Skip to main content
Log in

Position-sensing technologies for movement analysis in stroke rehabilitation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Research has focused on improvement of the quality of life of stroke patients. Gait detection, kinematics and kinetics analysis, home-based rehabilitation and telerehabilitation are the areas where there has been increasing research interest. The paper reviews position-sensing technologies and their application for human movement tracking and stroke rehabilitation. The review suggests that it is feasible to build a home-based telerehabilitation system for sensing and tracking the motion of stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aminian, K., Robert, P., Buchser, E. E., Rutschmann, B., Hayoz, D., andDepairon, M. (1999): ‘Physical activity monitoring based on accelerometry: validation and comparison with video observation’,Med. Biol. Eng. Comput.,37, pp. 304–308

    Google Scholar 

  • Bachmann, E. R., McGhee, R. B., Yun, X., andZyda, M. J. (2001): ‘Inertial and magenetic posture tracking for inserting humans into networked virtual environments’.Proc. ACM Symposium on Virtual Reality Software & Technology

  • Balogh, I., Orbaek, P., Ohlsson, K., Nordander, C., Unge, J., Winkel, J., andHansson, G. A. (2004): ‘Self-assessed and directly measured occupational physical activities — influence of musculoskeletal complaints, age and gender’,Appl. Ergon.,35, pp. 49–56

    Article  Google Scholar 

  • Barreiro, M. S., Frere, A. F., Theodorio, N. E. M., andAmate, F. C. (2003): ‘Goniometer based to computer’.Proc. 25 th Ann. Int. Conf. IEEE Eng. in Med. Biol. Soc., 17–21 Sept. 2003, Cancun, Mexico, pp. 3290–3293

  • Bassett, D. R.,Ainsworth, B. E., andLeggett, S. R. (1996): ‘Accuracy of five electronic pedometers for measuring distance walked’,Med. Sci. Sports Exerc.,28, pp. 1071–1077

    Google Scholar 

  • Bassett, D. R., Cureton, A. L., andAinsworth, B. E. (2000): ‘Measurement of daily walking distance-questionnaire versus pedometer’,Med. Sci. Sports Exerc.,32, pp. 1018–1023

    Google Scholar 

  • Blomqvist, L., Stark, B., Engler, N., andMalm, M. (2004): ‘Evaluation of arm and shoulder mobility and strength after modified radical mastectomy and radiotherapy’,Acta Oncol.,43, pp. 280–283

    Google Scholar 

  • Bouten, C. V. C., Koekkoek, K. T. M., Verduim, M., Kodde, R., andJanssen, J. D. (1997): ‘A triaxial accelerometer and portable processing unit for the assessment daily physical activity’,IEEE Trans. Biomed. Eng.,44, pp. 136–147

    Article  Google Scholar 

  • Bussmann, H. B. J., Reuvekamp, P. J., andVeltink, P. H. (1998): ‘Validity and reliability of measurements obtained with an “activity monitor” in people with an without a transtibial amputation’,Phys. Therapy,78, pp. 989–998

    Google Scholar 

  • Campbell, K. L., Crocker, P. R., andMcKenie, D.C. (2002): ‘Field evaluation of energy expenditure in women using tritrac accelerometer’,Med. Sci. Sports Exerc.,34, pp. 1667–1674

    Google Scholar 

  • Clark, P. G., Dawson, S. J., Sheideman-Miller, C., andPost, M. L. (2002): ‘Telerehab: Stroke teletherapy and management using two-way interactive video’,Neurol. Rep.,26, pp. 86–92

    Google Scholar 

  • Croteau, K. A. (2004): ‘A preliminary study on the impact of a pedometer-based intervention on daily steps’,Am. J. Health Prom.,18, pp. 217–220

    Google Scholar 

  • Crouter, S. E., Schneider, P. L., Karabulut, M., andBassett, D. R. (2003): ‘Validity of 10 electronic pedometers for measuring steps, distance, and engergy cost’,Med. Sci. Sports Exerc.,35, pp. 1455–1460

    Article  Google Scholar 

  • Cyarto, E. V., Myers, A. M., andTudor-Locke, C. (2004): ‘Pedometer accuracy in nursing home and community-dwelling older adults’,Med. Sci. Sports Exerc.,36, pp. 205–209

    Article  Google Scholar 

  • Fahrenberg, J., Foerster, F., Smeja, M., andMuller, W. (1997): ‘Assessment of posture and motion by multichannel piezoresistive accelerometer recordings’,Psychophysiology,34, pp. 607–612

    Google Scholar 

  • Foerster, F., Smeja, M., andFahrenberg, J. (1999): ‘Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring’,Comput. Human Behav.,15, pp. 571–583

    Google Scholar 

  • Freedson, P. S., andMiller, K. (2000): ‘Objective monitoring of phsical activity using motion sensors and heart rate’,Res. Q. Exerc. Sport,71, pp. S21–29

    Google Scholar 

  • GLink:http://www.microstrain.com/

  • Goodwin, N., andSunderland, A. (2003): ‘Intensive, time-series measurement of upper limb recovery in the subacute phase following stroke’,Clin. Rehab.,17, pp. 69–82

    Article  Google Scholar 

  • Groves, D. (1988): ‘Beyond the pedometer — new tools for —monitoring activity’,Phys. Sports Med.,16, pp. 160–164

    Google Scholar 

  • Hansson, G. A., Balogh, I., Ohlsson, K., andSkerfving, S. (1996): ‘Goniometer measurement and computer analysis of wrist angles and movements applied to occupational repetitive work’,J. Electromyogr. Kinesiol.,6, pp. 23–35

    Article  Google Scholar 

  • Hansson, G. A., Balogh, I., Ohlsson, K., andSkerfving, S. (2004): ‘Measurements of wrist and forearm positions and movements: effect of, and compensation for, goniometer crosstalk’,J. Electromyogr. Kinesiol.,14, 355–367

    Article  Google Scholar 

  • Haynes, M. J., andEdmondston, S. (2002): ‘Accuracy and reliability of a new, protractor-based neck goniometer’,J. Manip. Physiol. Therap.,25, pp. 579–586

    Google Scholar 

  • HealthyPeople (2001):http://www.healthypeople.gov/document/ html/volumel/06disability.htm

  • Hoodless, D. J., Stainer, K., Savic, N., Batin, P., Hawkins, M., andCowley, A. J. (1994): ‘Reduced customary activity in chronic heart-failure — assessment with a new shoe-mounted pedometer’,Int. J. Cardiol.,43, pp. 39–42

    Article  Google Scholar 

  • Johnson, P. W., Jonsson, P., andHagberg, M. (2002): ‘Comparison of measurement accuracy between two wrist goniometer systems during pronation and supination’,J. Electromyogr. Kinesiol.,12, pp. 413–420

    Article  Google Scholar 

  • Jonsson, P., andJohnson, P. W. (2001): ‘Comparison of measurement accuracy between two types of wrist goniometer systems’,Appl. Ergonom.,32, pp. 599–607

    Google Scholar 

  • Kalawsky, R. S. (1993): ‘The science of virtual reality and virtual environments’, (Addison-Wesley Wokingham, England, 1993)

    Google Scholar 

  • Kamen, G., Pattern, C., Du, C. D., andSison, S. (1998): ‘An accelerometry-based system for the assessment of balance and postural sway’,Gerontology,44, pp. 40–45

    Article  Google Scholar 

  • Kemp, B., Janssen, A. J. M. W., andvan der Kamp, B. (1998): ‘Body position can be monitored in 3d using miniature accelerometers and earth-magnetic field sensors’,Electro-encephalogr. Clin. Neuro-physiol./Electromyogr. Motor Control,109, pp. 484–488

    Google Scholar 

  • Kilanowski, C. K., Consalvi, A. R., andEpstein, L. H. (1999): ‘Validation of an electronic pedometer for measurement of physical activity in children’,Ped. Exer. Sci.,11, pp. 63–68

    Google Scholar 

  • Kochersberger, C. E., McConnel, E., Kuchibatla, M. N., andPieoer, C. (1996): ‘The reliability, validity, and stability of a measure of physical activity in the elderly’,Arch. Phys. Med. Rehabil.,77, pp. 793–795

    Article  Google Scholar 

  • Kuiken, T. A., Amir, H., andScheidt, R. A. (2004): ‘Computerized biofeedback knee goniometer: acceptance and effect on exercise behavior in post-total knee arthroplasty rehabilitation’,Arch. Phys. Med. Rehab.,85, pp. 1026–1030

    Google Scholar 

  • Le Masurier, G. C., andTudor-Locke, C. (2003): ‘Comparison of pedometer and accelerometer accuracy under controlled conditions’,Med. Sci. Sports Exerc.,35, pp. 867–871

    Google Scholar 

  • Leeders, N. Y., Sherman, W. M., Nagaraja, H. N., andKien, C. L. (2001): ‘Evaluation of methods to assess physical activity in free-living conditions’,Med. Sci. Sports Exerc.,33, pp. 1233–1240

    Google Scholar 

  • Ltters, J.,et al. (1998): ‘Design, fabrication and characterization of a highly symmetrical capacitive triaxial accelerometer’,Sensors Actuators A: Phys.,66, pp. 205–212

    Google Scholar 

  • Luinge, H. J. (2002): ‘Inertial sensing of human movement’, PhD thesis, University of Twente

  • Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W. Z., andBurgar, C. (2002): ‘Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance’,Top Stroke Rehabil,8, pp. 40–53

    Google Scholar 

  • Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2003): ‘Detection of daily physical activities using a triaxial accelerometer’,Med. Biol. Eng. Comput.,41, pp. 296–301

    Google Scholar 

  • Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2004a): ‘Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement’,Physiol. Meas.,25, pp. R1-R20

    Article  Google Scholar 

  • Mathie, M. J., Celler, B. G., Lovell, N. H., andCoster, A. C. (2004b): ‘Classification of basic daily movements using a triaxial accelerometer’,Med. Biol. Eng. Comput.,42, pp. 679–687

    Article  Google Scholar 

  • Mathie, M. J., Coster, A. C., Lovell, N. H., Celler, B. G., Lord, S. R., andTiedemann, A. (2004a): ‘A pilot study of long-term monitoring of human movements in the home using accelerometry’,J. Telemed. Telecare,10, pp. 144–51

    Article  Google Scholar 

  • McGorry, R. W., Chang, C., andDempsey, P. (2004): ‘A technique for estimation of wrist angular displacement in radial/ulnar deviation and flexion/ extension’,Int. J. Indust. Ergonom. 34, pp. 21–29

    Google Scholar 

  • MEDICATE:http://www.medicate online.org/

  • Melanson, E. L., Knoll, J. R., Melanie, L. B.,et al. (2004): ‘Commercially available pedometers: considerations for accurate step counting’,Prevent. Med.,39, pp. 361–368

    Article  Google Scholar 

  • Merryn, J. M., Coster, A. C. F., Lovell, N. H., andCeller, B. G. (2004): ‘Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement’,Physiol. Meas.,25, pp. R1-R20

    Google Scholar 

  • Miltner, H. R. W., Bauder, H. et al. (1999): ‘Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke’,Stroke,30, pp. 586–592

    Google Scholar 

  • Moe-Nilssen, R. (1998): ‘A new method for evaluating motor control in gait under reallife environmental conditions part 1: The instrument’,Clin. Biomech.,13, pp. 320–327

    Google Scholar 

  • MT9:http://www.xsens.com/

  • Mulder, A. G. E. (1994): ‘Human movement tracking technology’.Technical Report 94-1, Simon Fraser University

  • Ohtaki, Y., Sagawa, K., andInooka, H. (2001): ‘A method for gait analysis in a daily living environment by body-mounted instruments’,JSME Int. J. C., Mech. Syst. Mach. Elem. Manuf.,44, pp. 1125–1132

    Google Scholar 

  • Rawes, M. L., Richardson, J. B., andDias, J. J. (1996): ‘A new technique for the assesof wrist movement using biaxial fleaxible electrogoniometer’,J. Hand Surg.,21, pp. 600–603

    Google Scholar 

  • Reinkensmeyer, D., Lum, P., and Winters, J. (2004): ‘Emerging technologies for improving access to movement therapy following neurologic injury’.http://www.eng.uci.edu/dreinken/publications/ djr%20resna%20chapter.pdf

  • Rossini, P. M., Calautti, C., Pauri, F., andBaron, J. C. (2003): ‘Post-stroke plastic reorganisation in the adult brain’,Lancet Neurol.,2, pp. 493–502

    Google Scholar 

  • Sagawa, K., Inooka, H., andSatoh, Y. (2000): ‘Non-restricted measurement of walking distance’,Proc. IEEE Int. Conf. On Systems, Man, and Cybernetics, 8–11 Oct. 20003, Nashville, TN, USA, pp. 1847–1852

    Google Scholar 

  • Schneider, P. L., Crouter, S. E., andBassett, D. R. (2004): ‘Pedometer measures of free-living physical activity: Comparison of 13 models’,Med. Sci. Sports Exerc.,36, pp. 331–335

    Article  Google Scholar 

  • Sellers, W. I., Varley, J., andWaters, S. (1998): ‘Remote locomotor monitoring using accelerometers: a pilot study’,Folia Primatologia,69, pp. 82–85

    Google Scholar 

  • Sequeira, M. M., Rickenbach, M., Wietlisbach, V., Tullen, B., andSchutzm, Y. (1995): ‘Physical-activity assessment using a pedometer and its comparison with a questionnaire in a large population survey’,Am. J. Epidem.,142, pp. 989–999

    Google Scholar 

  • Shepherd, E. F., Toloza, E., McClung, C. D., andSchmalzried, T. P. (1999): ‘Step activity monitor: Increased accuracy in quantifying ambulatory activity’,J. Orthop. Res.,17, pp. 703–708

    Article  Google Scholar 

  • Shiratsu, A., andCoury, H. J. C. G. (2003): ‘Reliability and accuracy of different sensors of a flexible electrogoniometer’,Clin. Biomech.,18, pp. 682–684

    Article  Google Scholar 

  • Skelly, M. M., andChizeck, H. J. (2001): ‘Real-time gait event detection for paraplegic fes walking’,IEEE Trans. Neural Syst. Rehabil. Eng.,9, pp. 59–68

    Article  Google Scholar 

  • SMART:http://hsc.shu.ac.uk/smart/?page=about

  • Sderkvist, J. (1994): ‘Micromachined gyroscopes’,Sensors Actuators,43, pp. 65–71

    Google Scholar 

  • Sprigle, S., Flinn, M., Wootten, M., andMcCorry, S. (2003): ‘Development and testing of a pelvic goniometer designed to measure pelvic tilt and hip flexion’,Clin. Biomech.,18, pp. 462–465

    Article  Google Scholar 

  • Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., andHoward, J. (2003): ‘Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease’,J. Rehab. Res. Devel.,40, pp. 45–58

    Google Scholar 

  • Stroke:http://www.stroke.org.uk/noticeboard/obesity.htm

  • Talbot, L. A., Gaines, J. M., Huynh, T. N., andMetter, E. J. (2003): ‘A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: A preliminary study’,J. Am. Geri. Soc.,51, pp. 387–392

    Google Scholar 

  • Taloy, P., Burridge, J.,et al. (1999): ‘Clinical audit of 5 years provision of the odstock dropped foot stimulator’,Artif. Organs. 23, pp. 440–442

    Google Scholar 

  • Tao, Y., andHu, H. (2003): ‘Building a visual tracking system for home-based rehabilitation’.Proc. 9th Chinese Automation and Computing Society Conf., UK

  • Tudor-Locke, C., Ainsworth, B. E., Thompson, R. W., andMatthews, C. E. (2002): ‘Comparison of pedometer and accelerometer measures of free-living physical activity’,Med. Sci. Sports Exerc.,34, pp. 2045–2051

    Article  Google Scholar 

  • Tung, S. (2004): ‘Position paper: An overview of mems inertial sensors’,http://www.easasuedu/nsf2000/Table_of_Contents/STpdf

  • Turner, J. W. (2001): ‘Telepsychiatry as a case study of presence: Do you know what you are missing?’,J. Comput. Mediat. Commun. 6, (4)

  • Uiterwaal, M., Glerum, E. B. C., Busser, H. J., andVan Lummel, R. C. (1998): ‘Ambulatory monitoring of physical activity in working situations, a validation study’,J. Med. Eng. Technol. 22, pp. 168–172

    Google Scholar 

  • Veltink, P. H., Bussmann, H. B. J., de Vries, W., Martens, W. L. J., andVan Lummel, R. C. (1996): ‘Detection of static and dynamic activities using uniaxial accelerometers’,IEEE Trans. Rehabil. Eng.,4, pp. 375–385

    Google Scholar 

  • Walker, M. (2002): ‘Stroke rehabilitation’,Br. J. Cardiol.,9, pp. 23–30

    Google Scholar 

  • Walling, A. D. (2004): ‘Home-based rehabilitation improves function after stroke’,Am. Acad. Family Phys.,70

  • Welk, G. J., Differding, J. A., Thompson, R. W., Blair, S. N., Dziura, J., andHart, P. (2000): ‘The utility of the digi-walker step counter to assess daily physical activity patterns’,Med. Sci. Sports Exerc.,32S, pp. S481–488

    Google Scholar 

  • Williamson, R., andAndrews, B. J. (2000): ‘Gait event detection for fes using accelerometers and supervised maching learning’,IEEE Trans. Rehabil. Eng.,8, pp. 312–319

    Article  Google Scholar 

  • Winter, D. A. (1990): ‘Biomechanics and motor control of human movement, 2 edn’, (Wiley, New York, 1990)

    Google Scholar 

  • Yazdi, N., Ayazi, F., andNaja, K. (1998): ‘Micromachined inertial sensors (invited paper)’,Proc. IEEE,86, pp. 1640–1659

    Article  Google Scholar 

  • Zhou, H., andHu, H. (2004): ‘A survey — human movement tracking and a research proposal’.Smart Equal Project Report

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Black, N.D. & Harris, N.D. Position-sensing technologies for movement analysis in stroke rehabilitation. Med. Biol. Eng. Comput. 43, 413–420 (2005). https://doi.org/10.1007/BF02344720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344720

Keywords

Navigation