anwendungen.

Dissertation, Universit�at Karlsruhe, 1990.

[4] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Veri�ed Computing I { Basic

Numerical Problems. Springer-Verlag, Heidelberg, New York, 1993.

[5] Hansen, E.: Global Optimization Using Interval Analysis { The Multi-Dimensional Case. Nu-

merische Mathematik 34, pp 247{270, 1980.

[6] Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York, 1992.

[7] Hansen, E. und Greenberg, R.: An Interval Newton Method . Applied Mathematics and Computa-

tions 12, pp 89{98, 1983.

[8] Hansen, E., Sengupta, S.: Bounding Solutions of Systems of Equations Using Interval Analysis.

BIT 21, pp 203{211, 1981.

[9] Jansson, C.: A Global Optimization Method Using Interval Arithmetic. In: [2], pp 259{267, 1992.

[10] Kearfott, R. B.: Preconditioners for the Interval Gauss-Seidel Method . SIAM Journal of Numerical

Analysis 27, pp 804{822, 1990.

[11] Kearfott, R. B., Hu, C. und Novoa, M.: A Review of Preconditioners for the Interval Gauss-Seidel

Method. Interval Computations 1, pp 59{85, Institute for New Technologies, St. Petersburg, 1991.

[12] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: PASCAL{XSC { Language Reference

with Examples. Springer-Verlag, New York, 1992.

[13] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge,

1990.

[14] Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood Limited,

Chichester, 1988.

[15] Ratz, D.: An Inclusion Algorithm for Global Optimization in a Portable PASCAL{XSC Implemen-

tation. In: [2], pp 329{338, 1992.

[16] Ratz, D.: Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen. Dissertation, Uni-

versit�at Karlsruhe, 1992.

Dr. Dietmar Ratz

Institut f�ur Angewandte Mathematik

Universit�at Karlsruhe

D-76128 Karlsruhe

Federal Republic of Germany

