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In this paper, we investigate the associative memory in recurrent neural

networks, based on the model of evolving neural networks proposed by Nol�,

Miglino and Parisi. Experimentally developed network has highly asymmetric

synaptic weights and dilute connections, quite di�erent from those of the Hop-

�eld model. Some results on the e�ect of learning e�ciency on the evolution

are also presented.
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1 Introduction

As a model of associative memory in terms of the recurrent-type arti�cial neural net-

works, Hop�eld model [1] and its variants have been successfully developed and made

some important results using the statistical mechanical techniques on the analogy

with spin glass [2, 3]. Their assumption of the symmetrically and fully connected

weights of synapses is, however, unrealistic, since this does not arise naturally in

biological neural systems. Some researches are found allowing asymmetric synaptic

weights or diluting the network connections [2, 3]. They do not concern the network

structures, but most of them merely investigate the e�ects on the storage capacities

under limited conditions.

In any of above mentioned models, the physical positions where neurons exist

or the distances between neurons are not considered at all. It must play an im-

portant role for the formation of biological networks in the brain. There should be

the attempt to construct more natural models based on biologically and genetically

plausible considerations, in which asymmetric and dilute connections are just the

result. The genetic algorithm [4] can be a key ingredient toward such directions.

Recently evolutionary search procedures have been combined with the arti�cial neu-

ral networks (so called \the evolutionary arti�cial neural networks") [5]. Almost all

of the models deal with the feedforward multi-layered networks to raise the per-

formance of the networks and in many of them the evolution of both weights and

architectures is not integrated.

In this paper we apply a genetic evolutionary scheme to recurrent neural networks

and investigate associative memory. Aiming to construct a biologically inspired

neural network, we take into account the following two points in network formation:

The correspondence of genotype and phenotype should not be direct. Only

developmental rules of neurons are encoded in the genotype representation.

The information on the physical positions of neurons and the distances between

neurons should be included in the model. The resulting network is a physical

object in space.

While the �rst point, the indirect encoding scheme, has been studied [6, 7], few

attempts have been made to incorporate both of the above two points, except for

the model of \evolving (growing) neural network" by Nol�, et al. [8, 9]. So we follow

their scheme treating a neural network as a creature in a physical environment.

The outline of our model is as follows. (1) Prepare the individuals which have the

genotypes encoded the information for generating networks. (2) Learn the patterns

according to an appropriate learning rule. (3) Impose the task for retrieving the

given patterns. (4) Some individuals which make good results in the retrieval task

are selected and inherit the genotypes to their o�spring with mutation. (5) Repeat

(2)-(4) until appropriate generation. As the generations go on, the abilities of the

individuals will improve.
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A population consists of M individuals. Each individual has a genotype encoded

the information of creating the network structure. The genotype is divided into

N blocks corresponding to N neurons. Each block contains the instructions for

one neuron, namely, the \physical position" of the neuron ( and coordinates

in the \physical space", 2 dimensional plane in this paper), the directional angle

for the \axonal" growth, the axonal bifurcation angle , the axonal bifurcation

length , the \presynaptic" weight (characterize the �ring intensity and neuron's

type, excitatory or inhibitory) and the \postsynaptic" weight (amplify or damp

the incoming signal) (Fig. 1). Note that these are essentially local information

peculiar to each neuron. There is no direct information as to the connections between

neurons. All values are randomly generated at the 0-th generation.

Figure 1: A Genotype consisted of N blocks and parameters speci�ed in each block.

Figure 2: The growing and bifurcating process of an axon.

From each neuron in the physical space, an axon grows and bifurcates as shown in

Fig. 2 and connects with other neurons. The connections of neurons are determined

by whether the axon reaches the neighbourhood of other neurons or not. For

convenience, we introduce the connectivity matrix ( = 1 ; = 0) as

= 1 if the axon from the i-th neuron reaches the j-th neuron, and otherwise

= 0. Then the synaptic weight at birth, before learning, is given by
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3 Simulations and results
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= if = 1, and = 0 if = 0. So the synaptic weights are generally

asymmetric ( = ).

After the bare weights are established, they are by learning for a certain

period of time. That is, p patterns = 1 ( = 1 ) to be stored are

embedded into the network by an appropriate learning rule: = + .

Iterated several times in one generation (learning task), the dressed weights are

obtained. In general, the synaptic increment can be modulated in each learning

step. Then the \retrieval task" is imposed to the neural network (phenotype) with

the dressed weights . Concretely, one of p patterns with random noise is given to

the individual network as the initial states of neurons. And the state of the neuron

is updated synchronously according to the equation ( + 1) = ( ( )),

where ( )( 1 1) is the state of the i-th neuron and is the time step at

retrieving. The transfer function ( ) is usually taken to be ( ) = ( 2 ).

During the update proceeds, we trace the overlap of the state of the network with

the target pattern: ( ) = 1 ( ). This procedure is applied to all p

patterns.

The retrieval task is repeated several times with changing the noise of the set

of p patterns, because the proper network should have the balanced robustness

against the noise. For this reason, we take the �tness as the sum of the values of

overlaps over all tasks. At the end of one generation, some individuals which have

got higher �tness values are selected. Their genotypes are inherited to their o�spring

with random mutation (we do not use crossover for simplicity). The above process

continues for appropriate generations.

To carry out the experiments, we have made the following choices of parameters. A

population consists of 50 ( = 50) individuals. The best 10 of individuals which

have got higher �tness values are selected, and 5 copies of each of their genotypes are

inherited to their o�spring with mutation. The mutation rate is 0.004. We take a

square, normalized to 1 1, as the physical space. The ranges of each parameter for a

genotype are 0 1, 0 2 , 0 3, 0 0 15, 2 2 and

0 2. The axon bifurcates 5 times and the neighbourhood of a neuron is �xed

to = 0 05. And the steepness parameter in the transfer function is set to 0.015.

In learning and retrieval tasks, we use the 7 7 non-orthogonal 4 ( = 4) patterns

as a set of target patterns (Fig. 3), then the total number of neurons becomes 49

( = 49).

As the learning rule we here introduce simple Hebbian rule for the connected

neurons: = if = 1, and = 0 if = 0, where is the

"learning e�ciency" represents the intensity of learning after the birth.

Note that we do not take into consideration the evolution of learning rule itself.

In this paper we make �xed through generations. Learning and retrieval task

processes in one generation are described by Fig. 4. First,15 steps are given for
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Figure 3: An example of a set of target patterns.

Figure 4: Flow of learning and retrieval task processes in one generation.

learning. Secondly, for each of 4 patterns 15 steps are assigned to retrieving trial by

starting with the noisy pattern state with 5% random noise. Then the overlaps are

marked at the step t=5,10 and 15 and summed up. The retrieval task is repeated 4

times successively (RT1 RT4) by changing the noise.

Bold solid lines in Fig. 5 show the transition of the �tness of the best individual

until the 1000th generation at = 0 002 (Fig. 5(a)) and = 0 05 (Fig. 5(b)), re-

spectively. The �tness value is normalized to max 100. The \bare weight" line(thin)

represent the ability of the bare weights of the best individual, made by removing the

learned changes from the dressed weights, namely the \native ability" for retriev-

ing. The \pure genetic" line(dashed) represents the ability of genetic algorithm only

without learning after the birth ( = 0), namely means acquisition of the \inherited

memory". Changing the learning e�ciency , we found that higher the parameter

becomes, more the native ability goes down. It appears that the presence of learning

helps the network to �t its environment and makes evolution easier.

Fig. 6 and Fig. 7 show the network structures of the best individual and the

distributions of distance versus weight value between connected neurons generated at

the 0th generation(G0) and the 1000th(G1000) in the case of = 0 05, respectively.

Here we cite the comparison of our numerical results with those of the conven-

tional Hop�eld model. In the following, indicates the Hop�eld model and

indicates the best individual of our evolutionary model of = 0 05 at the 1000th

generation. The total numbers of connections are :2352 and :406, then the mean

values of the number of connections per neuron become :48 and :8.29. This

shows develops strongly diluted connections. The values of symmetry parameter,

de�ned by = , are given by :1.0 and :0.23. This means
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4 Summary

Figure 5: Evolution of �tness of the best individual in population. (a) = 0 002.

(b) = 0 05.

Figure 6: Network structures of the best individual at G0 and G1000 ( =0.05).

forms highly asymmetric weights.

Finally we mention about the �tness values. can reach 100 �tness value for

noisy(5%) patterns, but cannot reach 100 and gets 88.3 in average naively (re-

member that we admit non-orthogonal patterns). And is almost stable for suf-

�cient retrieving time. This suggests that our evolutionary approach may exceed

the Hop�eld model in associative memory, in spite of quite di�erent structure of

networks.

We have presented the results of simulations of associative memory in the recurrent-

type neural networks composed of growing neurons. We found that the developed

networks are far di�erent from the Hop�eld model in respect of the symmetricity
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Figure 7: Dressed weight value versus distance between connected neurons of the

best individual at G0 and G1000 ( =0.05).

and the connection number per neuron of the connection weights, but it is possible

to act as a su�cient or a better associative memory than the conventional Hop�eld

model.

In this paper we kept our model simple, in terms of minimizing computational

requirements and studying the feasibility of the methodology of biologically inspired

associative memory models.

Further simulations are going to concentrate on the in
uence of increasing the

sets of task-patterns. It is expected that the dynamic environment where diverse

tasks are present excludes the task-speci�city and makes us possible to examine the

relationship between learning and evolution [10, 11].

It seems interesting as a future direction of research to incorporate epigenetic fac-

tors [12] such as the primary processes of neuronal development (adhesion, apoptosis

etc.) and/or the action of nerve growth factor from target neurons.
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